
Patients with autonomic failure may be seriously

incapacitated in activities of daily living due to orthostatic

hypotension. Their low blood pressure is ascribed to a

defective increase in arterial resistance and an excessive

venous pooling upon standing. Effective pharmacological

treatment is now available, but may aggravate supine hyper-

tension and have other undesirable effects. Additionally,

pharmacological treatment is less successful for hypotension

with physical exercise or in warm surroundings (Bannister &

Mathias, 1992). Non-pharmacological measures are regarded

as a cornerstone in the treatment of orthostatic hypo-

tension. These measures consist of chronic expansion of the

extracellular volume or reducing the vascular volume in

which pooling occurs (Bannister & Mathias, 1992). The

latter includes protective measures like physical counter-

manoeuvres which can be applied by those patients with no

major additional neurological and musculo-skeletal disorders,

and external support garments which can be recommended

to all patients.

We reasoned that selection and use of appropriate

protective measures would be facilitated by understanding

the fundamental physiological mechanisms that prevent

excessive orthostatic pooling in healthy subjects, why these

mechanisms fail in patients with autonomic failure, and how

these protective measures work. Therefore we reviewed the

literature and summarized the available data about the

amount and location of venous pooling in patients with

autonomic failure and the effectiveness of physical counter-

manoeuvres and external support garments.

Regulation of blood pressure and venous capacitance

in healthy subjects

In healthy individuals, orthostatic pooling of venous blood

in the legs and abdomen begins almost immediately upon

the change from supine to the erect posture. It is estimated

that depending on the type of orthostatic stress (i.e active

standing, lower body-negative pressure or head-up tilt) one

half to one litre of thoracic blood is transferred to the

regions below the diaphragm (Asmussen, 1943; Sjostrand,

1952; Self et al. 1996). The bulk of venous pooling occurs

within the first 10 s (Ludbrook, 1966; Kunitsch & de

Marees, 1973; Kirsch et al. 1980; Ebert et al. 1986) and the

total transfer is almost complete within 3—5 min of

orthostatic stress depending on the region of the body

investigated (Asmussen et al. 1940; Wolthuis et al. 1975;
Sejrsen et al. 1981). Additional sequestration of venous blood

may take place due to a slow continuous relaxation of the

dependent capacity vessels (Rothe, 1983; Rowell, 1993).

Little is known quantitatively about this process in humans.

Approximately 80% of the blood pooled in the lower limb is

contained in the upper leg (thighs, buttocks) (Ludbrook,

1966; Self et al. 1996) with less pooling in the calf and foot

(Buckey et al. 1988); additionally, there is some modest

pooling in the abdominal and pelvic regions (Sjostrand,

1952; Wolthuis et al. 1975; Inamura et al. 1996; Halliwill et
al. 1998). The blood pooled in the veins of the feet and calf

is arterial in origin, in that it arises as a result of decreased

venous drainage of that region. In contrast, the blood

pooled in the thighs, buttocks, pelvis and abdomen arises
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primarily from venous reflux (Ludbrook, 1966; Wolthuis et
al. 1975). The pooled blood is not actually stagnant; its

mean circulatory transit time through the dependent region

is merely increased by changes in the pressure gradient

across the vascular bed and by increases in venous volume

(Rieckert, 1976).

In addition to this transfer of thoracic blood, central blood

volume decreases following transcapillary filtration of fluid

into the interstitial spaces in the dependent parts as well.

This filtration is the effect of a high intra-capillary pressure

with little interstitial counter-pressure on the Starling

forces for filtration, and can result in significant haemo-

concentration and reduced plasma volume. Earlier studies

estimated that plasma volume decreased about 10—15%

after 20—30 min in the upright position (Waterfield, 1931;

Hagan et al. 1978; Hinghofer-Szalkay & Moser, 1986).

However, Lundvall et al. (Lundvall & Bjerkhoel, 1994;

Lundvall et al. 1996) recently demonstrated that venous

blood sampled from the standing subject underestimated the

time course and magnitude of reduction in plasma volume.

The underestimation was ascribed to incomplete mixing of

venous blood from dependent and non-dependent regions. It

was found that in healthy adults plasma volume decreased

by about 10% (500 ml) after 5 min and by 15—20% (700 ml)

after 10 min during which time the reduction in plasma

volume is virtually completed. A profound decrease in

plasma volume during orthostatic stress has been observed

by others as well (Matzen et al. 1991).

