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Abstract: Long-term alcohol exposure gives rise to development of physical dependence on alcohol in consequence of

changes in certain neurotransmitter functions. Accumulating evidence suggests that the glutamatergic neurotransmitter

system, especially the N-methyl-D-aspartate (NMDA) type of glutamate receptors is a particularly important site of

ethanol’s action, since ethanol is a potent inhibitor of the NMDA receptors (NMDARs) and prolonged ethanol exposition

leads to a compensatory “upregulation” of NMDAR mediated functions supposedly contributing to the occurrence of

ethanol tolerance, dependence as well as the acute and delayed signs of ethanol withdrawal.

Recently, expression of different types of NMDAR subunits was found altered after long-term ethanol exposure.

Especially, the expression of the NR2B and certain splice variant forms of the NR1 subunits were increased in primary

neuronal cultures treated intermittently with ethanol. Since NMDA ion channels with such an altered subunit composition

have increased permeability for calcium ions, increased agonist sensitivity, and relatively slow closing kinetics, the above-

mentioned alterations may underlie the enhanced NMDAR activation observed after long-term ethanol exposure. In

accordance with these changes, the inhibitory potential of NR2B subunit-selective NMDAR antagonists is also increased,

demonstrating excellent potency against alcohol withdrawal-induced in vitro cytotoxicity. Although in vivo data are few

with these compounds, according to the effectiveness of the classic NMDAR antagonists in attenuation, not only the

physical symptoms,but also some affective and motivational components of alcohol withdrawal, novel NR2B subunit

selective NMDAR antagonists may offer a preferable alternative in the pharmacotherapy of alcohol dependence.
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INTRODUCTION

According to the recent developments in drug abuse
research across the areas of molecular genetics, cell biology,
animal behaviour, and human brain imaging studies, the
widely held elderly view about drug abuse and addiction –
i.e. that the problem of drug abuse would go away if only the
abuser or addict could change his behaviour – tends to be
unmaintainable. Recent advances in our understanding of the
neurobiology of drug abuse highlight the importance of the
interpretation of drug addiction as a complex brain disease
caused by alterations in crucial neurotransmitter systems,
and thus give rise to the opportunity of pharmacological
interventions [78].

Drug dependence (American Psychiatric Association,
1994) [6], also termed as drug addiction, is a chronically
deteriorating disorder characterised by the desire to seek for
and take the drug, leading to the loss of control in limiting
intake because of the emergence of psychical and/or physical
dependence, i.e. a negative emotional and/or a disturbed
physiological state, when access to the drug is withdrawn.
These behavioural and/or physiological abnormalities
develop gradually and progressively during a course of
repeated exposure to a drug of abuse. According to the recent
view, drug dependence can be considered as a form of drug-
induced neural plasticity. Repeated exposure to a drug of
abuse alters the amounts, and even the types of genes
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expressed in specific brain regions. The altered expression of
genes then mediates altered functions of individual neurons
as well as the neural circuits within which the neurons
operate. Finally, such changes in the neural circuit underlie
the abnormalities seen in a drug dependent person (Fig. 1)
[104, 159, 161, 92, 120, 157, 160].

Among the numerous types of drug addictions, alcohol
use disorders represent a substantial public health problem
all over the world. In 2000, 2 billion alcohol users were
estimated by the World Health Organisation (WHO),
compared with 1.3 billion smokers and 185 million users of
other psychoactive drugs. According to the data released by
the WHO in 2003, the global prevalence of alcohol use
disorders was 1.7%, and these disorders accounted for 1.4%
of the total world disease burden. Data released by the
National Institute on Alcohol Abuse and Alcoholism
(NIAAA) in August 2004 showed that whereas in
1991–1992, the total prevalence of 12-month alcohol abuse
and dependence, according to the "Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition" (DSM-IV),
was 7.41% in the USA representing 13.8 million adult
Americans, this prevalence rose to 8.46% representing 17.6
million Americans in 2001–2002. Given the harmful effects
of alcohol use disorder on the afflicted individuals and
society as a whole, alcohol use disorders continue to
represent one of the world’s major health problems, with
large direct health costs (psychiatric and physical) as well as
massive indirect costs to society in terms of crime, loss of
earnings and productivity, and social damage [72, 134].

In alcohol dependent individuals a complex set of signs,
i.e. alcohol withdrawal syndrome (AWS) occurs after



282 Current Neuropharmacology, 2005, Vol. 3, No. 4 Nagy et al.

alcohol cessation. The symptoms of the withdrawal syndrome
include sweating, tremor, hypertension, anxiety, agitation
and sympathetic hyperactivity responsible for tachycardia
within the first hours following the last alcohol intake. Later
on epileptic seizures and delirium tremens characterized by
auditory and visual hallucinations, confusion and disorient-
ation, clouding of consciousness and pronounced autonomic
hyperactivity may also occur. This set of symptoms can even
lead to death from respiratory and cardiovascular collapse.
Even minor symptoms are disabling enough to lead the
alcohol dependent individual to resume alcohol consumption
at the early stages of withdrawal. The severity of alcohol
withdrawal syndrome is therefore a major risk factor for
early relapse [216].

Until recently, little could be done to help problem
drinkers’ control over alcohol consumption. Thanks, however,
to discoveries on the neurochemistry of alcohol’s effects and
on the complex pathophysiology of withdrawal symptoms,
some biology-based treatments are now available and even
more help is on the way. The research is leading to an
increased understanding of how various neurotransmitter
systems in the brain contribute to the development of alcohol
dependence, thus a wider range of treatment options may
arise for individuals with alcohol problems [11]. This review
focuses on the role of a special type of glutamate receptors,
the N-methyl-D-aspartate receptors in the development of
alcohol dependence and in possible therapeutic approaches.

ETHANOL AND NMDA RECEPTORS

Although, the exact mechanism by which ethanol exerts
its effect is still a matter of debate, a major step in
medication development occurred in recent years when
scientists discovered evidence that alcohol acts on several
chemical systems in the brain to create its alluring effects.
Besides its well-known effect on the release of neurotrans-
mitters especially dopamine (DA), resulting in increased DA
levels in the mesolimbic system including the nucleus
accumbens, it is now clear that ethanol also alters the
function of a number of neurotransmitter receptors (e.g. -
amino butyric acid A (GABAA), glycine, glutamate, norepine-
phrine, DA, serotonin, acetylcholine and opiate receptors), as
well as transporters (adenosine, norepinephrine, DA, serotonin
transporters). Particularly, ion channels including the L-type
voltage-gated Ca

2+
 channels (VGCC) [127] and the ligand-

gated channels of the main amino acid neurotransmitter
systems of the brain – the inhibitory GABA and the excitatory
glutamate – seem to be highly sensitive to the acute effect of
ethanol at relevant (5 – 100 mM) concentrations [26, 63, 70,
118, 123].

