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Abstract
Motor skills emerge from learning feedforward commands as well as improvements in feedback
control. These two components of learning were investigated in a compensatory visuomotor tracking
task on a trial-by-trial basis. Between trial learning was characterized with a state-space model to
provide smoothed estimates of feedforward and feedback learning, separable from random
fluctuations in motor performance and error. The resultant parameters were correlated with brain
activity using magnetic resonance imaging. Learning related to the generation of a feedforward
command correlated with activity in dorsal premotor cortex, inferior parietal lobule, supplementary
motor area and cingulate motor area, supporting a role of these areas in retrieving and executing a
predictive motor command. Modulation of feedback control was associated with activity in bilateral
posterior superior parietal lobule as well as right ventral premotor cortex. Performance error
correlated with activity in a widespread cortical and subcortical network including bilateral parietal,
premotor and rostral anterior cingulate cortex as well as the cerebellar cortex. Finally, trial-by-trial
changes of kinematics, as measured by mean absolute hand acceleration, correlated with activity in
motor cortex and anterior cerebellum. The results demonstrate that incremental, learning dependent
changes can be modeled on a trial-by-trial basis and neural substrates for feedforward control of
novel motor programs are localized to secondary motor areas.
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Introduction
Learning a new motor skill is based on hidden, intrinsic changes within the nervous system
that are inferred by measurable changes of performance (Schmidt, 1975). Functional imaging
provides an opportunity to identify these intrinsic changes within the brain. Previous imaging
studies establish that activity in the brain changes with learning, and that this change correlates
with numerous measures of competency including time on task (Grafton et al., 1992; Grafton
et al., 1994; van Mier et al., 1998; Grafton et al., 2001), tracking error (Miall et al., 2001;
Diedrichsen et al., 2005; Miall and Jenkinson, 2005), speed and reaction time. These findings

Correspondence: Scott T. Grafton MD, Department of Psychology and The Sage Center for the Study of the Mind, Building 251, Room
3837, University of California at Santa Barbara, Santa Barbara, CA 93106, Phone 805-893-6046, Fax 805-893-4303, Email:
grafton@psych.ucsb.edu.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2009 February 1.

Published in final edited form as:
Neuroimage. 2008 February 1; 39(3): 1383–1395.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



establish the feasibility of using imaging with blood oxygen level dependent (BOLD) magnetic
resonance imaging (MRI) to capture learning related changes in the brain, but also highlight
the need to distinguish different cognitive, kinematic or control mechanisms that lead to these
BOLD signal changes.

Here we used a compensatory tracking task in which participants had to counteract the influence
of a repeating input function. As learning progressed, participants became more adept at
keeping a cursor in a goal region. For this task we can distinguish at least four separable but
not necessarily independent components that could lead to learning related BOLD signal
changes. 1) Motor learning is by definition accompanied by a change in motor output. Given
the known correlations between movement kinematics and brain activity (Dettmers et al.,
1996; Turner et al., 1998; Turner et al., 2003), one is faced with the problem of distinguishing
changes of brain activity due to learning from changing movement kinematics. It is possible
to manipulate tasks such that kinematics remain constant, through use of dual tasks (Seidler et
al., 2002). However, these data can be difficult to generalize to other forms of learning as there
is evidence that neural substrates of skill learning can differ enormously in the context of
training under single and dual tasks (Grafton et al., 1995; Hazeltine et al., 1997; Grafton et al.,
1998). A second approach is to identify changes of network dynamics, rather than local BOLD
magnitude, to characterize learning (Tunik et al., 2007). A third, model based approach is to
parameterize learning and show that these parameters are uncorrelated with low level kinematic
features. Then the model parameters can be correlated with brain activity. This is the general
strategy of the current study. 2) Performance error is used to correct the on-going movement
as well as to serve as signal to change the movement plan of the next movement (Diedrichsen
et al., 2005; Suminski et al., 2007). There is a need to distinguish brain activity associated with
the perception and correction of error within each trial from modifications across future trials
(Fisher et al., 2000). In the current study within trial error was correlated directly with brain
activity on a trial by trial basis and between trial effects were incorporated in the learning
model. 3) Performance can improve by changing how feedback information is used, i.e.,
through a change of the feedback control policy (Garvey, 1960; Fuchs, 1962; Fitts, 1964). This
improvement can occur irrespective of the ability generate a predictive motor command. For
example, performance can improve when tracking randomly moving targets by adopting an
optimal feedback control policy that takes into account the inherent temporal delays (Foulkes
and Miall, 2000). 4) Predictive or feedforward control can occur by perceptual learning of the
trajectory of a target or by motor learning of a particular required movement (Adams, 1987).
Both perceptual and motor learning result in predictive control but they have fundamentally
different patterns of generalization and neural substrates (Grafton et al., 2001). These different
contributions to learning motivated the current experimental approach. The subjects used a
frictionless knob and made pronation-supination movements of the forearm to keep a cursor
centered while an unknown but consistently repeating input function moved the cursor off the
midline. Subjects learned a novel and unique spatio-temporal motor pattern necessary to
counteract the hidden input that perturbed the position of a cursor.