As a consequence of gravitationally induced blood pooling

and the superimposed decline in plasma volume, the return

of venous blood to the heart is reduced and right atrial

pressure falls from 5—6 mmHg (supine) to nearly 0 mmHg

(upright) (Katkov & Chestukhin, 1980; Matzen et al. 1991).
This affects the end-diastolic filling of the right ventricle,

which in turn leads to a reduction in stroke volume (via the

‘Frank—Starling’ length—tension relationship; Lewis &

Sandler, 1971) and thereby to a fall in cardiac output of

•20% (Stead et al. 1945; Wang et al. 1960). Despite the
fall in cardiac output, a fall in mean arterial pressure is

prevented by a compensatory vasoconstriction of the

resistance and capacitance vessels in the splanchnic,

musculo(cutaneous), and renal vascular beds (Bridgen et al.
1950; Rowell et al. 1972; Hendriksen & Sjersen, 1977;

Ring-Larsen et al. 1982; Chaudhuri et al. 1992; Vissing et
al. 1997; Minson et al. 1999)

The initial adjustments to orthostatic stress are mediated

exclusively by the neural pathways of the autonomic

nervous system. During prolonged orthostatic stress,

additional adjustments are mediated by the humoral limb of

the autonomic nervous system. The main sensory receptors

involved in orthostatic neural reflex adjustment are the

arterial mechanoreceptors (baroreceptors) located in the

aortic arch and carotid sinuses and mechanoreceptors

located in the heart and lungs (cardiopulmonary receptors).

The cardiopulmonary receptors act in concert with the

arterial baroreceptors to effect the necessary adjustment

in sympathetic outflow at all levels of orthostatic stress

(Rowell, 1993). However, their importance in the initial

reflex adjustment to the assumption of the upright posture

is suggested to play a minor role (Wieling & Wesseling,

1993). The observation that cardiopulmonary denervation

in man does not result in orthostastic hypotension (Banner

et al. 1990) while orthostatic hypotension is described after

arterial baroreceptor denervation, supports this view (Capps

& de Takats, 1938; Holton & Wood, 1965; Smiley et al.
1967).

The relative influence of the carotid and aortic receptors in

orthostatic reflex adjustments are difficult to sort out in

humans, but the carotid sinus baroreceptors are likely to be

of primary importance during standing. Three points

support this notion. First, the observation that carotid sinus

receptors respond more vigorously to rapid rather than slow

changes in pressure makes it likely that they play the major

role in the initial reflex adjustments (Angell-James & Daly

1970). Second, in the upright posture at heart level, mean

arterial pressure is increased by 5—10 mmHg and pulse

pressure is reduced. The aortic baroreceptors which are

located just above heart level sense an increased, instead of

decreased mean pressure; only pulse pressure is reduced for

these receptors. Due to a 20—25 cm hydrostatic height

difference between the carotid baroreceptor area and the

heart, the transmural carotid pressure is lowered by about

15 mmHg due to gravity. For these receptors carotid

pressure and pulse pressure are reduced and will unload

the stretch receptors as long as the upright posture is

maintained (Wieling & Wesseling, 1993). Third, surgical

denervation of the carotid sinus receptors may result in

impaired orthostatic blood pressure control (Capps & de

Takats, 1938; Holton & Wood, 1965; Smiley et al. 1967;
Palatini & Pessina, 1987; Smit et al. 1998). However, the
outcome of the reverse experiment, i.e the selective

denervation of aortic baroreceptors is not available in

humans.

