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Abstract
Ultrasound backscattered from tissue has previously been shown theoretically and experimentally
to change predictably with temperature in the hyperthermia range, i.e., 37 to 45°C, motivating use
of the change in backscattered ultrasonic energy (CBE) for ultrasonic thermometry. Our earlier
theoretical model predicts that CBE from an individual scatterer will be monotonic with temperature,
with, e.g., positive change for lipid-based scatterers and negative for aqueous-based scatterers.
Experimental results have previously confirmed the presence of these positive and negative changes
in one-dimensional ultrasonic signals and in two-dimensional images acquired from in vitro bovine,
porcine and turkey tissues. In order to investigate CBE for populations of scatterers, we have
developed an ultrasonic image simulation model, including temperature dependence for individual
scatterers based on predictions from our theoretical model. CBE computed from images simulated
for populations of randomly distributed scatterers behaves similarly to experimental results, with
monotonic variation for individual pixel measurements and for image regions. Effects on CBE of
scatterer type and distribution, size of the image region, and signal-to-noise ratio have been examined.
This model also provides the basis for future work regarding significant issues relevant to temperature
imaging based on ultrasonic CBE such as effects of motion on CBE, limitations of motion-
compensation techniques, and accuracy of temperature estimation, including tradeoffs between
temperature accuracy and available spatial resolution.
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Introduction
Many clinical trials have shown significant improvement in treatment of cancer by combining
conventional chemotherapy and/or radiotherapy with thermal medicine in the hyperthermic
(40-44°C) range (Falk and Issels 2001; Jones et al. 2005). Clinical use of hyperthermia
treatments, however, is limited, and expansion is controversial (Moros et al. 2007). Much of
the difficulty with treatment involves monitoring to assure an accurate thermal dose, performed
currently with sparse, invasive thermocouple measurements. Treatment efficacy as well as
quality assurance would be greatly improved with low-cost, non-invasive, three-dimensional
thermometry, i.e., temperature imaging, if a volumetric resolution of at least 1 cm3 with
temperature accuracy of 0.5°C can be achieved.

Ultrasound is preferred over other imaging modalities for its relative simplicity and low cost,
and while many ultrasound-based methods have been investigated for monitoring hyperthermia
treatment (Arthur et al. 2005a), accurate in vivo methods have yet to be perfected. Ultrasound-
based methods exploit temperature-dependent variation in the speed of sound and in the
attenuation coefficient. We have investigated methods based on the change in backscattered
energy (CBE) that occurs with change in temperature (Straube and Arthur 1994; Arthur et al.
2003; 2005b).

Use of CBE as an ultrasonic thermometer was initiated because the temperature dependence
of the speed of sound should, theoretically, produce temperature-dependent variation in the
energy backscattered from a small scatterer (Straube and Arthur 1994). Following this
prediction, we have measured the change in backscattered energy from various tissue types
during experimental heating (Arthur et al. 2003; 2005b). In initial experiments using 1D signals
and recent experiments using 2D images, changes in backscattered energy have been computed
that are consistent with prediction over the hyperthermia range, with energy at a typical image
pixel changing monotonically, either increasing or decreasing. These results are strongly
encouraging for the use of CBE as a possible method for imaging temperature change during
hyperthermia treatment.

The initial model for temperature dependence of CBE from a single scatterer guided previous
work but is incomplete in describing typical clinical images, which are the result of a
combination of echoes from many sub-wavelength scatterers. The primary objectives in the
current work were to expand our theoretical CBE prediction from a single scatterer to an entire
image representing multiple populations of multiple scatterer types. Towards that goal, we
have developed methods for modeling and simulating images of multiple discrete, temperature-
dependent, sub-wavelength scatterers. While many parameters could be investigated for their
potential influence on CBE, we focused on understanding prior experimental observations and
used these simulations to explore effects of region size, signal-to-noise ratio (SNR), and types
and populations of included scatterers. An especially important contribution of this model is
the ability to generate temperature-dependent CBE for a given tissue composition and then
determine expected temperature accuracy and spatial resolution under varying conditions.