We distinguished contributions based on feedforward learning from feedback corrections
driven by visual feedback using the temporal delay of the response. Feedback corrections were
modeled as a response to position and velocity of the feedback cursor with a 150ms delay. In
contrast, predictive responses were modeled as being related to the input function without time
delay. To determine whether these feedforward responses were learned as a motor program or
through perceptual learning of the input pattern, we used a transfer task after 4 days of training
in which the learned skill had to be generalized to a new control situation with either an identical
motor response or perceptual pattern instructing the desired movement. As shown below,
generalization only occurred with transfer to control situations requiring identical movement.
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Control parameters were estimated to describe the strength of feedforward and feedback control
on every single trial. To distinguish these learning related changes from trial-by-trial variations
of the size of the visual error and the actual motor output, a state space model that provided
optimally smoothed estimates of the control parameter was used. In control engineering, a state
space representation is a mathematical model of a physical system described as a set of input,
output and state variables related by first-order differential equations. State-space models can
be used to represent the output of a visuomotor control system as a function of the input and
of the hidden state of the system at a particular moment in time, i.e. within a given motor trial.
They can also be used to describe the temporal dynamics of how the hidden state develops over
time, i.e. how the visuomotor system learns from trial to trial. Similar approaches have been
used to model learning and generalization in a force-field reaching task (Thoroughman and
Shadmehr, 2000; Donchin et al., 2003; Smith et al., 2004) as well as during sensorimotor
adaptation to altered visual feedback (Cheng and Sabes, 2006). A general tenet is that the
parameter changes related to learning are relatively smooth (Baddeley et al., 2003), while
changes in motor error and motor output fluctuate, uncorrelated, across trials.

Previous state-space models of motor learning have characterized the success of a subject in
learning to adjust the execution of a familiar movement, such as pointing to a target in the
setting of altered dynamics or visual feedback. In contrast, the current experiment required
subjects to learn an unfamiliar movement pattern in the setting of stable dynamics and normal
visual feedback. Feedforward learning in the present case represents the capacity to retrieve a
newly acquired motor program. The parameter estimate of feedback learning in the present
study is an abstract metric describing the ability of a subject to modify their use of feedback
information to improve performance. There are many ways a person might accomplish this,
including better use of visual attention, smoother movements or enhanced understanding of
the controller dynamics. The current measure does not distinguish these sources of improved
use of feedback information.

The experimental design also allowed for an assessment of standard measures of performance
for each trial. Motor error was measured as the mean absolute position error over a trial and
motor output was measured as the mean absolute hand acceleration, Other measures of the
amount of motor output could also potentially be used, such as average velocity or force, but
these measures typically correlate among each other and with hand acceleration. Note that error
and hand acceleration are sensitive to trial-by-trial noise whereas our state-space model
estimates of feedback and feedforward learning were calculated to be independent of this non-
specific performance variability. We then correlated these four measures with MRI BOLD
measures of brain activity on a trial-by-trial basis. In this way, brain activity related to both
learning and performance could be localized. The core hypotheses in the present paper tested
if there were different brain correlates of feedback policy and feedforward learning and if these
would be localized in the same brain areas driven by trial to trial differences of kinematics or
error.

While the relationship between brain activity, kinematics and error are well established, the
brain systems related to feedforward and feedback control have not been defined. One strategy
for distinguishing brain systems underlying feedback and feedforward control used Fitt’s law
in a pointing task. With this construct and fMRI it was proposed that there is greater feedback
control when targets are small and greater feedforward control with “ballistic” movements
towards large targets. fMRI identified areas more strongly activated with large targets (and
presumably feedforward control) included primary motor cortex, premotor cortex, and the
basal ganglia. Areas associated with more difficult targets (presumably with greater feedback
control) included ipsilateral sensorimotor cortex, multiple cerebellar regions, and the thalamus
(Seidler et al., 2004). While feedback control is likely to increase for small targets, the
assumption that feedforward control would change at all is untested. Subjects could use the

Grafton et al. Page 3

Neuroimage. Author manuscript; available in PMC 2009 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



same feedforward program, but at a higher velocity. Thus, differences in motor output,
movement speed, etc. complicate the interpretation of these results and underscore the need
for alternative methods to distinguish feedforward and feedback control.

Changes in feedforward control have also been studied using visuomotor adaptation. Learning
to reach with a rotated joystick induces widespread changes of activity including increased
activity in the cerebellum (Imamizu et al., 2000; Della-Maggiore and McIntosh, 2005; Graydon
et al., 2005) and basal ganglia (Seidler et al., 2006). However, many of these studies have not
controlled for other factors, such as movement error, eye movements, and hand motor output.
When controlling for these factors, the acquisition of a new visuomotor mapping appears to
be connected with increased activity in the right parietal cortex (Krakauer et al., 2004). Finally,
it has been proposed that premotor and inferior parietal cortex or basal ganglia retrieve and
manipulate specific motor programs i.e. “action vocabularies” used in feedforward control
(Graybiel, 2000; Rizzolatti and Craighero, 2004; Johnson-Frey et al., 2005).