Reflex activation of central sympathetic outflow can be

reinforced by local ‘reflex’ mechanisms. When venous filling

in the dependent parts raises intravenous pressure to

25 mmHg or more, a local sympathetic ‘axon reflex, ’ or

‘venoarteriolar reflex’ is activated. The receptor sites for

these reflexes appear to be in small veins in cutaneous, sub-

cutaneous adipose, and skeletal muscle tissue and the

effector site is the corresponding arterioles (Hendriksen &

Sjersen, 1977; Hendriksen & Skagen, 1988; Vissing et al.
1997). This venoarteriolar reflex has been reported to be

able to reduce the lower limb blood flow up to 30—45%

during orthostatic stress (Hendriksen & Sjersen, 1977;

Skagen & Bonde-Petersen, 1982; Hendriksen & Skagen,

1988). A myogenic response in the resistance arterioles of

the dependent regions (in response to increased transmural
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pressure) (Folkow, 1962; Mellander et al. 1964; Folkow &

Mellander, 1964) may also contribute to the rise in vascular

resistance, but this effect is now thought to be less important

than the venoarteriolar reflex. In contrast to the veno-

arteriolar reflex the myogenic response is not regarded as a

sustained response (Johnson, 1980; R�adegran & Saltin,

1998).

The neural pathways of the autonomic nervous system

continue to play a pivotal role during prolonged orthostatic

stress. Sustained elevation of efferent sympathetic activity

is documented by increases in plasma noradrenaline

concentration and spillover (Ziegler et al. 1977) and by

directly recorded sympathetic nerve activity to skeletal

muscle (Burke et al. 1977; Iwase et al. 1987; Joyner et al.
1990). During prolonged orthostatic stress additional reflex

activation of the neurohumoral system reinforces the action

of the cardiovascular reflexes through additional constriction

of blood vessels. It also minimizes the loss of body water

during prolonged orthostatic stress by activation of the

renal blood volume controlling systems. The humoral

responses are of importance for cardiovascular adjustment

during hypotensive orthostatic stress, but cannot supplant

the functions of the neural system (Rowell, 1993).

Under normal circumstances the renin—angiotensin—

aldosterone system is activated when the head-up posture is

assumed, and even more so in situations of hypotensive

orthostatic stress (Hesse et al. 1986). The plasma vaso-

pressin increase in response to orthostatic stress is usually

small. If salt intake is normal, arterial blood pressure is

maintained during passive head-up tilt even when renin

release is pharmacologically inhibited by propranolol

(Morganti et al. 1979) or when angiotensin formation is

prevented by an angiotensin-converting enzyme inhibitor

(Sancho et al. 1976). Under these circumstances, the

sympathetic nervous system acts in concert with vaso-

pressin to maintain arterial pressure (Bennet & Gardiner,

1985). Thus, the renin—angiotensin system and the vaso-

pressin system can compensate for each other. Activation of

both systems simultaneously appears only of importance in

the maintenance of orthostatic blood pressure in salt-

depleted states (Sancho et al. 1976; Bennet & Gardiner,

1985). The reduction of circulating atrial natriuretic factor

leading to fluid conservation during orthostatic stress appears

to play a minor role compared with the other neurohumoral

factors (Wieling & Wesseling, 1993). A detailed discussion

of the humoral responses is beyond the scope of this review.

Patients with autonomic failure

In patients with autonomic failure there is an impaired

increase in total peripheral resistance during orthostasis

(Hickam & Pryor, 1951; Sieker et al. 1956; Beveg�ard et al.
1962; Chaudhuri et al. 1992). This is the result of a disturbed
neural reflex arteriolar vasoconstriction (Ziegler et al. 1977)
and is the primary cause of orthostatic hypotension (Hickam

& Pryor, 1951; Sieker et al. 1956; Beveg�ard et al. 1962). The
fall in cardiac output, •40%, is exaggerated in autonomic

failure patients (Hickam & Pryor, 1951; Sieker et al. 1956;
Beveg�ard et al. 1962; Ibrahim et al. 1974) compared with

normal individuals, and aggravates the fall in orthostatic

blood pressure. The excessive fall in cardiac output is ascribed

to both increased venous pooling and impaired inotropic and

chronotropic cardiac responses (Beveg�ard et al. 1962; Ibrahim
et al. 1974; Moss et al. 1980). However, in normal subjects it

has been shown that pharmacological blockade of the

cardiac responses does not play an important role in the

adaptation to the upright posture (Tyden, 1977). Moreover,

patients with cardiac transplants cannot increase heart rate

in the upright posture, but do not develop orthostatic

hypotension (Mohanty et al. 1987; Banner et al. 1990). Thus
impaired inotropic and chronotropic cardiac responses are

questionable as a cause of impaired orthostatic stress

adjustments (Wieling & Wesseling, 1993). It is possible that

orthostatic hypotension in autonomic failure patients is

partially due to decreased blood volume as well; however,

results have been contradictory (Stead & Ebert, 1941;

Beveg�ard et al. 1962; Bannister et al. 1969; Ibrahim et al.
1974) and well controlled studies in this area are needed.