Temperature Dependence of CBE
Our approach to temperature imaging is based principally on the predicted change in
backscattered energy for a single scatterer. The temperature dependence of backscattered
power is simplified by normalizing with respect to a baseline value at a reference temperature,
typically 37°C, allowing factors with little or no temperature dependence to be ignored. The
change in backscattered energy as a function of temperature for a single scatterer can then be
approximated as the ratio of the temperature-dependent backscatterer coefficients, η(T), at
temperature T and the reference temperature, 37°C (Straube and Arthur 1994),
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(1)

where ρ represents the mass density, c(T) is the temperature-dependent speed of sound, and
subscripts m and s represent the scatterer and medium, respectively. This equation was written
in terms of density and speed of sound to allow use of measurements of temperature dependence
from the literature.

Temperature dependence of CBE was previously modeled for candidate scatterer types
representing a range of expected variation for typical tissue components (Straube and Arthur
1994). Specifically, analyses were based on scattering from aqueous- and lipid-based scatterers
in a liver-like medium. Values for the mass density and temperature-dependent speed of sound
were taken from the literature and used to generate curves representing the temperature
dependence of the backscatter coefficient. Polynomial fits for the temperature dependence of
speed of sound were computed and used here to recreate those curves, shown in Figure 1. These
curves represent a possible range of variation due to this effect. Note that this range includes
both increasing and decreasing temperature dependence (positive and negative CBE) and that
all curves are monotonic.

The predicted presence of both negative and positive CBE as seen in Figure 1 has been
confirmed in multiple experiments. Our early results used 1D signals acquired from various
tissue types, and were based on manual identification of strong echoes in the signals and
subsequent measurement of their CBE (Arthur et al. 2003). Recently, we used a commercial
imaging system (Terason 2000, Teratech Corp., Burlington, Massachusetts, USA) to acquire
images during heating (Arthur et al. 2005b). Multiple regions in the radio-frequency (RF)
images (courtesy of Teratech Corp.) were analyzed to assess CBE. Apparent motion in each
region was estimated by computing the displacement that maximized the normalized cross-
correlation. The RF images were compensated for the estimated motion then envelope-detected
using the magnitude of complex-valued images generated via the Hilbert transform. Image
values were squared to form the backscattered energy, and a 3×3 running average filter was
applied to smooth the values. CBE was computed at each pixel as the ratio of backscattered
energy at each temperature relative to the reference. Figure 2 shows typical envelope-detected
images from a heating experiment at multiple temperatures, and Figure 3 shows images of CBE
computed at each pixel over the same temperature range. Note that minimal variation is
observed in the ultrasound images directly, but the computed CBE has distinct variation.

In general, the CBE computed for each pixel increases or decreases monotonically but is noisy
and highly variable. For each image region, CBE was characterized by the means of all
negative- and positive-valued pixels in the CBE image. For example, results are plotted in
Figure 4 for multiple regions from an in vitro experiment on a bovine liver specimen. Note that
these curves are similar to those in Figure 1. Both increasing and decreasing pixels are present;
the range of variation is similar; and the changes are generally monotonic.

Methods: Simulation of Images for Temperature-Dependent Scatterer
Populations

The single-scatterer approach used previously in the theoretical model has guided our
experimental methods to date. To extend that model to multiple scatterers and to the images
that result from their echoes, we have developed methods for simulating images from
populations of scatterers with temperature dependence modeled as in the previous single-
scatterer work.
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Linear Systems Model of Image Formation
Our physical model for image formation combines a linear model for the radio frequency (RF)
image with a discrete-scatterer model for the tissue medium (Trobaugh and Arthur 2000). The
linear model is commonly used; it can be derived directly from the wave equation and can be
used to represent nearly all of the imaging systems in use today (Trobaugh 2000; Wright
1997; Jensen 1999; Macovski 1983). The imaging system is characterized by its point-spread
function (PSF), h(r), in general a function over 3-D space, r. For the sake of simplicity, we
assume in this work that the imaging system is spatially-invariant, permitting a convolution
representation of image formation,

(2)

where i(r, T) is a complex representation of the temperature(T)-dependent RF image, modeled
as the convolution of the PSF and reflectivity q(r, T), representing the temperature-dependent
acoustic properties of the medium. The magnitude of the complex image i(r, T) gives the signal
energy as conventionally displayed. In these simulations, the elevation dimension was not
considered, and a 2-D PSF was used, approximated as a windowed sinusoid, e.g., h(r) = A(r)
ej2k0z, where k0 = ω0/c represents the wavenumber corresponding to the center frequency,
ω0, of the transducer, and the window A(r) is a 2-D Gaussian function with widths appropriate
for the lateral and axial resolution of the imaging system.