In the past years, there has been increasing evidence
that acute ethanol facilitates GABAergic transmission by
enhancing chloride conductance through the GABAA recep-
tors, and inhibits glutamatergic function by decreasing
cationic conductance through the ionotropic (i.e. receptors
containing a ligand-gated ion channel) type of glutamate

Fig. (1). Drug dependence as neuroadaptation.

The concept is that the administration of a drug acutely “unbalances” the chemistry of the brain. In order to overcome this effect, the brain

institutes a homeostatic mechanism, i.e. an “opposing neuroadaptation” that balances the effect of the drug on brain chemistry. While the

drug is present in the brain, the system remains in relative balance (i.e. there is evidence of drug tolerance). However, rapid removal of the

drug now exposes the adaptation because it is no longer “balanced” by the drug. The resulting functional disturbance is the cause of the drug

withdrawal syndrome. In Himmelsbach’s theory, this will continue until the adaptation can be removed and the chemistry of the brain returns

to its normal balancing act. Collier’s modification of this hypothesis was to propose that, since drugs act on receptors in the brain, it was

logical to suppose that a primary mechanism for neuroadaptation to drugs would be to regulate the numbers of those receptors. This type of

adaptation would reduce the effects of the drug, but would also cause alterations when the drug left the brain because the natural transmitters

inside the brain also use the same receptors. This modified unitary, hypothesis remains implicitly accepted by neuropharmacologists today,

but we are beginning to recognize that it represents a gross oversimplification of the complex cellular mechanisms for drug dependence.

From: John Littleton. (2001) Receptor regulation as a unitary mechanism for drug tolerance and physical dependence—not quite as simple

as it seemed! Addiction 96, 87–101.
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receptors. Conversely, long-term ethanol exposure appears to
create inverse changes in the functions of these systems
leading to decreased GABAergic and increased glutamatergic
functions bringing about the development of tolerance and/or
dependence as well as withdrawal symptoms when alcohol
use is cut off [120]. According to the recent results on cell
and animal studies, the glutamatergic system is considered as
an especially important factor in the mediation of the
addictive effect of alcohol [48]. Among the family of
ionotropic glutamate receptors including the -amino-3-
hydroxy-5-methylisoxazole-4-propionate (AMPA), the
kainate, and the NMDA receptors, the AMPA and particularly
the NMDA type of receptors represent the highest affinity
targets for ethanol in the CNS [70, 82, 110, 122].

Structure and Function of NMDA Receptors

NMDA receptors (NMDARs), like other ion-channel
receptors, appear to be multimeric transmembrane proteins,
composed of different types of subunits. The ubiquitously
expressed NR1 subunits exist in eight distinct isoforms
(depending on the inclusion or exclusion of the N1, C1, and
C2 or C2’ cassettes) because of three independent sites of
alternative splicing. Four different subtypes of NR2 (A, B, C
and D) and two subtypes of NR3 (A, B) subunits are also
identified [47, 84, 141]. Although, the precise subunit
composition and stoichiometry of native NMDARs are
difficult to determine, NMDARs are believed to exist as
tetrameric complexes consisting of at least one NR1 and one
NR2 subunits [114, 139, 140, 141, 172]. The subunits are
most probably arranged as dimer of dimers with an NR1-
NR1-NR2-NR2 orientation in the channel [189]. Each
subunit has four hydrophobic regions, although only three of
them form membrane-spanning domains (TM1, TM3, and

TM4). The fourth one (M2) makes a hairpin bend within the
membrane and participates in the formation of the ion
channel [13, 45] (Fig. 2).

The involvement of NMDARs in diverse processes like
excitatory synaptic transmission [205], synaptic plasticity
[127], neurotrophic and neurotoxic functions [102, 163, 185]
rests upon their unique features, i.e. i) their high permeability
to Ca

2+
ions, ii) their relatively slow activation/deactivation

kinetics, and iii) their voltage-sensitive blockage by extra-
cellular Mg

2+
ions. Glutamate, the native agonist of the

NMDARs, can open the ion-channel only if the plasma
membrane became depolarised and the Mg

2+
blockage was

displaced. Thus, NMDARs act as coincidence perceptive
elements, which become active only when electrical and
chemical signals are present concurrently.

Besides glutamate, NMDARs are sensitive to several
other endogenous modulators including their co-agonist
glycine [135] and D-serine [144]. Endogenous polyamines,
spermine and spermidine also facilitate [115, 180], whereas
extracellular Zn

2+
 ions [37] and protons [202, 206] suppress

NMDAR activation. NMDARs interact with various
intracellular scaffolding, anchoring, and signalling molecules
associated with the postsynaptic density (Fig. 2, see review
of [121]). The sensitivity of NMDARs to different ligands,
its permeation, and block by divalent ions, kinetic properties,
and interaction with intracellular proteins highly depend on
their subunit composition [21, 39, 91]. Diheteromeric
NMDARs composed of NR1/NR2A or NR1/NR2B subunits
generate ‘high-conductance’, Mg

2+
 sensitive channels per-

meable also to Ca
2+

 ions. On the contrary, receptors
containing NR2C or NR2D subunits give rise to ‘low-
conductance’ channels with a lower sensitivity to Mg

2+
 ions

Fig. (2). Schematic diagram of NMDA receptor ion channel.

Diagram representing NMDA receptor ion channel with its various regulatory sites. The receptor is activated by agonists such as glutamate

or NMDA. APV is a competitive antagonist, 5,7-di-Cl-KYN binds to a strychnine insensitive glycine site, ifenprodil is a polyamine site

antagonist. The open NMDA channel is blocked by Mg
2+

 and by uncompetitive antagonists such as MK-801. Glycine and D-serine act as

coagonists. Additionally, polyamines and Zn
2+

 ions modulate the NMDA receptor. There are phosphorylation sites (P) that modulate

responses of the receptor to agonists and may play a role in synaptic plasticity. Each subunit is believed to have four regions (I, II, III, and

IV) within the cell membrane

From: Bisaga, A. and Popik, P. (2000) In search of a new pharmacological treatment for drug and alcohol addiction: N-methyl-D-aspartate

(NMDA) antagonists. Drug Alcohol Depend. 59, 1–15.
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and permeability principally to Na
+
 ions. The NR3 subunits

are thought to be regulatory in nature, since they do not form
functional channels with NR1 subunits but co-assemble with
NR1/NR2 complexes forming ‘low-conductance’ channels
[168].