The inability to raise vascular resistance allows considerable

venous pooling to occur during orthostasis in autonomic

failure patients. Excess pooling of blood could occur in any

of the dependent vascular regions, including the skeletal

muscle, cutaneous, and splanchnic circulations.

Skeletal muscle. Substantial pooling can occur in the legs

during quiet standing due to the large hydrostatic pressures

that occur (up to •70 mmHg). Potentially three counter-

regulatory mechanisms could reduce the venous pooling of

blood during standing: vasoconstriction of the venous bed,

vasoconstriction of the arteriolar bed and activation of the

skeletal muscle pump. The veins located within and around

limb muscles have scarce sympathetic innervation (Fuxe &

Sedvall, 1965) and are largely unresponsive to baroreceptor-

mediated increases in sympathetic nerve activity during

standing (Samueloff et al. 1966). Further, infused vaso-

dilator or vasoconstrictor drugs have little effect on venous

tone in the legs (Epstein et al. 1968), supporting the fact

that autonomic control of the veins does not determine leg

volume. In addition, recent work suggests that whole-limb

venous compliance is under negligible sympathetic control in

humans (Hager et al. 1999).

In dogs arteriolar vasoconstriction plays a role in

determining venous pooling in skeletal muscle by reducing

blood flow and post-capillary pressures (i.e. passive changes

in venous volume that depend on changes in flow)

(Hainsworth et al. 1983). In accordance, in humans it has

been shown that increase in vasoconstriction due to

increased sympathetic outflow to legs during orthostasis

may lead to a reduction in calf volume (Wallin & Sundlof,

1982; Iwase et al. 1987; Vissing et al. 1989; Hopman et al.
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1993; Shamsuzzaman et al. 1998). However, the magnitude
of the effect of changes in blood flow on venous blood

volume in human skeletal muscle is not known yet.

In reality, extensive pooling is limited by activation of the

skeletal muscle pump (Henderson et al. 1936; Franseen &

Hellebrandt, 1943; Guyton et al. 1962; Ludbrook &

Loughlin, 1964; Magder, 1995; Inamura et al. 1996). In the

upright posture intramuscular pressure in the lower limb

increases from 7 to 15 mmHg supine to 12 to 48 mmHg

(depending on the muscle investigated) in the quiet-standing

position (Ludbrook, 1966). The pressure increase opposes

the hydrostatic induced venous pressure, lowering capillary

and venous transmural pressure and thereby reducing venous

pooling capacity (Buckey et al. 1988, 1992). A reduced intra-

muscular pressure is associated with orthostatic intolerance

in otherwise healthy subjects (Mayerson & Burch, 1940;

Amberson, 1943).

The unconsious slight body and leg movement during

standing (postural sway) is recognised as an important

factor in pumping venous blood centrally (Asmussen, 1943;

Inamura et al. 1996). In body positions where the postural

sway is likely to be diminished, as in voluntary relaxed

standing or during head-up tilt position, lower intra-

muscular pressures and higher limb volumes are measured

(Asmussen, 1943; Ludbrook, 1966). Voluntary contraction

of calf and thigh muscles is very effective at reducing

venous pooling. A single maximal contraction can expel

about 30% of the blood volume that has been pooled upon

standing (Ludbrook, 1966). Repeated contractions such as

during walking reduce venous ankle pressure from about

100 to 40 mmHg (Pollack & Wood, 1949). Although firm

quantitative data regarding volume displacement evoked by

continuous skeletal muscle pumping are needed in man, there

seems little question that skeletal-muscle pump is of major

importance in counteracting the stress of quiet standing.

Cutaneous. The dermis contains multiple vascular plexuses

that are richly innervated. Sympathetically mediated vaso-

constriction and venoconstriction are largely under thermo-

regulatory control. During standing under normothermic

conditions, increased central sympathetic outflow to

cutaneous arterioles occurs, but has a minimal effect on skin

venous capacity due to high resting vasoconstrictor tone and

vasoconstriction resulting from local (i.e. hydrostatic- induced

veno-arteriolar reflex and myogenic-response) mechanisms

(Samueloff et al. 1966; Johnson et al. 1973; Skagen, 1983;
Vissing et al. 1997). The cutaneous veins do not appear to

react to baroreceptor stimulation (Samueloff et al. 1966;
Vissing et al. 1997).