Materials & Methods
Task and Performance Measurement

An optically encoding MRI compatible knob with a screwdriver handle and minimal resistive
torque sampled rotational position of the forearm at 200Hz. Subjects viewed a computer
monitor projected by LCD onto a rear projection screen at the head of the bore via a mirror
mounted to the head coil. The screen was colored dark gray and bisected by a stationary vertical
red bar that served as the target. The knob controlled the lateral position of a second, thick
yellow vertical bar. The knob response was set to be either positional or rate dependent, i.e.
the position of the knob was either used as a position command or velocity command for the
cursor. In each case the gain setting was adjusted so that the subject could comfortably move
the cursor from one side of the screen to the other with pronation-supination movement of the
forearm. These distal forearm rotational movements minimized proximal arm and trunk
movements. Raw signal was smoothed with a Butterworth filter.

Participants learned a compensatory tracking task driven by a pair of symmetric inputs that
alternated from trial to trial. Each trial lasted 10s rest, alternating with 10s of rest. For each
trial, the subjects rotated the knob to keep the cursor from deviating from the midline reference.
The task requires the cursor to be centered and so gaze remains central, excluding learning
with an oculomotor strategy. No specific instructions were given to fixate during the task or
rest period. During all training trials, either of two arctan input functions were used to deviate
the cursor away from the center and a rate dependent knob was used, i.e. the angular position
of the knob translated into a certain velocity of the cursor on the screen. Therefore, the optimal
movement to counteract the input function that would keep the cursor centered is the derivative
of the arctan input function. The panel in Figure 1 labelled “training” shows the input function
and what an ideal motor response would look like for a rightward trial. The input function
alternated in sign with even trials rightward and odd trials leftward so that subjects were actually
learning two mirror symmetric movements.

Experimental Paradigm and Training Schedule
All training trials were performed during imaging, with no prescan or interscan practice. There
were 26 trials (13 left, 13 right) per fMRI run. Figure 2 shows the schedule for all training trials
over 4 days. Since each trial lasted 10 seconds, mean performance measures for a given trial
could be correlated with mean BOLD activity acquired over 5 volume acquisitions (TRs), thus
enhancing statistical reliability. In addition, each trial was interspersed with a ten second rest
periods to allow the BOLD response to return to baseline between trials. This reduced temporal
autocorrelation between trials. Intertrial rest periods as well as inter-scan rest were included to
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improve the rate of learning. Four MRI runs were completed each training day, and four days
of training were completed within seven days. This distribution of trials was based on
scheduling limitations and to avoid fatigue occurring with longer fMRI runs or sessions. In all,
subjects completed a total of 16 MRI runs containing a total of 208 left and 208 right training
trials, spanning a total of 69 minutes of movement related activity.

A transfer experiment was completed on a fifth day. No additional practice was performed
between day four and the transfer experiment. During the transfer experiment, four functional
MRI runs were acquired. The numbers of trials per run, trial length and rest periods were the
same as prior days. The first run used the original training input function and rate dependent
knob. The remaining three runs were randomized with the following combinations: arctan input
function with position dependent controller, derivative of the arctan input function with a
position dependent controller, or derivative of the arctan input function with a rate dependent
controller. Only error measures from day 5 are reported here.

Subjects
13 normal right handed (Oldfield, 1971) adults (laterality quotient >60, mean age 21.4, range
19-25, 4 women: 9 men) with normal corrected vision participated in the study under informed
consent in accordance with the Human Subjects Institutional Review Board. Two subjects were
excluded secondary to excessive head movement artifacts (>3mm), another subject was only
included in the day 5 analysis because of MRI technical problems occurring in days 1-4 (this
person did complete all training during imaging), and 4 subjects did not complete day 5 testing.
Thus, there was reliable behavioral and fMRI data from 10 subjects to assess brain correlates
of training acquired over days 1-4. One of these subjects was subsequently excluded because
of high correlations between the two model estimates, error and hand acceleration (see results
section). For the behavioral transfer experiment, obtained on day 5, there were reliable
behavioral data for 9 subjects.

Performance Model
On each trial the fixed input function f (t) “deviated” the cursor laterally. The cursor position
on the screen x(t) was the discrepancy of the input pattern f (t) and the position command from
the knob x(t)= f(t)− y(t). For a rate-control device, y(t) was determined by the actual hand
position.

We modeled motor behavior with a proportional-derivative control law. In this model, the
motor output, ( ÿ ), (corresponding to the rotational velocity of the hand for the rate controlled
device) was a linear function of the position error (x) and the velocity error (ẋ), both delayed
by τ =150ms. A delay of 150ms was chosen as this is a typical latency for generating corrections
to random perturbations in visuomotor tracking (Jagacinski and Hah, 1988; Jagacinski et al.,
1993; Hah and Jagacinski, 1994; Jagacinski et al., 1995). To capture feedforward learning we
added a third component corresponding to the to-be-learned output pattern f̈ (t), the second
derivative of an arctan function.

(1)

First we used linear regression of the behavioral output to estimate the control parameters
associated with position error, velocity error and formation of a motor program. Because the
time-series were smooth, we treated the noise in the linear model e(t) as an auto-regressive
process, e(t)= αe(t−1)+η(t), where η(t) is a white-noise process. The autogressive coefficient
was estimated from the residuals from an ordinary least square regression for each trial
separately and the median estimate α=0.92 was then used for all trials. With this, the estimate
of the control parameters becomes
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(2)

Where  is the vector of regression coefficients for trial n, ÿn is the Tx1
vector of wrist velocities, Xn is the 3 × T design matrix holding the position error, the velocity
error and the to-be-learned motor output in its three columns, and V is the variance-covariance
matrix of e(t).