Ethanol is a Potent Inhibitor of NMDA Receptors

Biochemical, electrophysiological and behavioural evi-
dences show that ethanol - in clinically relevant concen-
trations (25 – 100 mM) - is a potent and selective inhibitor of
NMDA receptors [50, 81, 122, 124]. Several studies involving
recombinant receptors have demonstrated that receptors
containing different types of NR2 subunits have differential
sensitivity to the inhibitory effect of ethanol [170, 192].
According to the earlier results, the ability of ethanol to
depress NMDA evoked currents paralleled with the
neuroprotective action of ifenprodil in rat cultured cortical
neurons [125]. Similar results were obtained when NMDA-
induced release of (

3
H)-norepinephrine was measured in

slices from cerebral cortex of the rat [58]. Since ifenprodil is
known as an NR2B subunit selective NMDAR antagonist
[213], it was assumed that ethanol acts on the same subunit.
Indeed, studies performed on recombinant NMDARs showed
that heteromers containing either NR2A or NR2B subunits
are preferentially sensitive to ethanol inhibition vs. hetero-
mers containing NR2C or NR2D subunits [24, 38, 112, 131,
136, 215, 219]. Moreover, NMDARs with NR1/NR2B
subunit combination were more susceptible to the effect of
ethanol compared to those composed of NR1/NR2A subunits
[7, 14, 15, 192]. The co-expression of NR3 or an NR3-GFP
fusion protein with NR1/NR2 (A-D) subunits did not alter
the inhibitory effects of ethanol [193].

Data regarding the site of effect of ethanol on NMDARs
are controversial. Earlier it was thought that ethanol binds to
a hydrophobic pocket distinct from other modulatory binding
sites of the NMDARs [166, 167]. Recently it was suggested
that this pocket is associated with the third transmembrane
domain (TM3) of the NR1 subunit [181]. While mutation of
Phe639 to Ala in this region of the NR1 subunit expressed in
either oocytes or HEK-293 cells significantly decreased the
inhibitory effect of ethanol, the substitution of this residue
for Trp resulted in receptors that were slightly more sensitive
to ethanol inhibition than the wild-type receptors. These
observations suggest that the 639 position of the NR1
subunit is an important determinant of ethanol sensitivity [2].

Action of ethanol on NMDARs may also be mediated by
changes in the phosphorylation status of the receptor
subunits. According to Alvestad et al. [5], phosphorylation
of tyrosine side chains in the NR2A and/or NR2B subunits
was significantly reduced following in situ exposure of
hippocampal slices to 100 mM ethanol. Addition of a
phosphotyrosine phosphatase inhibitor – bpV(phen) – in the
recording medium prior to and during ethanol exposure
significantly reduced the inhibitory effect of ethanol on
NMDAR mediated excitatory postsynaptic potentials [5, 54].
These data suggest a possible mechanism by which ethanol
may inhibit NMDAR functions via activation of a tyrosine
phosphatase and phosphatase-mediated dephosphorylation of
NMDAR subunits may play a role in mediating the
inhibitory effect of ethanol.

Effect of Long-Term Ethanol Exposure on NMDAR
Functions

Data from studies on neuroadaptation following long-
term ethanol exposure indicate a significant role of
NMDARs in the development of alcohol dependence, in the
expression of alcohol withdrawal syndrome as well as in
withdrawal associated neuronal damage. Initial in vivo
studies showed that seizures evoked by withdrawal of
ethanol in alcohol dependent animals were attenuated by
NMDAR antagonists and exacerbated by administration of
NMDA at doses that are not convulsant in control animals.
According to these observations, it has been hypothesised
that when alcohol intake is cut off, an enhanced NMDAR
mediated neurotransmission underlies the observed neuronal
hyperactivity [67, 69].

Indeed, several papers reported that chronic ethanol
exposure leads to a selective enhancement of NMDAR
function in cultured hippocampal [204, 173] and cortical
neurons [31, 83, 148, 191]. For instance, while the amount of
non-viable cells in hippocampal brain slice explants was
significantly reduced in the presence of ethanol, cytotoxic
effect of NMDA was significantly higher in ethanol-exposed
samples after 24h withdrawal. Correspondingly, when
cultures of rat cortical cells were treated with ethanol, the
morphology of neurons was not altered, whereas obvious
signs of neuronal damage and increased release of lactate
dehydrogenase (LDH) were observed after 24 hours of
withdrawal [148]. Interestingly, neurotoxic effect of ethanol
withdrawal was observed only in those cultures, which were
pre-treated with ethanol repeatedly, once daily at least for
three consecutive days (Fig. 3A ) [149]. Furthermore,
alcohol-withdrawal induced LDH-release was not observed
when ethanol was continuously present (Fig. 3B ). In
addition, whereas the effect of the GABAA receptor agonist
muscimol was insignificant, NMDAR antagonists (MK-801
and ifenprodil) effectively reduced the neurotoxic effect of
withdrawal [149]. Similarly, NMDA responses were found
to be increased in cortical cultures treated with ethanol
repeatedly for 3 days (Fig. 4) [149, 150]. The 3-day repeated
ethanol exposure paradigm used in these experiments is
similar to the in vitro neuronal model described by Hu and
Ticku [81] in which chronic but intermittent ethanol
treatment (CIE) was used (12h ethanol followed by 12h
withdrawal). The CIE exposure also produced enhanced
NMDA mediated increase in intracellular calcium levels
showing increased NMDA receptor functions. These data are
consistent with the previous observations that acute
administration of ethanol has a small neuroprotective effect
and following long-term ethanol exposure and withdrawal
neurons became more sensitive to NMDA [75, 173, 204].
These observations suggest that neuronal cells pre-treated
with ethanol required further ethanol for survival i.e. became
dependent on ethanol. These observations support the
conception that NMDARs may play a crucial role in the
development of in vitro ethanol dependence and alcohol-
withdrawal evoked neurotoxicity. This in vitro test system,
when ethanol treatment is interrupted and the cycle of
treatment and withdrawal is repeated several times, can be
used as an in vitro model for studying the development of
ethanol dependence and withdrawal symptoms.
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Fig. (3). Toxic effect of 24 h ethanol-withdrawal and its

inhibition by re-addition of ethanol in ethanol pre-treated

primary cortical cultures.

