
Empirical optimization of ASL data analysis using an ASL data
processing toolbox: ASLtbx

Ze Wang1*, Geoffrey K. Aguirre1, Hengyi Rao1, Jiongjiong Wang1,3, María A. Fernández-
Seara4, Anna R. Childress2, and John A. Detre1,3

1Center for Functional Neuroimaging and Department of Neurology, University of Pennsylvania, School of
Medicine, Philadelphia, PA 19104.

2Center for Functional Neuroimaging and Treatment Research Center, University of Pennsylvania, School
of Medicine, Philadelphia, PA 19104.

3Center for Functional Neuroimaging and Department of Radiology, University of Pennsylvania, School of
Medicine, Philadelphia, PA 19104.

4Neuroimaging Laboratory, Dept. of Neuroscience, Center for applied Medical Research, University of
Navarra, 31008 Pamplona, Spain

Abstract
Arterial spin labeling (ASL) perfusion fMRI data differ in important respects from the more familiar
blood oxygen level dependent (BOLD) fMRI data, and require specific processing strategies. In this
paper, we examined several factors that may influence ASL data analysis, including data storage bit
resolution, motion correction, preprocessing for cerebral blood flow (CBF) calculations, and
nuisance covariate modeling. Continuous ASL data were collected at 3 Tesla from 10 subjects while
they performed a simple sensorimotor task with an epoch length of 48 seconds. These data were then
analyzed using systematic variations of the factors listed above to identify the approach that yielded
optimal signal detection for task activation. Improvements in statistical power were found for use of
at least 10 bits for data storage at 3T. No significant difference was found in motor cortex regarding
using simple subtraction or sinc-subtraction; but the former presented minor but significantly
(P<0.024) larger peak-t value in visual cortex. While artifactual head motion patterns were observed
in synthetic data and background suppressed ASL data when label/control images were realigned to
a common target, independent realignment of label and control images did not yield significant
improvements in activation in the sensorimotor data. It was also found that CBF calculations should
be performed prior to spatial normalization and that modeling of global fluctuations yielded
significantly increased peak t-value in motor cortex. The implementation of all ASL data processing
approaches is easily accomplished within an open source toolbox, ASLtbx, and is advocated for most
perfusion fMRI data sets.
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Introduction
Arterial spin labeling (ASL) perfusion MRI is a noninvasive method for measuring cerebral
blood flow (CBF) by magnetically labeling arterial blood water as an endogenous tracer [1,
2]. By labeling inflowing blood water proximal to the imaging location, the perfusion signal
is subsequently obtained by subtracting the label image from the control image, which is
acquired using a control pulse without labeling the blood flow to remove the static background
signal and control for magnetization transfer effects [2]. Due to this pairwise subtraction of
temporally adjacent images, the ASL data demonstrate a reduction of the low frequency signal
drifts that degrade functional MRI based on BOLD contrast over time [3]. This reduction
renders ASL perfusion fMRI a useful tool for the investigation of slow changes in neural
activity, such as may be evoked by mood, mental set, and learning [4,5]. ASL fMRI also reduces
inter-subject variability in activation amplitude [3,6], improves signal to noise ratio (SNR) in
regions with high static susceptibility gradients [7,8], and provides superior functional
localization as compared to BOLD fMRI [9–10]. These properties of ASL has lead to its
increasing use in clinical studies of cerebral perfusion during resting states [11–14] and
cognitive function studies [3–5,15–23].

Despite the advantages described above, ASL perfusion fMRI suffers from relatively low
intrinsic SNR [24]. Consequently, pre-processing and analysis approaches that maximize ASL
sensitivity are critical. While most ASL data processing methods can be adapted from BOLD
fMRI in a straightforward manner, several specific issues need to be considered. First, bit
resolution becomes a practical issue for performing ASL perfusion fMRI in commercial MR
scanners. Limited by the T1 decay of cerebral blood and the transit time from the labeling plane
to the imaging plane, the total labeled blood flow is only a few percent of the static tissue water
in the imaging location. Consequently, the ASL perfusion signal only accounts for 1–5% of
the mean MR signal intensity [24] unless background suppression is used [25]. In functional
MRI studies, the task-induced perfusion change accounts no more than half of the baseline
perfusion signal, so that the ASL perfusion fMRI signal may be on the order of tenths of a
percent of the mean MR signal intensity. As MRI images are generally archived in integer
format in commercial MR scanners, adequate bit resolution is required to preserve the precision
of ASL signal and the sensitivity required in fMRI studies.