The tissue medium is represented acoustically as a collection of discrete scatterers,

(3)

where the ith scatterer has a temperature-dependent reflectivity, qi(T), and a position, ri. In
general, the discrete representation simplifies analysis and permits a straightforward
characterization of the tissue microstructure as a random distribution of points. For this work,
scatterer positions are assumed to be random over the image region, and scatterer concentration,
in scatterers per cm2, determines a number of scatterers per unit area. Scatterer reflectivity was
assumed to be proportional to the backscatter coefficient, with temperature dependence
modeled as detailed in equation 1 and shown in Figure 1, depending on the scatterer type.
Images representing multiple populations of scatterer types with varying temperature
dependence can be simulated for those scatterers using equation 2. Details of the simulation
parameters and methods are included in the next section.

Simulations
Simulated B-mode images were generated using a procedure detailed previously in a discrete-
scatterer model for images of rough surfaces (Trobaugh and Arthur 2000; 2001). In the current
work, collections of discrete scatterers were generated to represent lipid and aqueous
populations based on associated scatterer concentrations for each. Each scatterer position was
generated as a sample of a uniformly-distributed 2D random variable. Then for each
temperature, reflectivity was adjusted for each scatterer according to the appropriate
temperature dependence curve; the RF image was computed using the discrete scatterers and
system PSF; a complex-valued representation of the RF image was computed using the Hilbert
transform; envelope detection was then performed by taking the magnitude of the complex-
valued image.

Simulations were guided by experimental images such as those in Figure 2, which were
obtained with the Terason system using a 7MHz, 128-element, linear array transducer. The
system PSF was modeled as in (Trobaugh and Arthur 2000;2001), with a center frequency of
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7.0 MHz and spatially-invariant Gaussian envelopes in the axial and lateral dimensions with
a lateral beam width of 1 mm (full-width, half-maximum (FWHM)), and axial width of
approximately 0.2 mm. PSF widths were chosen based on comparison with the measured PSF
of the Terason system (via an image of a point-like target at approximately 4 cm, a typical
depth of the target). Gaussian random noise was added to RF images at various levels to explore
its contribution to CBE.

In our investigation, we used varying values for scatterer concentration for aqueous and lipid
populations. All results were generated with a total concentration of 2000 scatterers/cm2 with
reflectivity for all scatterers equal to unity at 37°C. Baseline results were generated with lipid
and aqueous scatterer populations with relative concentrations of 2:1 aqueous-to-lipid. These
parameters were chosen as a baseline to match CBE approximately to experimental results.

Results
Simulation methods were used to explore effects of region size, SNR, and scatterer population
on CBE. In Figure 5, a region from a simulated B-mode ultrasound image is shown at multiple
temperatures between 37 and 50°C. These images can be compared to the experimental images
of Figure 2. Note that the images vary subtly as temperature is increased, as in the experimental
images. Figure 6 includes temperature-dependent CBE images computed from the simulated
B-mode images. The nature and extent of variation is quite similar to that computed from
experimental images as shown in Figure 3.

As in our previous analysis of experimental images (Arthur et al. 2005b), CBE images were
computed from envelope-detected B-mode images by squaring and averaging with a 3 × 3
moving average filter. CBE over an image region was characterized in three ways: average
over those pixels with positive CBE; average over pixels with negative CBE; and the standard
deviation of CBE over all pixels. Figure 7 shows typical results for these three CBE parameters
for simulated B-mode images with a 2:1 ratio of aqueous to lipid scatterers and no additive
noise. CBE is indeed monotonic and covers a range similar to that in previous experiments.

The CBE curves shown in Figure 7 indicate similar excursions to those generated from
experimental images, but the curves are much smoother than the experimental data. Figure 8
shows CBE curves generated from the same RF images as in Figure 7 when Gaussian noise
was added to the image. Fluctuation along the curves is quite similar to that in the experimental
CBE curves, and note also that the experimental curves often include a sharp increase (or
decrease) at the first temperature step, e.g., the jump in CBE from 37.0 to 37.5°C, which is
replicated in the simulation results when noise is added. This jump is always present in both
experiment and simulation, with an extent that depends primarily on the SNR.

The plots in the center of Figure 9 show results for 25 different simulations with the same
scatterer concentrations and noise levels as in Figures 7 and 8. Note that curves are generally
monotonic, with some fluctuation, and cover a similar range, but the individual curves vary
substantially, more than 0.5 dB at 50°C. This variation presents a fundamental limitation on
the repeatability of CBE measurements and, thus, the potential accuracy of temperature
estimation. Determination of primary factors that influence this variation is critical to useful
temperature imaging.