A) LDH activity of the culture medium expressed as percentage of

total activity was measured in cultures pre-treated with different

concentrations of ethanol once for 24 or 72 hours as well as daily

for 3 successive days.

B) Inhibition of alcohol-withdrawal induced cytotoxicity by re-

addition of ethanol in primary cultures of rat cortical neurones pre-

treated with 100 mM ethanol daily for 3 successive days.

(*: p<0.05, **: p<0.01, ***: p<0.001 as compared to the respective

control not treated with ethanol)

From: Nagy J., László L. (2002) Increased sensitivity to NMDA is

involved in alcohol-withdrawal induced cytotoxicity observed in

primary cultures of cortical neurones chronically pre-treated with

ethanol. Neurochem. Int., 40, 585–591.

The CIE treatment is a widely used experimental
paradigm also in animal studies and is a validated model for
human alcohol withdrawal syndrome. In this kind of
experiments rats are exposed to intermittent episodes of
intoxicating doses of ethanol and withdrawal leading to a
kindling-like state of behavioural excitability. It was
observed that after repeated ethanol withdrawal experience

reduced GABAA receptor function and increased NMDA
receptor activity become exaggerated and these changes are
suggested to have a role in the development of alcohol
dependence, i.e. in manifestation of hyperexcitability when
alcohol is withdrawn [10, 25, 138].

Effect of Long-Term Ethanol Exposure on the Structure

of NMDARs

According to earlier reports, it was observed in both in
vivo and in vitro studies that chronic ethanol treatment leads
to an increase in the density of NMDARs leading to
facilitated receptor functions [62, 64, 88, 89, 90, 147, 215].
However, up-regulation of NMDAR expression has not been
found in all studies after chronic ethanol exposition [55,
186]. Consistent with the recently emerging view, the
increased NMDAR function is presumably due to a
differential up-regulation of the various NMDAR subunits.
This conception is supported by several papers presenting
evidence for altered NMDAR subunit composition after
chronic ethanol treatment.

Notwithstanding, there is a disagreement in respect of the
expression of the different NR subunits and NR1 splice
variant forms. On one hand, some authors reported no
changes in subunit expression at all [30], and others found
changes solely in the expression of the NR1 [60] or NR2A
[46] subunit in consequence of long-term ethanol exposure.
On the other hand, there are papers concluding that besides
several other types of subunits and certain NR1 splice
variants, the expression of the NR2B subunit is increased.
Lots of in vitro studies showed increased NR2B subunit

Fig. (4). Altered excitotoxic effect of NMDA after ethanol pre-

treatment.

Effect of acute and chronic ethanol treatment on NMDA induced

cytotoxicity. Control cortical cultures (squares) and cortical

cultures pre-treated with 100mM ethanol repeatedly, once daily for

3 days (circles) were exposed to 300 M NMDA for 15 min in the

presence (open symbols) or absence (closed symbols) of 100 mM

ethanol. LDH-release, expressed as percentage of total LDH

content, was measured 24 h after NMDA wash out.

(*, P<0.01 compared to NMDA induced LDH-release in control

cultures; #, P<0.01 compared to LDH-release in absence of

ethanol).
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mRNA levels, with no change in NR1 and/or NR2A subunit
transcription in cultured cortical neurons following chronic
ethanol administration [73, 89, 143]. On the contrary, the
levels of NR2B as well as NR2A and NR1 subunit proteins
were found increased in the cortex and hippocampus of rats
or mice [61, 62, 79, 96, 154, 207]. Furthermore, in cultured
cerebellar granule cells, the 'developmental switch' of the
NR2B subunit for NR2A was found delayed resulting in
higher NR2B and lower NR2A subunit levels [194].

Similarly to these later observations, in primary cultures
of cortical as well as hippocampal neurons from rats, the
maximal inhibitory effect of ethanol as well as some NR2B
subunit selective NMDAR antagonists on NMDA evoked
cytosolic calcium elevations was significantly increased after
ethanol pre-treatment [150]. However, the efficiency of the
non-subunit selective NMDAR antagonist channel blocker
MK-801 and the glycine site specific 5,7-DCK was not
changed. Accordingly, increased expression of the NR2B
subunits could be detected applying a flow cytometry based
immunocytochemical method. Whereas, in situ immuno-
cytochemical detection of the NR2B subunits could generate
only qualitative data, the combination of immunocyto-
chemistry with flow cytometry made an opportunity for a
quantitative analysis of the expression. This quantitative
analysis showed that the NR2B specific immuno-labelling
was increased in a subpopulation of the cells in ethanol pre-
treated compared to control cultures. According to similar
analysis, the expression of the panNR1, NR2A, NR2C, and
NR2D subunits was not changed after ethanol pre-treatment
in rat cortical or hippocampal cultures (Fig. 5A). In further
studies, when the expression of the NR1 splice variants was
investigated, similarly to the NR2B subunit, the expression
of the C1 and C2’ cassette containing splice variants was
found to be increased in ethanol pre-treated hippocampal
cultures (Fig. 5B) [150].

Correspondingly, in vivo studies on rats also showed that
after chronic ethanol ingestion the NMDA receptor function
was enhanced in the lateral/basolateral amygdala. The
increase in the NMDA receptor current density was
associated with an increase in ifenprodil inhibition and a
decrease in apparent calcium-dependent current inactivation.
Quantitative real-time reverse transcription-polymerase
chain reaction (RT-PCR) measurements demonstrated that
the NR1 subunit mRNA expression, but not the NR2 or NR3
subunit transcription, was enhanced [60, 214].

The molecular mechanisms underlying these changes in
subunit expression is one of the main questions in the near
future. First results concerning the regulation of subunit
composition by Ravindran and Ticku showed that the
methylation status of the NR2B gene is altered following
chronic ethanol treatment in mouse cortical neurons [177].
They found that demethylation this gene could be responsible
for up-regulation of the NR2B subunit expression.