Second, different approaches may be taken to head motion correction in ASL data
preprocessing. Head motion is a source of noise that is not entirely removed by rigid body
registration [26]. In the best case, head motion is not correlated with task activity, and may be
treated as a source of nuisance variance. More troublesome are those cases in which motion
confounds the experimental treatment [27]. A further artifact may arise in the specific
circumstance of ASL perfusion fMRI: head motion could produce signal outliers with large
positive or negative CBF values due to the relative spatial offset between the successive label
and control images. In BOLD fMRI, a fast and widely used motion correction approach is to
map all images to the reference volume using a six parameter based rigid body transformation
to minimize the distance between each corrected volume and the reference volume [28–31].
Because this approach is based upon minimization of intensity differences within the image
series, it may not be appropriate for ASL data. Label and control images are interleaved in raw
ASL time-series, and the differences in image intensity induced by the label may be mistaken
for head motion by the algorithm and inappropriately minimized. This is particularly an issue
for background suppressed ASL imaging [25]. An alternative is to perform motion correction
for the label and control image series separately. As head movement can not be completely
post-corrected, appropriate procedures should be also taken to remove the markedly positive
or negative outliers caused by large head movements during the scan.
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Third, the order of spatial smoothing and normalization needs to be considered, as both can
introduce minor signal intensity changes which are amplified during the CBF calibration
process [2,32,33]. This may result in systematic underestimation or overestimation of CBF.

Finally, we consider the inclusion of a measure of global signal as a covariate during statistical
analysis. This issue is complicated in the presence of spatially extended, experimentally
induced variance [35–37]. Including global signal as a nuisance covariate in the general linear
model (GLM) was suggested to reduce the residual temporal fluctuation of ASL perfusion
fMRI data series. While this was demonstrated to be beneficial for null-hypothesis data [4], it
has not been validated with functional ASL data.

The main purpose of this paper is then to examine these factors which may influence ASL data
analysis. Specific issues during preprocessing are discussed for data storage bit resolution,
motion correction, smoothing, normalization, and outlier cleaning. Several statistical analysis
methods are employed to compare the effects of 1) different CBF calculation approaches; 2)
handling global fluctuations represented by global CBF time course; 3) and handling of global
spikes. All the involved data processing is performed with an open source ASL data processing
toolbox, ASLtbx. Based on previous knowledge about the temporal and spatial noise properties
of ASL data [3,4,38], ASLtbx provides an easy and useful ASL data processing tool for the
field by implementing ease ASL data processing step in a separate batch script.

Materials and methods
Continuous ASL perfusion fMRI scan with a sensorimotor task

Imaging experiments were performed on a 3T Siemens Trio whole body MR scanner with a
standard transmit/receive (Tx/Rx) head coil (Bruker BioSpin, USA). All subjects gave written
informed consent before scanning following an Institutional Review Board approved protocol
for each experiment. The head coil and foam pads were positioned carefully to reduce
movement. Visual stimuli were delivered by LCD projector and observed via mirrors, attached
to the head coil so subjects could focus attention on a screen placed at the head of the MRI
bed. Ten healthy volunteers (6 male, 4 female) were scanned for 7.2 min using an amplitude
modulated continuous ASL (CASL) perfusion imaging sequence optimized for 3.0T [39]. A
block design with two interleaved conditions was used. During the "on" condition, visual
stimuli with an 8 Hz reversing black and white checkerboard were presented periodically with
duration of 48 sec. Subject were also instructed to perform a self-paced right-hand only
fingertapping task during visual stimuli. The "off" condition consisted only of a blank screen.
Acquisition parameters were: field-of-view (FOV)=22cm, 64×64×12 matrix,
bandwidth=3kHz/pixel, flip angle=90°, TR=3 sec, TE=17 msec, slice thickness 6 mm, inter-
slice space 1.5 mm, labeling time = 1.6 sec, post label delay time=800 ms. 72 label/control
image pairs were acquired for each subject. High resolution structural images were acquired
using a 3D MPRAGE sequence with scan parameters as: FOV = 250 mm, TR/TE = 1620/3ms,
192×256 matrix, 160 slices with thickness of 1 mm.