The three sets of plots in Figure 9 also show the impact of the image region size on CBE and
its variation. The smallest region (0.5×0.5cm2) produces significant variation in curves for
each of the CBE measures, representing over 1dB at 50°C. The large region, at 1×3cm2,
produces significantly less variation, ranging over less than 0.5 dB. This size is significant
because it represents approximately the same image volume that would be represented for
1cm3 of tissue (based on measured elevation resolution, about 3mm, of our experimental
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imaging system, indicating roughly 3 independent measurements per centimeter), our goal for
spatial resolution in a technique for temperature imaging.

Typical variation of these CBE curves can be quantified for a given region size, SNR, and
scatterer population by generating multiple CBE results as in each part of Figure 9 and then
computing the mean and standard deviation over all trials. Figure 10 shows the same results
as Figure 9 but displayed in terms of the mean and standard deviation at each temperature. For
each of the three region sizes, curves are plotted for the three CBE measures. In this case, the
mean, or average, curve might be used as a calibration for estimating temperature from
subsequent CBE measurements. The standard deviation signifies the expected variation for a
given measure and region size, i.e., increasing the region size reduces variation in CBE
measurements.

Figure 11 shows the same results as Figure 10 but organized by CBE measure. Region size
does not change the character of each curve significantly. Its impact is noticed primarily in the
standard deviation. In contrast, Figure 12 shows significant variation that can occur in the
average CBE curves due to changes in the scatterer populations. Three configurations were
included: (1) equal concentrations (1000 scatterers/cm2) of lipid and aqueous scatterers, (2)
concentration for lipid scatterers half that of the aqueous, and (3) a population of scatterers
with temperature dependence randomly distributed between the prediction for lipid and
aqueous scatterers (concentration of 2000 scatterers/cm2). Note that the maximum of all three
curves varies significantly depending on which scatterers are present.

Figure 13 shows variation in the CBE curves when the additive noise level is varied to achieve
variation in the SNR, measured as the ratio of root-mean-square (rms) signal and noise levels
and expressed in decibels (dB). The initial CBE value (at 37.5°C in these figures) is clearly
dependent on the SNR, as are the slope of the average CBE curve and the standard deviation
over the 25 trials shown.

Results are tabulated in Table 1 for CBE at 44°C, a typical target heating temperature for
hyperthermia temperature. Potential accuracy of temperature estimation was estimated as twice
the standard deviation (computed from 25 results and shown as the error bar in previous
figures), to contain approximately 95% of the results assuming a normal distribution. Accuracy
was converted from dB (standard deviation of the CBE measure) to °C based on the slope of
the CBE curve (dB/°C)at 44°C.

As an example of temperature estimation, results are shown in Figure 14 for calibrating a tissue,
estimating temperature, and characterizing results. These results are for the baseline
configuration with twice as many aqueous as lipid scatterers, a 1×1cm2 image region, and SNR
in the middle of the reported range. The plots on the left show a calibration CBE curve,
generated as the average curve for mean of the positive CBE (average over 25 trials and shown
with standard deviation error bars). The middle plots show estimates of temperature for 25
trials, in which images were simulated as before but computed values of CBE were used to
estimate temperature according to linear interpolation using the calibration curve. The plots
on the right show the average and standard deviation of the estimates. On average, the estimates
are accurate to within 0.1°C. For the estimates at 44°C two standard deviations represents
approximately 0.72°C, equivalent to the accuracy prediction shown in Table 1. Note from the
plots on the right that the accuracy depends on temperature, and is even better for temperatures
under 44°C but worse at higher temperatures.

Discussion
A primary contribution of this simulation model is the ability to investigate the change in
backscattered ultrasound energy associated with echoes resulting from multiple scatterers.
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These results for simulated echoes from multiple scatterers showed CBE consistent with
experimental results. This confirmation of the experimental results strengthens our belief that
the CBE measurements are based in physical changes rather than measurement artifact, and
suggests that our theoretical model for the temperature dependence of an individual scatterer
can be extended effectively to tissue media consisting of multiple scatterers of varying types.