Consequences of Changes in Structure of NMDARs

The increased expression of the NR2B subunits accom-
panying with elevated levels of the C1 and C2’ cassette
containing splice variant forms of the NR1 subunits may
underlie the enhanced NMDAR function. This idea is

Fig. (5). Effect of chronic ethanol pre-treatment on the

expression of different NMDA receptor subunits and NR1

splice cassettes.

Primary cortical and hippocampal cultures were treated with 100

mM ethanol daily for 3 days. Fixed samples were incubated in the

presence of different NR2 and NR1 splice variant specific primary

antibodies (Novus Biologicals). The binding of the primary

antibodies was visualised via FITC-conjugated secondary

antibodies (Sigma). Intensity of the subunit specific fluorescent

labelling was analysed using a FACScan flow cytometer. The

arithmetic mean FITC-fluorescence intensities were calculated from

fluorescence histograms. The mean fluorescence values from

samples incubated with the given NMDA receptor subunit specific

antibody (NR staining) were corrected with the fluorescence of

samples stained with an isotype specific control antibody

(background). Each column represents the percentage of corrected

fluorescence values obtained from ethanol pre-treated vs. control

cultures.

(Each value represents mean + S.E. (bars); *: p<0.05, **: p<0.01,

***: p<0.001 compared to the control, paired t-test).

Data from: Nagy, J., Kolok, S., Dezső, P., Boros, A. Szombathelyi,

Z. (2003) Differential alterations in the expression of NMDA

receptor subunits following chronic ethanol treatment in primary

cultures of rat cortical and hippocampal neurones. Neurochem. Int.,

42(1), 35-43.
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supported by the following observations: i) the deactivation
time of NMDARs composed of NR1/NR2B subunits is
longer than those built up of NR1/NR2A subunits [140], ii)
the deactivation rate is four times faster for receptors
composed of NR1 subunit containing the N1 cassette than
those lacking this cassette [40, 187], and iii) NMDARs
assembled of NR1 splice variants containing C1 and/or C2
cassettes may form functionally more active ion channels
[175].

The phosphorylation states of the NMDARs are also
altered after long-term ethanol exposure. It is known that Src
family of protein tyrosine kinases, specifically c-Src and Fyn
kinases potentiate the NMDA-activated currents in in vitro
recombinant systems [8, 32, 101, 188] as well as in spinal
neurons [211]. The up-regulation of NMDAR function by
Src and Fyn accompanies with reduced sensitivity of
NMDARs to ethanol [188]. Furthermore, phosphorylation
status of NR1 and NR2B subunits was increased in the
hippocampus of ethanol treated control but not in Fyn-
deficient mice [95, 137]. This observation is in good
agreement with that of Yaka et al. [221, 222], who found
that the scaffolding protein RACK1 that binds Fyn kinase to
the NR2B subunit dissociates from the complex due to
ethanol exposure, consequently facilitating Fyn-mediated
phosphorylation of the NR2B subunit leading to enhanced
channel activity counteracting the inhibitory actions of
ethanol. Reduced phosphorylation state of NR2 subunits –
achieved by knocking out the Fyn kinase gene – increases
ethanol sensitivity of NMDARs [7, 137]. In addition,
transgenic mice over-expressing the Fyn tyrosine kinase and
withdrawn from alcohol failed to show any increase of
anxiety-like behaviour or reduction of exploratory activity
like it was observed in case of their wild-type littermates
[201]. This apparent lack of alcohol withdrawal-induced
behavioural effects was associated with increased Fyn kinase
activity and tyrosine phosphorylation of several proteins
including the NR2B subunit.

Concerning the NR1 subunit, truncation (NR1858stop) [7]
or phosphorylation of Ser897 of this subunit decreased the
ability of ethanol to inhibit NMDAR function. In addition,
the reduced sensitivity of NMDARs to ethanol was linked up
with the dopamine D1 receptor activation via dopamine
and cAMP-regulated phosphoprotein-32 kD (DARPP-32)
phosphorylation [126]. Activation of D1 receptors prevents
the dephosphorylation of the NR1 subunit via a cascade that
involves phosphorylation of PKA, which in turn phospho-
rylates dopamine and cAMP-regulated phosphoprotein-32
kDa (DARPP-32), which then inhibits the activation of PP1
phosphatase acting on the NR1 subunit [195]. Via this
cascade, D1 receptor promotion of drug reinforcement, as
might arise from prior exposure to drugs of abuse, reduces
the sensitivity of NMDARs to blockade by ethanol [126] and
may increase the motivational effects of ethanol [179].

Not only are the subunit composition and phospho-
rylation states of the NMDARs altered after long-term
ethanol exposure but the localization of certain subunits.
According to Carpenter-Hyland et al. [27], the co-
localization of NR1 clusters with the presynaptic marker
protein synapsin was increased in rat hippocampal neurons
exposed to 50 mM ethanol for 4 days. This was accompanied

by significant increases in the size and density of these
synapsin-associated clusters with no change observed in non
synapsin-associated NR1 clusters. Similar effects were
observed with NR2B clustering after chronic ethanol exposure.
The increase in synaptic NMDA receptor clustering was
prevented by addition of a protein kinase A inhibitor or by
co-exposure to a low concentration of NMDA and was
reversed when ethanol was removed from the cultures. On
the contrary, no changes were observed in the synaptic
content, cluster size, or density of AMPA receptors after
ethanol exposure. Electrophysiological measurements on
ethanol-treated neurons revealed a similar enhancement in
synaptic NMDA currents with no change in AMPA-
mediated events.

Taken together, changes in subunit expression, phospho-
rylation states and synaptic clustering of NMDAR subunits
due to long-term ethanol exposure may lead to the enhance-
ment of NMDA responses. These changes may also explain
the occurrence of acute ethanol tolerance leading to
reinforcement of ethanol consumption and may underlie the
development of physical dependence on ethanol and the
increased sensitivity of neurons to excitotoxic insults.

Consequences of Increased NMDAR Function

Presumably in consequence of increased function of
NMDARs, enhanced release of glutamate was observed after
chronic ethanol exposure both in in vitro as well as in vivo
experiments. Besides several other factors (e.g. functional
deficits of GABA receptors and increased VGCC function
[77, 212]), the NMDARs are major contributors to the
increased glutamate release during alcohol withdrawal since
in the brain of ethanol-dependent rats, the extracellular
concentration of glutamate shows a transient, NMDAR
mediated increase after cessation of ethanol intake and these
changes are time-locked to the behavioural signs of ethanol
withdrawal [44, 53, 183]. This enhanced glutamate release
may contribute to the further shift towards the excitatory
dominance in the CNS after ethanol withdrawal [184].
Furthermore, up-regulation of the NMDARs can enhance the
activity of the noradrenergic system as well [51, 52], that
may account for the vegetative instability seen in serious
states of alcohol withdrawal, especially in delirium tremens
[208, 209].