CBF calibration was conducted using:

(1)

where fis CBF, ΔM is the difference signal between the control and label acquisitions, R1a is
the longitudinal relaxation rate of blood, τ is the labeling time, ω is the post labeling delay time,
α is the labeling efficiency, λ is blood/tissue water partition coefficient, and M0 is approximated
by the control image intensity [5,33]. The parameters used in this study were R1a = 0.67
sec-1, α=0.68, λ=0.9 g/ml, τ = 1.6 sec, ω = 800 msec (Wang et al., 2005c).
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Bit resolution of ASL MRI images
To examine the effect of varying bit resolution on the sensitivity of statistical analysis, k-space
raw data were saved for 4 subjects and the raw images were reconstructed in a Linux
workstation using customized software written in Matlab (Mathworks, Natick, MA, USA).
Given a bit resolution n, all raw control/label images were linearly mapped into the intensity
range of 0–2n to simulate the integer format based data archiving. Nine different bit resolution
with 6, 7, 8, 9, 10, 11, 12 were simulated. Since some commercial MR scanners use 12-bit
Dicom standard (http://medical.nema.org/), the maximum simulated bit length was 12.
Overflow will occur above this limit, which could produce artifactual results due to signal
intensity truncation. All images were analyzed using the same preprocessing routines that will
be described in the following sections. A general linear model (GLM) based fMRI data analysis
method [40–43] was used to analyze all data sets.

Pseudo-CASL scan with background suppression
To assess the effect of modality upon motion correction, a pseudo-CASL background-
suppressed single shot 3D GRASE sequence [44] was used to obtain a resting ASL image
series. Imaging parameters were: resolution = 4 mm isotropic, FOV = 250×204×48 mm3, 12
nominal partitions with 33% oversampling, 5/8 partial Fourier, measured partitions = 10,
matrix size = 64×52, BW = 3004 Hz/pixel, gradient-echo spacing = 0.4 msec (with ramp
sampling), spin-echo spacing = 26 msec, total readout time = 270 msec, effective TE = 52
msec, refocusing flip angle = 162 and TR = 3.75 sec, labeling time = 1.2 sec, post-labeling
delay = 400 msec. Two hyperbolic secant inversion pulses (15.35 msec duration and 220 mG
RF amplitude) were added with inversion times of 1590 msec and 380 msec, respectively, for
background suppression. 94 label/control image pairs were acquired for one volunteer.

Motion correction
To assess the effect of control-label intensity difference on the motion correction using the six
parameter rigid body transformation based method [28–31], we simulated an ASL acquisition
by inserting a percentage of signal change to the mean control image of the CASL scan from
one subject. Spatial normally distributed variations of the signal change were introduced to
simulate the variations of perfusion exchanges in different brain regions. The variation was
also randomly generated for different time point to simulate the temporal variation of ASL
imaging. The control image at each timepoint was set to the same as the first control image.
Ten control/label images were generated with 1, 2, 5, 10, 20, and 40 percent of signal change
as compared to the control images. The 6 synthetic datasets were then realigned to the first
control image to obtain the estimated “head motion” time courses.

For the pseudo-CASL background-suppressed data, all images were realigned to the first
control image volume to assess the effect of modality upon motion correction. For the
sensorimotor ASL perfusion fMRI data, the effect of two motion correction strategies upon
statistical results was examined: 1) realigning all images to the first control image; 2) separate
realignment of the control and label image series to the first control and label images, with
additional coregistration using the mutual information based approach [45] to minimize the
possible head motion caused spatial offset between the reference control image and the
reference label image. In the second approach, a rough head movement estimation was also
obtained through the first approach to identify global spikes. The motion parameters of adjacent
control and label images were averaged and subtracted to generate an averaged head motion
time series and a relative head motion time series to be used in the spike image cleaning step.
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Spatial smoothing, normalization and CBF calculation
CBF calibration is determined from the ratio of the perfusion difference and an M0 image [2,
5] and is sensitive to minor signal fluctuations in regions with low SNR. Spatial smoothing
[46] was therefore applied before CBF calculation to reduce CBF signal outliers by improving
the spatial SNR of both control and label images. Previous studies have shown that ASL
perfusion data possess an evenly distributed noise power and spatial coherence across the
frequency spectrum [3,4,38], implying that spatial smoothing of ASL data will yield
improvements in detection of spatially extended processes without the deleterious
amplification of low temporal frequency noise seen in BOLD [34,38].