Factors which augment cutaneous vascular capacity, such as

varicose veins, are associated with symptoms of ortho-

static intolerance in healthy subjects (Chapman & Asmussen,

1942) and may aggravate orthostatic hypotension in

autonomic failure as well. Similarly, local heating of the skin

(e.g. exposure to a hot environment) or increased heat

production (e.g. fever or exercise) leads to increased skin

blood flow and to an additional sequestration of blood in the

skin of the lower body. This can cause orthostatic symptoms

at standing (Horvath & Botelho, 1949). Due to unrestrained

cutaneous vasodilatation (Mosely, 1969; Johnson et al. 1973)
skin blood flow and venous blood volume are likely to

increase even more in patients with peripheral adrenergic

failure. Furthermore, autonomic failure patients may be

more susceptible to heat stress due to impaired sweating,

which results in a diminished ability to dissipate heat

(Bannister et al. 1967).

Blood volume in the legs represents the venous capacity of

both the muscle and cutaneous vasculatures. From the

above discussion, one can appreciate that there are

redundant mechanisms in place to keep venous pooling

from becoming excessive in the legs. Indeed, Ludbrook

(Ludbrook & Loughlin, 1964) observed that ganglion

blockade (i.e. blocking the sympathetic outflow but not local

control mechanisms) produces a negligible extra rise in calf

volume (2—5 ml) upon a normal rise of 23—60 ml during

orthostasis, an observation supported by others (Brown et
al. 1949). As such, it is not surprising that in autonomic

failure patients profound alterations in lower limb blood

pooling have been difficult to observe despite impaired

autonomic control (Ellis & Haynes, 1936; Stead & Ebert,

1941; Verel, 1951; Bannister et al. 1967).

However, Streeten (Streeten, 1990; Streeten & Scullard,

1996) found an increased blood volume in the calf during

standing in a group of patients with mild autonomic

insufficiency (characterized by a hyperadrenergic hypo-

tensive response upon standing and findings suggestive of

peripheral adrenergic failure of the skin of the lower limbs).

Similar findings have been reported by Low (Low et al. 1997).
In the case of postganglionic adrenergic failure the veno-

arteriolar reflex can be expected to be absent (Hendriksen &

Sjersen, 1977) resulting in an increased pooling capacity of

the skin and possibly muscle beds. Indeed, in patients with

peripheral neuropathy associated with diabetes type 1

elevated venous-capillary pressures and a diminished ability

to reduce skin blood flow during limb dependency was

observed (Rayman et al. 1986, 1994). A reduced tone of leg

skeletal muscle (Mayerson & Burch, 1940) could be another

explanation for the observations of the groups of Streeten

and Low, but has not yet been investigated.

Splanchnic. The splanchnic vascular bed is richly innervated

and is a major site of autonomic regulation during orthostatic

stress. It contains a large, highly compliant, venous

circulation which can contain •25% of the blood volume at

rest (Gaehtgens & Uekermann, 1971; Hainsworth, 1990).

During orthostasis its capacity is restricted by baroreflex-

mediated arteriolar vasoconstriction (Rowell et al. 1972;
Johnson et al. 1974; Burke et al. 1977; Abboud et al. 1979;
Chaudhuri et al. 1992; Minson et al. 1999). The increase in
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splanchnic vascular resistance causes a passive expulsion of

blood out of the large venous reservoir of the splanchnic bed

by elastic recoil of venous vessels (Hainsworth, 1990; Rowell,

1993).

Active constriction of the splanchnic capacitance vessels is

potentially of great importance in mobilizing additional

venous blood to maintain the cardiac filling pressures and,

hence, stroke volume during orthostatic stress. In dogs,

baroreflex-mediated active venoconstriction occurs in the

venous beds of the liver and spleen in particular (Karim &

Hainsworth, 1976; Noble et al. 1997, 1998). The rich

innervation and the great sensitivity and rapidity of the

reflex responses of the splanchnic capacitance vessels to

very low frequencies of sympathetic discharge are supportive

of their importance in responding to postural changes

(Shepherd, 1986; Hainsworth, 1990). However in humans,

due to technical and ethical constraints, it is not possible to

differentiate between the effects of active venoconstriction

and the passive effects caused by arteriolar vasoconstriction

and the resulting reduction in blood flow through the region

(Karim & Hainsworth, 1976).