The Learning model
A second level, state-space model was used to capture learning related changes of feedback
and feedforward control parameters across trials. This state-space model starts with the
observation that the parameters for the feedback control policy and motor program on each
trial, βn fluctuate from trial to trial, and assumed this was partly caused by non-specific changes
of the state of the participant attributable to attention or fatigue ( εn ). Furthermore, the estimate
β̂n is not perfect, but will show some variability due to motor output noise. Thus, we modeled
the parameter ( β̂n ) estimated in trial n as a noisy version of the true, but hidden state variables
wn.

(3)

Learning related changes, in contrast, were assumed to be slow and smooth. Because we had
no a-priori hypothesis about how fast learning in this system would be, we modeled learning
by small incremental random changes (state-noise) starting with the initial state of the system
μ (Smith et al., 2005).

(4)

Expectation Maximization
The EM algorithm provided the expected value of wn , a representation of the learned state of
the system, independent of trial-to-trial fluctuations. EM proceeds by estimating both the wn ,
as well as nine “hyper-parameters” Θ = {q1−3,r1−3,μ}, which describe the size of the variances
associated with changes due to learning (qi), and due to trial-by-trial variation (ri). These two
parameters jointly determine the smoothness of learning related changes. We refer to these as
“hyper-parameters” to distinguish them from the performance model parameters (β̂n ) and the
hidden state variables (wn ). The EM algorithm proceeds in two steps. In the E-step, the
expected values and variances of the hidden variables wn are calculated, given an initial guess
about the hyper-parameters Θ(0). In the M step, new hyper-parameter values are estimated, by
maximizing the expected complete log-likelihood function, given the current expected values
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of the hidden variables, wn. Iteration of these two steps leads to convergence to the maximum-
likelihood estimate (McLachlan and Krishnan, 1997). A similar method has been described
previously (Cheng and Sabes, 2006). The strength of the algorithm is that both hidden variables
and hyper-parameters can be jointly estimated.

Magnetic Resonance Imaging
Imaging was performed with a General Electric Horizon echospeed whole body 1.5 T MRI
scanner using a standard birdcage head coil. Head movements were minimized with foam
pillows and padding. For functional imaging, an echo planar gradient echo imaging sequence
sensitive to blood oxygenation-level-dependent (BOLD) contrast was used: 25 slices per TR
(3.5 mm thickness, 1 mm gap), TR of 2000 ms, TE of 35 ms, flip angle of 90°, field of view
of 24cm and 64×64 matrix. The first four volumes (10s) of each functional run were discarded
to allow magnetization to approach equilibrium, followed by 258 whole brain volumes. A T1
weighted image anatomic scan was acquired using a spoiled gradient recalled 3D sequence
(TR 7.7, TE min full, flip angle 15°, FOV 24, slice thickness 1.2, 256 × 256 × 124 matrix).

Image Processing
Spatial normalization and smoothing were carried out in SPM99
(http://www.fil.ion.ucl.ac.uk/spm). Functional images were realigned and co-registered to
high-resolution scans, normalized to a standardized stereotaxic space (the MNI template
provided with SPM99 using affine and then nonlinear alignment and resliced with 2mm voxels.
Data was smoothed with an isotropic Gaussian kernel (8 mm full width half maximum).

Individual subject MRI data from days 1-4 were analyzed using a fixed-effects linear model.
Analysis was carried out using FEAT (FMRI Expert Analysis Tool) Version 5.63, part of FSL
(FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl). Time-series statistical analysis was
carried out using FILM (Woolrich et al., 2001). Data were modeled with a high pass filter
cutoff of 128 s, without motion parameters added to the model. The time course of BOLD
activity was modeled with a design matrix containing five regressors describing movement
events (10 seconds of movement alternating with 10 seconds of rest), the RMS error for each
trial, the mean absolute hand acceleration (HA) for each trial, the smooth learning parameters
estimated by the EM algorithm: ( w2 ) describing feedback control based on velocity and
( w3 ) describing feedforward control. The error, hand acceleration and smoothed learning
parameters were entered as center-mean parametric modulations of the movement epochs, with
one parameter value per movement trial, convolved with an HRF. In addition, the temporal
derivatives for each of these five regressors were included. The design matrices also included
15 regressors to distinguish run effects. Examination of the covariance matrices for each of the
subjects revealed minimal inter-regressor correlation.

Individual subject contrast estimates were used in a second level random effects analysis.
Higher-level analysis was carried out using FLAME “1+2”, FMRIB’s Local Analysis of Mixed
Effects in FSL (Beckmann et al., 2003; Woolrich et al., 2004). To reduce the problem of Type
II error from multiple comparisons the group analysis proceeded in two steps. In the first step,
Z (Gaussianised T/F) statistic images showing significant movement related activity were
defined at a corrected level for a whole brain search volume using clusters determined by
Z>1.96 and a (corrected) cluster significance threshold of P=0.05 (Worsley et al., 1992). In a
second step this set of regions was used as an inclusive mask within which areas demonstrating
a significant association with the other regressors were identified at two levels of analysis. In
an exploratory analysis the threshold was p<0.005 with a cluster size of 40mm3 or more, based
on the approximate size of the original sampling volume. In a confirmatory analysis we used
a corrected threshold of p<0.05 within the movement related search volume. Resultant Z
images were displayed on partially inflated cortical surfaces using the PALS dataset and Caret
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visualization tools (http://brainmap.wustl.edu/caret). Anatomic localization was determined
from reference atlases (Duvernoy, 1991; Schmahmann et al., 1999).