Spatial normalization could introduce minor signal changes through data interpolation, and
those minor changes could be further amplified during the CBF calibration process, resulting
in an overestimated or underestimated CBF value. Although this global CBF fluctuation may
not affect the time series analysis due to its consistency for all CBF images, it may impair the
absolute CBF value based inferences. To avoid this problem and also reduce the computational
burden, spatial normalization was applied after CBF calculation and after statistical analysis
for each individual’s functional data. To assess the effect of spatial normalization on CBF
calibration, two different methods were used to generate CBF maps. In method A, we calculated
CBF maps from the spatially smoothed control/label images in the original space; in method
B, the CBF maps calculated in method A were further spatially normalized into a standard
space using the MNI 152 averaged brain template (Montreal Neurological Institute). Global
CBF values were subsequently calculated from the CBF maps generated in these two processes.
For each subject, a mask was generated from the mean control image to exclude extracranial
voxels for mean CBF calculation. The mask was also normalized into the standard MNI space
for mean CBF calculation for the CBF maps generated in method B.

Image masking was applied to remove the background and regions with very low signal
intensity to prevent data overflowing during CBF calibration.

Global spike elimination
During calculation of perfusion signal by pairwise subtraction, signal outliers can result from
a mismatch of control and label images, as might result from inconsistent background
suppression or spatial location offset due to head motion. These global spikes were eliminated
from statistical analysis at several empirical thresholds as defined below. An image was
identified as a “spike image” by any of the following criteria: a) the translation of the averaged
head motion is greater than 3 mm; b) the rotation of the averaged head motion is greater than
3°; c) the translation of the control-label relative head motion is greater than 0.8 mm; d) the
rotation of the control-label relative head motion is greater than 0.8°; e) the global CBF value
exceeds the mean of the CBF series by ±3 standard deviations.

Statistical analysis with or without global signal
To evaluate the effect of global CBF signal on the detection of activation, analyses with and
without a global signal covariate were performed on the sensorimotor ASL perfusion fMRI
data. The correlation of the global signal covariate with task covariates was also assessed.

ASL perfusion fMRI data processing toolbox
Both preprocessing and statistical analysis were performed using a Matlab and SPM5
(Wellcome Department of Cognitive Neurology, London, UK, http://www.fil.ion.ucl.ac.uk)
based ASL perfusion fMRI data processing toolbox, ASLtbx (http://www.cfn.upenn.edu, this
toolbox has been tested in both SPM2 and SPM5). The current version includes raw image
quality checking, integer to float format conversion, independent label and control motion
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correction, coregistration, spatial smoothing, CBF calculation (for PASL or CASL sequences),
outlier cleaning, statistical analysis, contrast definition, and second level analysis (random
effect analysis and simple regression). Each procedure is implemented by a separate batch
script in Matlab. A user interface is also provided for the CBF calculation procedure
(asl_perf_subtract.m).

Using this toolbox, the raw EPI images were first converted into floating point format. Motion
correction was performed as described above. Spatial smoothing was then applied with a 3D
isotropic Gaussian kernel with FWHM=8 mm followed by image coregisteration between the
raw EPI and structural images. Perfusion difference images were calculated by pair-wise
subtraction or sinc-subtraction of the label/control image pairs [3]. Different quantification
methods were provided for CASL and PASL using published quantification models [33,39].
The structural images were then normalized to a standard brain template contained in SPM
software; the same parameters were also applied to the contrast files of individual level
functional data statistical analyses. Group analysis was finally performed with a random effect
model through the one-sample t-test [47].

We examined the statistical sensitivity of variations in analysis procedure for the visual/motor
activation data from 10 subjects. The factors evaluated included 1) “sinc” vs. “simple”
subtraction, and 2) use of a global signal covariate. The peak t-value, and the size of the largest
cluster of activity above an arbitrary threshold (p < 0.001, uncorrected) within the visual cortex
(VC) and motor cortex (MC) was obtained. The effect of the variations in analysis upon
outcome measures (peak t-value and cluster sizes) across subjects was evaluated with a 2-way
ANOVA.