Impairment of splanchnic innervation leads to a reduced

orthostatic tolerance and orthostatic hypotension in humans

(Gambill et al. 1944; Wilkins et al. 1951; van Lieshout et al.
1990) by the following steps. Impaired vasoconstriction

allows splanchnic blood flow (Chaudhuri et al. 1992), and
thus splanchnic blood volume (Rowell et al. 1972; Johnson et
al. 1974; Abboud et al. 1979), to remain high during

standing. A high standing splanchnic blood volume leads to

a marked fall in right atrial pressure (Beveg�ard et al. 1962)
and results in a reduced cardiac output.

In splanchnic denervated animals (e.g. dogs), the rigid

abdominal wall reduces the magnitude of orthostatic hypo-

tension when this animal is held upright (Hill, 1895).

Likewise, poor abdominal muscular tone has been associated

with impaired orthostatic tolerance in humans (Sewall,

1916; Schirger et al. 1961), suggesting that the muscle tone
of the human abdominal wall plays a role in maintaining

orthostatic blood pressure as well (Rushmer, 1946). However,

no prospective studies have evaluated the possible role of

abdominal muscle tone in orthostatic blood pressure

regulation.

Physical counter-manoeuvres and pressure garments

Most patients with orthostatic hypotension will recognise

that immobility will worsen their orthostatic symptoms,

whereas bending forward, sitting, or moving around will

improve their symptoms (Sewall, 1916; Bickelman et al.
1961; Wieling et al. 1993). During ambulation, contraction

of lower extremity muscles squeezes venous blood from the

leg upward (Guyton et al. 1962; Ludbrook & Loughlin,

1964; R�adegran & Saltin, 1998). The same effect can be

achieved by deliberate isometric or dynamic muscle

contractions (Mayerson & Burch, 1940; Newburry et al.

1970; Smith et al. 1987), and is the basis for physical counter-
manoeuvres like leg-crossing and skeletal muscle pumping,

which are used to reduce venous pooling in the legs.

Leg-crossing, which involves contraction of agonist and

antagonist muscles, has been shown to be a simple and

effective counter-manoeuvre to increase cardiac output

and thereby blood pressure (van Lieshout et al. 1992;
Wieling et al. 1993; ten Harkel et al. 1994; Bouvette et al.
1996; Smit et al. 1997). When leg-crossing is practised

routinely in patients with autonomic failure, standing

systolic and diastolic blood pressures can be increased by

•20Ï10 mmHg (van Lieshout et al. 1992; ten Harkel et al.
1994; Bouvette et al. 1996; Smit et al. 1997). Larger

increases •30Ï15 mmHg (Smit et al. 1997) can be seen with

the additional voluntary contraction of the leg musculature,

thighs, and buttocks. Leg-crossing can increase seated blood

pressure as well (Takeshita et al. 1991; Smit et al. 1997). In
healthy subjects an increase in cardiac output is also

observed during leg-crossing but not in blood pressure since

a baroreflex-mediated reduction in vascular resistance

occurs (ten Harkel et al. 1994).

Manoeuvres that use skeletal muscle pumping are ‘toe

raising’ and repeated knee flexion (marching on the spot)

(Mayerson & Burch, 1940; ten Harkel et al. 1994; Bouvette
et al. 1996). However, their effects on standing blood

pressure in patients with autonomic failure vary. Ten

Harkel found that toe raising did not consistently increase

standing blood pressure in patients with orthostatic hypo-

tension, but responses varied greatly (ten Harkel et al.
1994). In contrast, Bouvette found that toe raising and

marching on the spot could increase systolic blood pressure

20—23 mmHg (Bouvette et al. 1996). We investigated the

effect of both manoeuvres and found they increased

standing blood pressure to a similar degree (•13Ï5 mmHg)

in patients with orthostatic hypotension, as presented in

Fig. 1. The variable responses may stem from differences in

the degree of sympathetic vasomotor failure in the patients.