Results
Behavioral Results

Positional error for both leftward and rightward movements decreased significantly over the
four days of training, typical of visuomotor skill acquisition (Repeated measures ANOVA,
with factors for direction: not significant (NS), trial: F=13.03, df=207, p<0.0001, and direction
by trial interaction: NS), (Figure 3A). Mean absolute hand acceleration also decreased
significantly over time (Figure 3B, Repeated measures ANOVA with factors for direction: NS,
trial: F=22.204, df=8,207, p<0.0001, and their interaction: NS).

Figure 4 demonstrates the hand velocity during an early and a late trial for one subject. While
the motor output in these two trials was similar, the shift from feedback control early in training
to more predictive control late in training is clearly visible. The performance model (Eq. 1,
dotted line) captures both the velocity profile and the changes of timing as subjects learn to
make more predictive movements. The average R2 of the performance model fit for individual
trials was R2=0.83. We tested the significance of the feedback and feedforward control
components of the model by leaving them out separately. The average partial R2 of the feedback
terms (accounting for the feedforward term) was 0.81. The average partial R2 of the
feedforward term (accounting for the feedback term) rose from 0.09 for the first 10 trials to
0.33 for the last 10 trials. The inclusion of each model term produced a significantly (p<.05)
better fit on 99.7% of the trials for the feedback terms and on 82% of the trials for the
feedforward term. Thus, both feedforward and feedback components contributed significantly
to the overall model.

To distinguish these learning-related changes from random trial-by-trial fluctuations, we used
a state space model and EM algorithm to estimate optimally smoothed learning parameters for
each subject and direction separately. The rate of change caused by learning processes, and
therefore the amount of smoothing that had to be applied, were estimated. For all nine subjects,
across trials, there was a high correlation between the state estimates for positional and velocity
feedback parameters so only the velocity parameters were used in the subsequent MRI analyses.

At the group level, both the velocity-based feedback (Figure 3C) and feedforward (Figure 3D)
components of the EM estimations increased significantly over time: velocity feedback
(Repeated measures ANOVA with factors for direction: NS and trial: F=207.57, df=8,207,
p<0.0001, and their interaction: NS); and feedforward (Repeated measures ANOVA with
factors for direction: NS, trial: F=82.265, df=8,207, p<0.0001, and their interaction: NS).
Visual inspection of the mean change at the group level revealed an early rapid control
adjustment for velocity error (a similar pattern was seen for positional error) and a slow, steady
rise for the state variable describing a predictive motor program.

Transfer test
To confirm that subjects were learning the task with respect to the motor pattern rather than
perceptual information (Hah and Jagacinski, 1994), three transfer tasks were obtained on the
fifth day of testing (Figure 1). When the nine subjects had to produce a new motor pattern
because they switched to a position-based controller (AT, Position control) or because they
used the original controller, but a different input function (AT’ Rate control), positional error
increased significantly (Figure 5). However, when both the controller and the input function
(AT’, Position Control) were switched, such that the required movement pattern was the same
as in training, there was no increase in error compared to the original task. In the 3-way
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ANOVA, the main effect of trial direction, Controller type and Input type were all non-
significant. There was a significant Controller X Input interaction: F=18.771, df=48, p<0.0001.
No other 2-way or 3-way interactions were significant. This pattern of errors with transfer tasks
established that the subjects were learning the required movement and not the input pattern.
Furthermore, subjects could generate the correct movement irrespective of the type of
controller.

Correlation of regressors
For the analysis of the neural correlates of feedforward and feedback control learning, it is
essential that these factors can be estimated independently from each other and from other
behavioral measures. We therefore calculated the correlation of hand acceleration, positional
error, and the smoothed learning parameters representing feedback and feedforward control
for each individual. One subject had very strong correlations between all four parameters
(minimum pair wise R2 of .44, maximum R2 of .89) and therefore was excluded from all of
the subsequent analyses. Of the remaining nine subjects, 80% of the inter-parameter
correlations had an R2 < .28 and 90% had an R2 < .38. This establishes that for the majority
of subjects, motor output, movement error and learning variables could be estimated
independently.

Brain Activation during Motor Execution
The contrast of movement versus rest identified a broad set of cortical and subcortical areas
classically associated with motor execution including left sensorimotor cortex, bilateral parietal
and premotor cortices, mesial motor areas, bilateral anterior cerebellar cortex, the basal ganglia
and thalamus (Figure 6). These findings replicate many prior studies of motor execution and
local maxima are not presented. This contrast was generated to serve as a mask within which
the subsequent contrasts were tested.

Brain Correlates of Motor Kinematics
The correlation between absolute mean hand acceleration for each trial and the BOLD signal,
corrected for multiple comparisons, identified significant two motor areas: left sensorimotor
cortex and right anterior cerebellar cortex (lobule V). Locations of these sites are summarized
in Table 1 and shown in Figure 7A. The sensorimotor site extended into both the pre and post-
central gyri and was maximal over the hand area within the central sulcus. No additional areas
were identified when the threshold was reduced for an exploratory analysis.