Increased calcium influx through NMDA receptors
tightly coupled to calcium uptake into mitochondria causes
the production of reactive oxygen species that interfere with
the function of mitochondria. Primary inhibition of the
mitochondrial respiratory chain can also indirectly induce
further NMDA receptor stimulation. When the inhibitory
action of ethanol on NMDA receptors is removed during
withdrawal, the potential of neuronal injury is markedly
increased through this system. Vulnerability of neurons is
more pronounced when withdrawal kindling i.e. increased
and/or prolonged withdrawal signs after repeated episodes of
withdrawal, occurs [74].

Recently, it has been hypothesized that the same neuronal
system including the mesolimbic dopaminergic pathway
mediates the reinforcement for alcohol and other addictive
drugs like opiates or cocaine [103, 158]. Indeed, ethanol has
been reported to stimulate dopamine (DA) release in the
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nucleus accumbens [103] and electrophysiological studies
have demonstrated a concomitant ethanol-induced increase
in the activity of ventral tegmental dopaminergic neurons
[22, 23]. On the other hand, the observations that the
NMDAR antagonist MK-801 increased burst firing of
dopaminergic neurons [224] and could stimulate the release
of DA from dopaminergic terminal areas suggest that
glutamate - acting through NMDARs - exerts a tonic
inhibitory action on DA release in the nucleus accumbens
[83, 109]. According to the model of Fadda and Rossetti
[53], blockade of the NMDARs by acute ethanol treatment
disinhibits dopaminergic neurons via  GABAergic
interneurons possessing NMDARs. Withdrawal of alcohol,
similarly to withdrawal of opiates or cocaine, has been found
associated with decreased DA release in the limbic forebrain
areas [182] due to decreased firing rate of dopaminergic
neurons [49]. Thus, reduced dopaminergic functions seen
after ethanol withdrawal may arise because of enhanced
NMDA responses induced by chronic ethanol exposure.

All the above-discussed findings suggest the possibility
that increased NMDA mediated neurotransmission may
constitute the basis of both the motor signs (e.g. tremor,
seizures etc.) and the affective or emotional disturbances
(e.g. craving, dysphoria) associated with alcohol withdrawal.
Bearing in mind that besides the glutamatergic system other
transmitter mechanisms are also involved in the adaptive
changes induced by chronic ethanol treatment and that in
vitro experiments allow only limited conclusions to deduce
for a whole organism, it is clear that alterations in NMDAR
function may play a critical role in these processes leading to
the development of alcohol dependence and withdrawal
symptoms. According to this view of the pathomechanism of
alcohol withdrawal syndrome, the NMDAR may be a
possible target and NMDAR antagonists may be useful
agents for the treatment of both the physical and the
psychical signs of alcohol withdrawal.

NMDAR ANTAGONISTS IN PHARMACOTHERAPY
FOR ALCOHOL WITHDRAWAL

Current pharmacotherapies for alcohol dependence,
disulfiram and naltrexone, aiming at alleviating symptoms of
acute abstinence and minimising the risk of relapse show
limited efficacy in large multicenter studies [65, 111]. Also,
agents, which appear to target the glutamatergic system, are
emerging as an additional therapeutic option [70, 85, 87,
110, 129, 130, 218]. In the early 90s, it was already
hypothesized that NMDAR antagonists can block alcohol
withdrawal induced seizures in ethanol dependent animals.
Since then, extensive literature on animal experimental and
preliminary clinical data suggest that NMDAR antagonists
are promising candidates for the treatment of alcohol
withdrawal symptoms, inasmuch as these compounds may
attenuate not only the physical but also the affective and
motivational components of AWS. However, the field of
alcoholism research is in the relatively early phases of
determining the extent to which glutamatergic agents might
reduce alcohol consumption and relapse.

Acamprosate

The American Food and Drug Administration (FDA)
recently granted the approval of a novel anti-alcohol medi-

cation Campral (acamprosate calcium) to maintain abstinence
in patients with alcohol dependence. In Europe, more than 4
million people have been treated with this agent since 1989,
when it became commercially available in France.
According to several human studies, acamprosate has a
consistent effect on prolonging abstinence and reducing the
rate of relapse, in conjunction with an equally consistent
absence of effect on self-reported craving, suggesting that it
can be used as a relapse-prevention medication. In previous
animal studies, it was observed that acamprosate dose-
dependently reduced alcohol consumption and hypermotility
during ethanol withdrawal with no effects on food and water
intake and without any effects generalize to those of ethanol.
In addition, acamprosate did not substantially alter the
discriminative stimulus properties of ethanol, pentobarbital,
or amphetamine [196, 197, 198].

The exact mechanism of action of acamprosate,
originally developed as a GABA analogue, was intensively
investigated in the past years (for a review see [217]). Since
acamprosate is chemically similar to GABA, early studies
indicated that acamprosate interacts with the GABAergic
system [16] to affect behaviours related to ethanol
consumption. However, this interaction of acamprosate with
the GABA receptors does not appear to be comparable to the
effects induced by either benzodiazepines or barbiturates
since acamprosate cannot be substituted for GABA agonists
in a drug-discrimination procedure [68]. In addition, it would
not bind to recombinant or native GABAA receptors in
transfected HEK 293 cells or enhance chloride currents in
these receptors [226]. The observation of Dachour et al. [41,
42, 43] i.e. that acamprosate can lessen the increase in
extracellular glutamate level in microdialysates from nucleus
accumbens during ethanol withdrawal was an important
finding for the therapeutic use of this agent.