Results
Bit resolution

Fig. 1 shows the result of data archiving simulations with bit resolutions ranging from 6 bits
to 11 bits. Fig. 1A shows the averaged peak t-value and suprathresholded cluster size obtained
from the analysis of perfusion data from four subjects, saved with different bit resolutions. An
arbitrary threshold (P < 0.001, uncorrected) for obtaining areas of activation was used. The
"reference" value was obtained from the floating point images reconstructed from the k-space
data. From the performance curves of peak t-value and cluster size within the visual cortex and
the motor cortex, we found that statistical sensitivity is well preserved when bit resolution is
10 bits or greater. Marked sensitivity degradations appeared when bit resolution was less than
this. Fig. 1B shows the averaged global CBF values at different bit lengths. Compared to the
reference data, the figure shows a clear global CBF increase when the bit resolution becomes
lower. A minor CBF increase can be found when the bit length is greater than 9, and after that,
the CBF value curve became much sharper. For all tested 4 subjects, minor global CBF
increment was demonstrated when the simulated bit length decreased.

Effects of control-label signal difference on motion correction
Perfusion fMRI data are usually acquired as interleaved label and control images. We examined
if the systematic difference in intensity between the two image types has an effect upon motion
correction routines. Using the six parameter, rigid-body realignment routine [28–31] for motion
correction, the synthesized perfusion effect within each of the 6 synthetic data set was
interpreted by the motion correction routine as a systematic displacement of head position
between the label and control images. Figure 2A presents the estimated motion correction
parameter time course in the Z direction from two representative simulations; essentially
identical results were obtained for the other translations as well as rotations (data not shown).
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As would be expected, the magnitude of this displacement is increased when the simulated
perfusion effect is larger.

In actual data sets, this spurious motion estimation should be particularly prominent in imaging
sequences in which the effect of image label is large with respect to the overall image intensity.
This circumstance can arise in pCASL with background suppression. Figure 2B presents the
estimated head motion from the resting pCASL background suppressed data. As can be seen
especially from the zoomed plot in Figure 2B, the spurious motion artifact demonstrated in our
simulations is also observed in collected data. Again, motion in the Z dimension is presented,
but this artifact is seen prominently in all translations and rotations. The estimated head motion
along Z direction for a representative subject’s sensorimotor CASL fMRI data was also shown
in Figure 2C. Compared to Figure 2B, the systematic spurious motion was less prominent but
can be still observed in the whole time course.

Effects of split and nonsplit motion corrections on the statistical analysis
Given that standard realignment routines interpret the label images as displaced from the
control images, conjoint motion correction of the label and control images might act to reduce
the differences between the label and control images that are the target of study. Both peak t-
values and suprathresholded cluster sizes using the same significance level were exactly the
same for each subject regardless of whether label and control images were motion corrected
separately or all together. Minor difference presented in the group level statistical analysis. As
listed in Table. 1, split motion correction yielded lower peak t values but more suprathresholded
voxels in both functional foci than nonsplitting motion correction.

CBF variations of different CBF calculation processes
Fig. 3 shows the mean and standard deviation of the global CBF values of the CBF images
generated by different methods. A 9 percent significant (P < 0.0015, paired t-test) global
perfusion underestimation were found for both simple subtraction and sinc-subtraction
approach, when global CBF was calculated from the normalized CBF images (Method B),
which indicates that spatial normalization on the CBF maps reduces the global CBF value. No
significant global CBF difference was found between the simple-subtraction based perfusion
quantification processes and the sinc-subtraction based CBF calculation approaches.

ANOVA analysis results
Table 2 lists the 2-way ANOVA results of assessing the 2 factors in ASL data analysis. All
subjects’ data were analyzed 4 times using 4 (22 = 4) different methods, resulting in totally 40
analyses. For each factor, the 40 analyses were subdivided into two subgroups according to
the subtype of the factors to be examined. The P values listed in Table 2 were calculated by
contrasting the two subtypes of each factor and taking other factors out within the ANOVA
model. Simple subtraction and sinc-subtraction yielded quite similar results in both VC and
MC, but the former produced a significant peak-t value increase in VC; including global signal
as nuisance covariate demonstrated significantly increased peak-t value in VC and MC and
significantly larger cluster in MC while no significant correlation was found between the global
signal and the design functions.