Brain Correlates of Motor Error
Performance error correlated with a large set of cortical and subcortical brain regions (Figure
7B, Table 1). Strong positive correlations were identified in bilateral intraparietal sulcus and
inferior parietal lobule as well as the posterior SPL extending into the medial wall. An
additional strong correlation was found in bilateral anterior cingulate gyrus and adjacent sulcus.
Error also correlated with right dorsal premotor cortex and frontal operculum. Performance
error also recruited activity at three sites within right cerebellar cortex in lobules V and VI.
Given the extensive network that was engaged when a threshold based on correction for
multiple comparisons was used, further exploratory analysis were not performed.

Feedback Learning
The model estimates of feedback control describe how subjects slowly modulated the use of
feedback across trials. High values indicate a strong reaction to visual feedback error,
independent of the size of that error. At an exploratory threshold, these estimates correlated
with activity in bilateral posterior superior parietal lobule and right anterior IPS and adjacent
IPL (Figure 8A, Table 1). In addition there was recruitment of three sites within the right ventral
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premotor cortex and the left cingulate motor area. Bilateral correlations were detected in the
inferior occipital gyri. No significant correlations were observed in the cerebellum or other
subcortical areas.

Feedforward Learning
Participants gradually acquired the ability to generate the desired limb movement predictively.
At an exploratory threshold we found that the BOLD signal in the left inferior parietal lobule
(supramarginal gyrus) and adjacent intraparietal sulcus, left dorsal premotor cortex, adjacent
sensorimotor cortex and the cingulate sulcus in the region of the cingulate motor area (Figure
8B, Table 1) correlated positively with the gradual increase in the feedforward control
parameter. No significant correlations were observed in the cerebellum or other subcortical
areas.

Functional Similarities
Visual comparison of the spatial extent of the activation patterns for the two performance and
two learning parameters identified a small set of overlapping activations. Within the
cerebellum, there was a common recruitment of right anterior cerebellar cortex as a function
of both hand acceleration and error. The cingulate sulcus in the region of the CMA was recruited
for error, feedback and feedforward learning. The left sensorimotor cortex was recruited for
both hand acceleration and feedforward learning. Bilateral posterior SPL was recruited as a
function of both error and feedback learning. We also tabulated the effect sizes (reflected as
z-scores) at the peak of each location for all of the parameters, summarized in Table 1. In
general, only a few sites demonstrated strong (Z>2) effects for more than one parameter. At a
weaker level of significance, there was a tendency for areas with a positive effect with error
to show a negative effect with feedforward learning.

Discussion
We examined the formation of a pair of simple symmetric motor programs of fixed duration
and amplitude. Detailed analysis by our learning model showed that improvement occurred
because of both adjustments in feedback control as well as the acquisition of feedforward
control. The parameters describing feedback and feedforward learning showed only weak trial
by trial correlations for 9 of 10 participants, allowing us to identify underlying neural substrates
for these two sources of learning.

The current results show that different components of learning operate on different time scales.
Feedforward learning was still far from perfect even after 4 days of practice. In contrast,
subjects’ adjustment of feedback control was more rapid and reached a steady state within
approximately 2 days. Accordingly, tracking error decreased rapidly on the first day and
showed only minor changes by the last day. These results support the proposition that feedback
and feedforward processes operate at the same time, with changes in each occurring at different
rates (Smith et al., 2006). This is an important alternative to a traditional cognitive based
framework where skill learning is considered to occur in sequential stages (James, 1890; Bryan
and Harter, 1897; Bryan and Harter, 1899; Doyon et al., 1998; Floyer-Lea and Matthews,
2005; Lehericy et al., 2005).

We identified performance parameters with a regression method, then separated feedforward
learning and feedback learning from trial-to-trial variability by using a state-space model. Our
two-stage modeling approach rests on three important assumptions. The first assumption was
that the hand behavior could be described with a simple proportional-derivative control law.
In the version used, the hand velocity was described in terms of positional and velocity error
as well as the input function. This model ignores position-dependent and inertial components
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of the limb dynamics. Given the simplicity of the task (rotation around the forearm with a
nearly frictionless system), this simplification is not unreasonable. Second, the performance
model assumed that the control law could treat feedforward and feedback control processes
within each trial as independent control processes, based on the intrinsic timing delay inherent
in feedback control. Similar strategies have been used to analyze EMG responses related to
feedback or feedforward learning in two-dimensional adaptive reaching in force fields
(Thoroughman and Shadmehr, 1999). This assumption was supported by the lack of correlation
between feedback and feedforward parameters across trials for each subject. However, it is
most likely that feedforward and feedback control interact with each other in more complicated
ways. More refined experimental methods using both predictable and unpredictable input
functions are needed to fully understand the interaction between feedforward learning and
modulation of feedback control policy. The third assumption is that learning related changes
of motor performance would be smooth, reflecting the incremental improvements in motor
control due to learning. The amount of smoothing was estimated from the data itself with an
EM algorithm. This approach has been shown to be an improvement over linear fitting
approaches (Cheng and Sabes, 2006) for characterizing learning. We were able to arrive at a
principled and optimal solution for identifying the magnitude of these incremental changes of
learning parameters in the setting of significant performance noise.