The absence of sympathetic vasoconstrictor activity in non-

active and active muscles may lead to an excessive

peripheral vasodilatation during muscular work that cannot

be compensated for by the increase in cardiac output that

occurs during dynamic exercise (Puvi-Rajasingham et al.
1997). As a consequence blood pressure falls, and as the

patient develops muscle fatigue and stops exercising, a

further drop in blood pressure occurs (Marshall et al. 1961;
Puvi-Rajasingham et al. 1997). Therefore, physical counter-
manoeuvres using dynamic muscle contraction to combat

orthostatic dizziness should be taught to the patients with

caution.

Air-pressurized (or anti-gravity) suits were first developed

for use in military aviation, in order to protect pilots from

high acceleration forces generated during aerial combat in

high-performance aircraft. These suits were adapted for use

in the treatment of patients with orthostatic hypotension in
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the mid fifties (Sieker et al. 1956). By applying pressure

(20—50 mmHg) equally to the calf, thighs and abdomen,

orthostatic blood pressure is increased (Sieker et al. 1956;
Bannister et al. 1969; Fox, 1971). This effect results from
shifting blood volume from the dependent regions centrally,

resulting in augmented end-diastolic right ventricular

pressure and volume and increased cardiac output (Sieker et
al. 1956; Beveg�ard et al. 1962; Rosenhamer & Thorstrand,

1973; Gaffney et al. 1981) without a notable change in total

peripheral resistance (Beveg�ard et al. 1962; Gaffney et al.
1981). Despite their effectiveness in restoring the ability of

a patient to participate in the activities of daily life (Fox,

1971; Rosenhamer & Thorstrand, 1973), their use is

cumbersome. The use of air-pressurized suits has ended

with the development of elastic body garments. Elastic body

garments for the prevention of orthostatic hypotension have

the advantage of being more comfortable and aesthetically

more acceptable than pressurized suits (Bannister et al.
1969; Sheps, 1976).

Recent work has shown that when using compression in

patients with orthostatic hypotension, the abdomen is the

most important single site for compression (Denq et al.
1997). In children with hyperadrenergic orthostatic hypo-

tension and syncope, abdominal compression with a binder

and inflatable bladder reduces the fall in thoracic blood

volume, arterial blood pressure, and symptoms during

standing (Tanaka et al. 1997). Since the aim of using counter-

pressure garments is not to obtain a maximal blood pressure

increase, but to increase blood pressure sufficiently so as to

reduce symptoms without being too cumbersome; abdominal

binders may be the most suitable device currently available.

In summary, in patients with autonomic failure, orthostatic

hypotension results from an impaired capacity to increase

vascular resistance during standing. This fundamental

defect leads to increased downward pooling of venous blood

and a consequent reduction in stroke volume and cardiac

output that exaggerates the orthostatic fall in blood pressure.

The location of excessive venous blood pooling has not been

established so far, but present data suggest that the

abdominal compartment (i.e. splanchnic circulation) and

perhaps skin vasculature are the most likely sites. Measures

like leg-crossing that reduce ‘normal and excessive’

orthostatic pooling of venous blood result in an augmented

venous return to the heart and thereby increase cardiac

output and blood pressure in patients with autonomic failure.

Abdominal belts are thought to counteract the excessive

venous pooling in the splanchnic region.
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Figure 1. The efficacy of sitting, crossing legs, muscle pumping and squatting to improve

orthostatic hypotension in patients with autonomic failure

Mean finger arterial blood pressures (Finapres) are expressed as the blood pressure change in the second

30 s of response from the pre-manoeuvre standing blood pressure. For muscle pumping the second 15 s of

response from the pre-manoeuvre standing blood pressure. From left to right: sitting on a Derby chair

(height 48 cm), a fishing stool (height 38 cm), and a foot stool (height 20 cm), without (1) and with (0)

crossed legs; standing in crossed-legs position (CL) without (8) and with (2) contraction of lower extremity

musculature; standing while muscle pumping (MP), marching on the spot (7) and toe raising (6); and

squatting (±). The vertical lines represent means and s.d. (Adapted from Smit et al. 1997 with unpublished

observations (A. A. J. Smit &W. Wieling) on muscle pumping.)
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