Conclusions and discussions
Several practical issues of ASL perfusion fMRI were addressed in this report. The minimal bit
length for archiving ASL raw images was demonstrated to be 10 bits from the data archiving
and statistical analysis simulations. While only CASL imaging was validated in this paper, this
minimal bit resolution requirement should also apply to PASL imaging with appropriate bit
resolution increment, recall that PASL has lower SNR than CASL [48]. Although higher
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resolution is preferred to preserve more signal precision, commercial MRI scanners are limited
in this regard. For example, Siemens MR scanners are currently limited to 12 bit resolution. If
the scaling factor for converting the floating point format MRI images into integer format is
too big to cause the maximal image intensity over the maximum of the upper boundary bit
length, data overflow will occur. The simulation results showed that the statistical sensitivity
was well preserved with any bit resolution between the minimum and the upper boundary
compared to the data analysis with the original floating point MRI images. Since rounding
floating point data into integer format may truncate both signal and noise, if the ratio of the
truncated signal to the suppressed noise is close to 1, no detection sensitivity degradation will
be incurred by shortening the representing bit length. Empirically, this could be the case when
the bit resolution is over 10 bits in the simulations. Actually, this practical issue of bit resolution
bestows a high priority to ASL imaging with background suppression for two reasons: one is
that the mean intensity of raw ASL MRI images will decrease dramatically compared to the
perfusion signal so that a large scaling factor can be used during MRI image archiving without
worry about data overflowing; the other is that we may not need to worry about the signal
truncation too much because the perfusion signal can be markedly increased [25]. Since the
information loss due to bit resolution shrinkage is not exactly the same in the label and control
image, global perfusion misestimation may also occur as shown in Figure 2B.

Both synthetic data and background suppressed pCASL data demonstrated spurious head
motion patterns when all control/label images were realigned to the reference volume using
the six parameter affine transformation based motion correction approach, supporting the
strategy of using separate motion correction for control and label image series [34]. Since the
intensity difference in background unsuppressed CASL imaging is small compared to the
baseline mean MR image intensity, spurious motion patterns were much less prominent than
in the pCASL background suppressed data, and also much less prominent than the actual head
motion. As a result, separate realignment did not show markedly increased statistical sensitivity
for the sensorimotor functional CASL data, compared to the nonseparate image realignment.
As ASL signal intensity difference tends to be larger due to the use of high magnetic field and
more advanced ASL techniques like pseudo-CASL and background suppression, the separate
motion correction is recommended for ASL data processing. Otherwise, the apparent head
“motion” attributable to the intensity difference between the control and label images (as shown
in the Fig. 2A and 2B) may reduce the underlying CBF effects during functional experiments.
The separate control/label image realignment used in this paper contained an additional control/
label reference image coregistration step to minimize the possible head motion between them.
It is worth to note that the mutual information based image registration method is much less
sensitive to the regional signal intensity variations than the six parameter rigid body
transformation based method [28–31], so that the spurious head motion issue of the nonseparate
motion correction should be minimized in the separate realignment procedure. Although ASL
data motion correction could be done instead using a series of registrations between each
control or label image and the reference image using the mutual information based
coregistration [45], the huge computational burden due to the series of registrations makes it
much less impracticable than the separate motion correction approach used in this paper..