According to other studies it was suggested that
acamprosate has an inhibitory effect on the native or
recombinant NMDA-receptors as well as on voltage-
sensitive Ca

2+
 channels [1, 176, 199]. As acamprosate

reversed the potentiating effects of spermine, it was thought
that acamprosate may act at the polyamine site of the NMDA
receptor [171]. Indeed, acamprosate effectively reduced both
the enhanced glutamate-induced calcium entry and neuro-
toxicity in ethanol pre-treated primary cultures of organotypic
hippocampal [133] or neocortical neurons from rats in a
concentration-dependent manner (Fig. 6A) [4, 153]. However,
its protective effects against glutamate-induced neurotoxicity
were observed only in ethanol-withdrawn cultures.
Furthermore, although acamprosate significantly reduced the
calcium entry caused by glutamate or K

+
 in control and

ethanol-exposed cultures, the neuroprotective effects of the
drug did not correlate with its effects on calcium entry,
making it unlikely that acamprosate directly affects NMDA
receptors via the glutamate binding site or the receptor-
operated calcium channel [4]. This idea was confirmed by
further studies which found that acamprosate has no direct
effect on the NMDARs [4, 132, 153, 171, 196]. Al Qatari et
al. [3] argued that acamprosate may have an excitatory or
inhibitory effect on NMDA receptors depending upon the
experimental conditions indicating that acamprosate, at least
partly, acts as a `partial agonist' at the NMDA receptor.



Role of Altered Structure and Function of NMDA Receptors Current Neuropharmacology, 2005, Vol. 3, No. 4 289

Fig. (6). Inhibitory effect of NMDAR antagonists on ethanol-

withdrawal-induced neurotoxicity.

Neuronal cell death caused by 24-hour ethanol-withdrawal in

primary cultures of rat cortical neurones pre-treated with 100 mM

ethanol for 3 consecutive days was quantified by measuring LDH-

release. Different concentrations of MK-801, erythro-ifenprodil and

acamprosate (panel A) or some known (open symbols, dashed

lines) and novel (filled symbols, straight lines) NR2B SSNAs

(panel B) were present during the withdrawal period. Each point

represents the percentage of inhibition (mean ± S.E. (error bars)).

From: Nagy, J., Horváth, C., Farkas, S., Kolok, S., Szombathelyi,

Z. (2004) NR2B subunit selective NMDA antagonists inhibit

neurotoxic effect of alcohol-withdrawal in primary cultures of rat

cortical neurones. Neurochem. Int., 44(1), 17-23.

According to the observations of Harris et al. acamprosate
displaced [

3
H]glutamate but did not compete with NMDA

for [
3
H]glutamate binding sites in membrane preparations of

cortices, cerebellums, and hippocampi of rats. Furthermore
acamprosate displayed total competition with trans-ACPD
(1-aminocyclopentane-trans-1,3-dicarboxylic acid) an agonist
at both group I and group II metabotropic glutamate
receptors and similarly to SIB-1893, a non-competitive
antagonist at the mGluR5 receptor, it was neuroprotective
against trans-ACPD induced neurotoxicity that likely results
from mGluR mediated potentiation of NMDARs [76]. Also,
in the CA1 region of ethanol pre-treated organotypic
hippocampal slices, where neurotoxicity was observed after
a 24-hr withdrawal, acamprosate, as well as SIB-1893, MK-

801, and staurosporine were all neuroprotective. In this
ethanol pre-treated slice culture preparations the polypeptide
levels of mGluR5 receptors were found to be increased [77],
similarly as the NR1 and NR2B subunits of NMDARs in
other neuronal cultures after long-term ethanol exposure
[150, 176]. Considering these observations, acamprosate
may act on the mGluR5 receptors reducing its positive
feedback control over the NMDARs [217]. Although the
exact mechanism of action of acamprosate is still a matter of
debate, the glutamatergic hypothesis may help to explain
many of the effects of acamprosate in human alcohol
dependence, especially in the acquisition of cue-elicited

drinking behaviours [17, 41, 80, 86, 116, 117, 199].

Competitive and Channel Blocking NMDAR Antagonists

So far, the classic competitive and channel blocking
NMDAR antagonists were tested and proved useful in in
vitro or animal models of alcoholism. Early experiments
showed that competitive NMDA receptor antagonists acting
at the glutamate binding site (e.g. CGP 39551, D-CPP-ene)
decreased handling-induced hyperactivity after withdrawal
from chronic ethanol treatment in mice [113, 119, 178] and
reduced alcohol deprivation effect (i.e. an overshoot in
alcohol consumption shown by animals subjected to forced
abstinence from regular drinking when ethanol is again
available [105]) in rats [210]. These compounds increased
the threshold for population spikes in hippocampal slices
from the same animals. NMDAR antagonists acting within
the ion channel (e.g. ketamine, MK-801 and ADCI) were also
shown to suppress withdrawal-induced seizures effectively
in both rats and mice [56, 71, 142]. Unfortunately,
preclinical studies indicated that most of these compounds
produce psychotomimetic or sedative effects, ataxia, muscle
relaxation, neuronal damages in the cingulate cortex as well
as motor and learning impairment. These serious side effects
impeded their introduction to the human therapy [20, 28,
100, 145, 164, 223]. However, due to immense therapeutic
promise of NMDA antagonists in acute and/or chronic
neurodegenerative and psychiatric disorders efforts have
been made to develop compounds lacking these side effects.
More encouraging approaches were performed with low
affinity channel blockers like memantine or with NMDA
antagonists acting at the glycine binding site (L-701,324)

having more tolerable side effect profiles.

Novel channel blockers like memantine (1-amino-3,5-
dimethyl-adamantane) and its analogue neramexane (MRZ
2/579, 1-amino-1,3,3,5,5-pentamethyl-cyclohexane hydro-
chloride) have improved side effect profile probably due to
their moderate potency and rapid, strongly voltage-
dependent blocking kinetics [165]. These compounds greatly
inhibited alcohol consumption without affecting water or
food intake during relapse in long-term voluntarily alcohol-
drinking rats [85, 87, 169, 190]. In addition, neramexane as
well as memantine effectively suppressed ethanol withdrawal
induced seizures in alcohol dependent rats [12]. According to
recent results by Kotlinska et al. chronic administration of
neramexane inhibits the development of ethanol dependence,
reflected as a decrease in ethanol withdrawal-associated
audiogenic seizures as well as the acquisition and expression

of ethanol-induced place preference [108].
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Glycine-B Site NMDAR Antagonists