Feedforward Learning in a left-lateralized network
The imaging results indicate that feedforward learning correlates with activity in a left-
hemispheric network including the left inferior parietal cortex (supramarginal gyrus), left
dorsal premotor cortex, adjacent sensorimotor cortex and the cingulate motor area. Premotor
cortex is strongly associated with motor planning and anticipatory control prior to movement
onset (Mitz et al., 1991; Shen and Alexander, 1997; Crammond and Kalaska, 2000; Wise and
Murray, 2000) (Hoshi and Tanji, 2006). Our results generalize this to a condition of anticipatory
control while the movement is executed. Left rostral IPL including supramarginal gyrus (SMG)
is also strongly associated with retrieving action knowledge, goal oriented actions, pantomime
and imitation and lesions here also cause apraxia (Rushworth et al., 1998; Haaland et al.,
2000; Johnson-Frey et al., 2005). Rostral IPL and SMG activity are also correlated with the
retrieval of both complex and sequential actions or intentions, (Fogassi et al., 2005; Fogassi
and Luppino, 2005). We speculate that a network between IPL and dorsal premotor areas forms
either a repository for learned skills or at least a scaffold for retrieving and organizing motor
memories that are more widely distributed throughout the brain. Learning effects were also
observed within left motor cortex. Although the motor cortex was also observed to change as
a function of hand acceleration, this kinematic parameter and the feedforward learning model
estimates were not correlated. Therefore, the BOLD signal in motor cortex appears to be
sensitive both to performance variability and learning related changes. Recent imaging and
neurophysiological studies suggest a role for motor cortex in skill learning of sequences
(Grafton et al., 1995; Grafton et al., 1998; Karni et al., 1998; Corbetta and Shulman, 2002;
Matsuzaka et al., 2007) as well as visuomotor tracking (Grafton et al., 1992; Grafton et al.,
2001).

The strong left-lateralization of the BOLD correlation with feedforward learning parameters
could be due to the fact that the acquired skill was specific to the right hand. While transfer
results on day 5 showed that participants had learned a specific movement, rather than a
perceptual representation of the perturbation pattern, it remains unknown how well it could
generalize to the left hand (Yamamoto et al., 2006). Alternatively, the left-hemispheric bias
may reflect a specialization for the left-hemisphere to store motor skills and action vocabularies
(Haaland et al., 2000; Johnson-Frey et al., 2005).
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There were relevant negative findings. There was no evidence for a change in signal strength
in the cerebellum in relationship to the measures of feedforward learning. Although negative
inference is weak with functional imaging, the lack of a finding in cerebellum merits
consideration given the longstanding role of this structure for learning across a broad range of
skills. Reconciliation of our negative cerebellum results with this fact may ultimately rest on
recognition that motor skills are not all the same. While there is strong evidence for adaptive
learning to changes of kinematics or dynamics within the cerebellum, there is very little
evidence that the cerebellum actually stores memories for new motor programs such as the
new movement that subjects learned in our experiment. Loss of the cerebellum does not result
in the loss of retrieving and executing complex motor elements for behaviors such as reaching,
grasping or riding a bicycle. Rather, the ability to control these elements when the context is
manipulated (via rotation, force field or temporal delay) are lost with cerebellar lesions.
Similarly, cerebellar activity in functional studies is strongly activated by these manipulations.
The feedforward learning parameter in our study captured the extent to which subjects could
retrieve a novel movement. The lack of change in cerebellum is further evidence that motor
programs are not stored or retrieved in cerebellum. The finding is consistent with the
proposition that complex motor programs are stored cortically, and adjusted or modified via
cerebellar modulation (Smith and Shadmehr, 2005).

Learning of feedback control
Increases in the use of feedback most strongly recruited the bilateral posterior superior parietal
lobule and right anterior intraparietal sulcus and adjacent IPL. In addition there was
involvement of the right ventral precentral gyrus (PMv). The anterior SPL, bilaterally, has
recently been shown to be more active in a 2-dimensional reaching task with kinematic errors
that lead to learning (Diedrichsen et al., 2005). Learning related increases of activity in right
ventral premotor cortex and right posterior right intraparietal sulcus have been observed during
a right-handed visuomotor adaptation tasks (Shadmehr and Holcomb, 1997; Krakauer et al.,
2004). Both adaptation to a visuomotor rotation and changes in feedback control during
tracking require a change in the mapping between visual error and motor commands via
parietal-premotor circuits. Of note, there was no correlation between changing feedback control
policy and cerebellar activity. These results show that the smooth, learning related changes in
how feedback is used across trials taking place at a cortical rather than subcortical level.