Spatial normalization of the CBF images demonstrated a minor but systematic global CBF
value underestimation. This could be due to the relative shape transformation of grey matter
and white matter during the spatially normalization. Although spatial normalization could be
also applied before statistical analysis for each subject’s functional data, it is not recommended
to be performed before CBF calculations. First, interpolation errors could be amplified during
the calibration process as in Eq. 1. Second, it is not trivial to estimate the acquisition time lag
(ω in Eq. 1) for each new interpolated slice during spatial normalization. This will subsequently
cause a spurious global CBF value after taking the exponential transform of ω (see the
component exp(ωR1a) in Eq. 1).
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Simple-subtraction and sinc-subtraction based CBF calculation yielded quite similar
performance for normal young subjects’ sensorimotor ASL fMRI data. The former produced
a little bit higher peak-t value in VC (P<0.024). As the CASL sequence used in this paper is
still based on EPI imaging, ASL data are still contaminated by the task-induced BOLD effect.
While sinc-subtraction is designed to minimize this contamination, it could also loss part of
sensitivity contributed by the BOLD effect related to task. However, in a previously reported
cue-induced nicotine craving ASL perfusion fMRI study with very low frequency task design
[49,50], sinc-subtraction demonstrated increased statistical sensitivity. As ASL perfusion
fMRI is widely applied for low frequency function or state imaging [34], sinc-subtraction
would be a better choice also for the reason that the BOLD contamination could serve to reduce
the CBF difference effect [51,52].

With the sensorimotor ASL perfusion fMRI data, covarying global signal as a nuisance variable
demonstrated increased detection sensitivity in both VC and MC, supporting the practice of
covarying global signal to suppress the global fluctuations for ASL perfusion fMRI data
analysis [5].

A Matlab and SPM based ASL data processing toolbox, ASLtbx, was introduced and used for
all data analyses in this paper. Freely available to the public, this toolbox provides an easy
access to perfusion quantification and ASL data processing using the methods mentioned in
this paper and previous articles [3,5].

Summarizing the factors discussed in this paper and combining previous work on ASL
perfusion fMRI data analysis, an empirical optimal ASL data processing approach can be
proposed as: 1) converting integer format raw MRI images into floating format; 2) motion
correction for control and label images separately and coregistering the reference label image
to the reference control image; 3) rough head motion time course estimation for all control and
label images; 4) spatially smoothing; 5) extracranial voxels masking; 6) CBF quantification;
7) statistical analysis without spike images (choose simple subtracted CBF images for high
frequency design and sinc-subtracted CBF images for low frequency design, covarying global
signal if there is no significant correlation between it and the task); 8) spatially normalization
for the individual subject’s statistical analysis results; 9) group level analysis.

For functional activation detection only, future work may incorporate more sophisticated
modeling of the control/labeling image time course as in [53] to maximally use the acquired
temporal information.
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Figure 1.
Bit resolution simulation results. A) the peak t values (red lines) and the suprathresholded (P
< 0.001) cluster size (blue lines) within the visual cortex (solid squares) and the motor cortex
(solid triangles) averaged on 4 subjects for each bit resolution, B) averaged global CBF value
calculated at each bit resolution. In A) the left vertical axis is for peak t-value, the right vertical
axis is for cluster size, the purple lines are the reference lines indicating corresponding values
calculated from the floating point data which are reconstructed from the k-space data. In B)
"ref" means reference CBF value calculated from the floating point data
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Figure 2.
Estimated head motions along z direction for A) the synthetic data with 1% and 10% mean
intensity changes, B) pCASL with background suppression data, and C) one representative
subject’s sensorimotor CASL fMRI data. The inset of B is a zoom version of the motion time
course from 40 to 60 TRs.
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Figure 3.
Mean CBF values of CBF images calculated with 2 different approaches. Compared to method
A, method B yielded a significant (P < 0.0015 for both the simple subtraction and the sinc-
subtraction based CBF calculation approaches, paired t-test) underestimation of global CBF.
No significant global perfusion differences were found between the simple subtraction and
sinc-subtraction based CBF calculation processes.
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Table 1
Peak t values and cluster extensions of group analyses on the simple-subtracted CBF images with different motion
corrections. "Separate" means separate motion corrections for control/label images. The threshold for getting the
activation clusters is 0 001 P < 0.001 (uncorrected).

Motion correction VC MC
Peak t Cluster size Peak t Cluster size

Non-separate 14.54 4345 36.93 1181
separate 13.81 4391 31.61 1205
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Table 2
Results of 2-way ANOVA for assessing the effects of 2 factors on ASL data analysis. “W/T” means using global
signal as nuisance covariate, and “W/O” means without the global signal as a nuisance covariate.

factors assessed: Subtraction type Global effect

Visual cortex Peak t SIMP>SINC W/T>W/O,
P<0.024 P<0.026

Cluster size
Motor cortex Peak t W/T>W/O

P<0.005
Cluster size W/T>W/O

P<0.045
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