Glycine-B site antagonists were also shown to attenuate
the expression of alcohol withdrawal symptoms [45]. A
member of this type of NMDAR antagonists, L-701,324 (7-
chloro-4-hydroxy-3-3-phenoxyphenyl-2-1H–quinolone) pro-
duced a dose-dependent inhibition of audiogenic seizures
associated with alcohol withdrawal [106, 107] and potently
blocked the acquisition of ethanol-induced conditioned place
preference [11] and reduced alcohol consumption during
alcohol deprivation [210]. Preliminary problems with glycine
site antagonists included poor systemic availability has now
been overcome with agents like GV196771A ((E)-4,6-
Dichloro-3-(2-oxo-1-phenylpyrrolidin-3-ylidenemethyl)-1H-
indole-2-carboxylic acid sodium salt) or SM-31900 (3(S)-(2-
(4- (Amino methyl) -2- (1(R)-carboxyethoxy)phenylamino) -
2- oxoethyl) -7- chloro -1,3,4,5- tetrahydrobenzo(c,d)indole -
2- carboxylic acid hydrochloride) which are not only of very
high affinity, but also have improved pharmacokinetic and
physicochemical properties, such as good brain permeation
and solubility [94]. Although these compounds were not
tested in animal models related to alcoholism, the facts that
SM-31900 has a potent anticonvulsant activity [97],
GV196771A can inhibit the development of morphine
tolerance [174] and both compounds are devoid of
behavioural side effects (hyperactivity, motor dysfunction)
make these compounds promising candidates also for the
treatment of alcoholism.

NR2B Subunit Selective NMDAR Antagonists

In recent years, novel non-competitive NMDAR anta-
gonists inhibiting the NR2B subunit containing NMDARs
have emerged and received considerable attention. Although,
this type of compounds was initially thought to interact with
the polyamine site, recent experiments using chimeric
NR2A/NR2B subunits revealed that the major determinant of
the inhibitory effect of ifenprodil – the initial chemical lead
of the NR2B subunit selective antagonists – localizes to a
distinct site of the NR2B subunit [66, 34]. The NR2B
subunit selective antagonists showed potency in animal
models of neurodegeneration [99], Parkinson disease [155,
156, 200, 220], and hyperalgesia [19, 29, 36, 57]. It was also
realized that this type of compounds lacks the serious side
effects of the classic NMDAR antagonists’ [162]. Although,
like other un-competitive NMDAR antagonists they may
have some adverse effect on learning and memory, it was
proved that they have a wider separation between doses that
are effective in seizure or stroke models and those that
disrupt learning and memory. The limited information on the
novel NR2B subunit selective antagonists (Table 1) such as
CP-101,606 (traxoprodil) [33, 98], Ro25-6981 [59], Co-
101244 [225], CI-1041 [35] and RG-1103 [18] also suggests
that these drugs are better tolerated and are largely devoid of
adverse CNS effects at antinociceptive doses, at least with
respect to psychotomimetic, ataxic and sedative effects [19,
29, 35, 57, 146, 203].

Previously, ifenprodil and its analogue eliprodil were
found effective in animal models of alcohol dependence.
According to Malinowska et al. [128], ifenprodil potently
reduced the severity of withdrawal-induced seizures. Oral
administration of increasing doses of eliprodil produced a

dose-dependent and almost complete inhibition of ethanol
withdrawal produced audiogenic seizures in alcohol
dependent Sprague-Dawley rats [106]. This effect of
eliprodil was achieved at doses that by themselves did not
alter the basal locomotor activity of untreated control
animals. Similar results were observed with ifenprodil in

Table 1. Some NR2B Subunit Selective NMDA Antagonists
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alcohol dependent male C57BL/6J mice [171]. The expression
of spontaneous ethanol withdrawal signs (piloerection, jerk,
tremor) occurring 6 – 12 hours after the discontinuation of
ethanol treatment was suppressed by ifenprodil. According
to Kotlinska and Liljequist [107], eliprodil effectively
reversed the reduction in extracellular DA level during
ethanol withdrawal but only partially and dose-independently
substituted ethanol indicating that it has no discriminative
stimulus properties similar to those produced by ethanol.
Furthermore, ifenprodil dose-dependently reduced the
expression of an alcohol deprivation effect as well [210].

With the novel NR2B subunit selective NMDAR
antagonists so far only in vitro experiments were reported. In
primary cultures of cortical neurons from rats pre-treated
with ethanol intermittently for 3 days, CP-101,606, Co-
101244 and CI-1041 as well as some of the novel indole-2-
carboxamide derivative NR2B subunit selective antagonists
(RGH-13579 and RGH-1103 [18]) potently and dose-
dependently reduced the withdrawal-evoked LDH release
(Fig. 6B). One of the novel compounds (RGH-1103) was as
effective as MK-801, the most potent but not subunit
selective NMDAR antagonist. The inhibitory potencies of
the NR2B subunit selective antagonists for withdrawal-
induced toxicity was in good linear relation with their
effectiveness for inhibition of NMDA induced cytosolic
calcium elevation (Table 2) [153].

SUMMARY

According to the recently emerged glutamatergic theory
of the pathomechanism of alcohol withdrawal syndrome,
increased NMDA receptor function may play a central role
in the development of alcohol dependence and manifestation
of the withdrawal symptoms. Despite the challenging
complexity of ethanol’s action, there is now a convergence
of evidence to indicate that i) the capacity of ethanol to block
NMDARs is an important component of the human
behavioural and intoxicating effects of ethanol, ii) ethanol
tolerance and dependence are associated with alterations in
NMDAR function that promote heavy drinking by reducing

the negative consequences of ethanol intoxication, iii)
physical ethanol dependence is associated with upregulation
of certain NMDAR subunits and iv) acute ethanol
withdrawal is associated with increased glutamatergic
activity [98]. Along with the long-term ethanol exposure
evoked structural changes in NMDARs, an increased
expression of the C1 and C2’ cassette containing splice
variant forms of the NR1 as well as the NR2B subunits
contributes to the elevated function of these receptors [140,
151, 152]. Although, only few of the novel NMDAR
antagonists have been examined in animal models of
alcoholism, they were found effective with encouraging in
vitro and – according to the available preliminary data, in
vivo efficiency. Since “classic” NMDAR antagonists reduce
hyperactivity, seizures, and neuronal cell loss as well as
restore normal brain levels of glutamate and DA associated
with ethanol withdrawal, NMDAR antagonists may have a
role in the pharmacotherapy of withdrawal symptoms as well
as in the prevention of relapse and maintenance of
abstinence. To prove that the novel NMDAR antagonists,
including the NR2B subunit selective ones are positively
useful in the pharmacotherapy for alcoholism is a major
challenge for the forthcoming years.
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