Cerebellum and error related activity
Cerebellar cortex was strongly correlated with the magnitude of tracking error and the
magnitude of the motor correction. The anatomic location is in the anterior parasagittal
cerebellar cortex corresponding to the intermediate functional zone based on output via the
interpositus nucleus, a zone that is most commonly associated with the control of limb
movements. Similar findings in the cerebellar cortex (lobules V, VI and VIII) were found for
error during reaching (Diedrichsen et al., 2005). Here the cerebellar cortex was activated
equally for any type of reach error, not matter if that error led to subsequent learning or not.
The current study extends this finding by showing a trial-by-trial variation of activity in these
sites corresponding to the magnitude of perceived error. Cerebellar correlations with perceived
error have also been identified in visuomotor tracking requiring eye-hand coordination (Miall
et al., 2000; Miall et al., 2001; Miall and Jenkinson, 2005) and with violations of expected
sensory predictions in eye blink conditioning (Ramnani et al., 2000). In the current study, error
processing in the cerebellar cortex may relate to feedback control based on state information
provided by mossy fiber inputs from motor areas and training signals via climbing fibers to
change the motor command on a moment to moment basis, without indicating the locus for a
motor memory across trials.
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Medial motor areas
On the lateral surface of the brain we found a spatial separation (also reflected in the z-scores,
Table 1) between sites involved in learning feedback and feedforward control. In contrast, the
medial cingulate motor area (CMA) showed correlation with both learning processes. In
humans the CMA lies inferior to the SMA proper and is variably recruited across a broad range
of motor tasks (Picard and Strick, 1996). In non-human primates, CMA neurons are recruited
during either preparation or execution and there is a greater proportion of neurons recruited
during execution than the adjacent SMA (Backus et al., 2001;Dum and Strick, 2002;Russo et
al., 2002). CMA neurons have also been characterized as monitoring events, perhaps by
keeping track of the progress of required behavioral tasks (Hoshi et al., 2005). In the current
study the CMA was also correlated weakly with the magnitude of error from trial to trial. Thus,
this site may play an integrative role in execution and on-line monitoring.

Error magnitude from trial to trial was strongly correlated with anterior cingulate gyrus activity.
This rostral sector of the cingulate cortex is well known to be involved in executive control,
conflict monitoring, error detection and task evaluation (Carter et al., 1998; Rushworth et al.,
2003; Rushworth et al., 2004). The current results are most supportive of an on-line evaluative
role of task performance that is directly sensitive to the magnitude of error.

Summary
Our results demonstrate partially separable brain substrates for feedforward and feedback
related control. Except for the cingulate motor area, different brain regions were recruited for
these two sources of learning. Although functionally distinct, all of the areas recruited for these
sources are richly interconnected anatomically, many with direct connections (Clower et al.,
2005; Rozzi et al., 2005; Rushworth et al., 2005) allowing for the dynamic interchange of on-
line control and predictive commands to achieve behavioral goals.
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Figure 1.
Ideal mappings between input and motor output during training and transfer conditions. During
Training (upper left), the hidden input function (solid line) was an arctan function (AT) and
the required movement output (dotted line) was the derivative of the input function. On day 5
three transfer tasks were also tested with either the original rate dependent controller (Same
controller) or a position dependent controller (New Controller), using either the original arctan
input function (Same Input) or the derivative of the arctan function (New Input). When both
the input function and control were new (lower right), the required movement was the same
as in training.
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Figure 2.
Experiment training schedule. Subjects were trained on four days, completed within one week.
On each day they were scanned four times. Each scan included 13 leftward and 13 rightward
trials, interspersed with 10 second rest periods. All training was performed during imaging.
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Figure 3.
Group average performance over 4 days of training during MRI scanning for leftward (blue)
and rightward (red) trials for all subjects. Shading is SEM. (A) Positional error (RMS error,
arbitrary units); (B) Mean absolute hand acceleration; (C) State-space estimates for velocity
dependent feedback control; (D) State-space estimates for feedforward control.
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Figure 4.
Model estimates for two individual trials. Representative data are taken from one subject. One
trial is from the start of training (upper figure) and the other near the end (lower figure). Ideal
hand velocity (thin line) was compared to actual velocity (thick line) on a trial-by-trial basis.
The predicted hand velocity (dotted line), calculated from the regression estimate of the
performance model, demonstrates the ability of the model to reconstruct the actual hand path.
The performance model captures two sources of improvement of between early and late trials.
One was the ability to use feedback more effectively, illustrated as a greater overlap between
the actual hand velocity and the ideal velocity with a 150msec delay. The other was the ability
to use a feedforward command, illustrated as a greater overlap between actual hand velocity
and the ideal velocity with no delay.
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Figure 5.
Performance error during transfer tasks. Subjects trained for 4 days on a velocity based
controller, with an arc tan input funtion (AT) alternating in left and right directions. On day 5
they were tested with a velocity or position based controller, and with the original input or its
derivative (AT’). A position controller with the AT’ input required the same motor as in
training. Leftward (dark bars) and righward (light bars) trials show similar results.
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Figure 6.
BOLD signal correlation with compensatory tracking versus rest. All colored areas represent
significant activation, corrected for whole brain comparisons, (n=9 subjects). This map was
used as a mask for the subsequent MRI analyses. Left column is left hemisphere, mesial surface
is upper row. Lower central figure is posterior, superior oblique view of the cerebellum. All
figures are partially “inflated” representations using the Caret software. Statistical threshold
p<0.05 for the likelihood of detecting a cluster within a whole brain search volume.
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Figure 7.
A. BOLD signal correlation with (A) mean absolute hand acceleration; and (B) with positional
error. Colored areas show significant correlation within the movement mask shown in figure
5. Same orientations as figure 5. Statistical threshold p<0.05 for the likelihood of detecting a
cluster within the volume defined by movement.
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Figure 8.
BOLD signal correlation with (A) the learning of velocity-dependent feedback control; and
(B) learning a predictive feedforward motor program. Colored areas show significant
correlation within the movement mask shown in figure 6. Same orientations as figure 6.
Statistical threshold was p<0.005 within the volume defined by movement.
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