Effects of region size, tissue composition, and SNR are difficult to isolate and characterize in
experimental situations but are straightforward to separate with this simulation model. The
results presented here show clearly the importance of considering region size and SNR in
characterizing CBE as a function of temperature. Tissue composition was described in these
simulations in a relatively simplistic way, but significant variation in the average CBE curve
results even with these simple tissue models of randomly distributed lipid and aqueous
scatterers. In using CBE to estimate temperature, e.g., based on the average CBE curve, such
variation would result in significant error in temperature. This problem may be overcome by
calibrating for a particular tissue type, e.g., muscle of the chest wall, if the acoustic structure
of that tissue is consistent across specimens.

Our ultimate objective is to generate quantitative 3D images of temperature, with performance
measured in terms of the achievable temperature accuracy for a given spatial resolution. Our
stated temperature estimation specification has been to achieve 0.5°C accuracy over 1cm3

volumes. Table 1 quantifies the simulation results by the factor investigated and the CBE
parameter explored. These results show clearly the critical importance of a large region for
getting accuracy less than 0.5°C. As computed in this work, accuracy depends on the standard
deviation and the slope of the CBE curve (the sensitivity of CBE to temperature increase).
Accuracy is better, i.e., error is smaller, in situations with either a lower standard deviation or
greater sensitivity. From this table, especially poor accuracy is expected for a small region size
(due to high standard deviation), and, in most configurations, for the mean of negative CBE
(due to low variation in this CBE curve).

The inclusion of additive Gaussian random noise in the simulations helped to explain much of
the nature of experimental CBE curves generated previously, specifically the initial jump in
CBE and the fluctuation along the curve. This behavior is due at least in part to the
characterization of CBE as a ratio of two measurements. When the rms noise, i.e., its standard
deviation, is a significant fraction of the rms signal, the computed ratio will vary greatly over
multiple measurements. As the SNR increases, this variation decreases. This effect is evident
in simulations at varying SNR, with the initial jump in CBE reduced with increasing SNR.
Fluctuation along individual curves is also reduced with an increase in SNR. The standard
deviation shown as error bars in Figure 13 only partly reflects this reduced fluctuation because
shifts in the individual CBE curves also contribute to the overall variation. Similarly, changing
noise level can have unexpected consequences; the mean of positive CBE curve improved for
a moderate noise relative to lower and higher values. In this case, reducing the noise increases
the slope but also increases the standard deviation. Note from Figure 13 that the noise-
dependent variation in curve slope is least at 44°C, thus this result may occur only around this
temperature.

The simulation model and these results have clarified the importance of some of the factors
affecting temperature estimation using CBE. Other choices for tissue type could be explored,
including other scatterer types and distributions of those scatterers. The uniform distribution
used to date for the scatterers is computationally convenient but presumably different from the
true acoustic properties of biological tissue and may have exaggerated the impact of tissue type
and the resulting variation in CBE curves. We are currently producing histology samples for
tissue in associated heating experiments to investigate relative concentrations of various
scatterer types, which may be incorporated into our simulation model. While simulations have
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made some investigations easier, however, others such as robustness of CBE for a given tissue
type may be more easily accomplished in experiments.

Use of CBE for temperature imaging to monitor hyperthermia treatment requires careful
treatment of other factors such as tissue motion, heterogeneous heating, and perfusion. In
experimental images, tissue motion, whether real or apparent, can have a significant effect on
CBE. Methods for motion compensation have been developed and applied previously (Arthur
et al. 2005b). Validation and refinement of those methods in this simulation environment will
be important, where conditions can easily be controlled. With this ability, we can determine
motion-related errors that would be expected in estimating temperature based on CBE. In vivo
experiments and analysis conducted with mouse models confirm our basic CBE findings in
the presence of perfusion. Experiments are planned to extend this work to humans and cases
of heterogeneous heating.

Conclusions
Our model for simulating temperature dependence in backscattered ultrasound for varying
populations of scatterers has been shown to produce ultrasound images, images of CBE, and
mean CBE curves consistent with those obtained from images in experimental heating
arrangements. This model provides the basis for examining significant issues relevant to
temperature imaging based on ultrasonic CBE such as effects of image noise on measured
CBE, effects of scatterer type and distribution on CBE, effects of motion on CBE and
limitations of motion-compensation techniques, and accuracy of temperature estimation,
including tradeoffs between temperature accuracy and available spatial resolution.
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Figure 1.
Theoretical prediction of CBE for typical tissue components. Curves are shown for candidate
sub-wavelength scatterer types, aqueous- and lipid-based scatterers in a liver-like medium, and
are based on published values for density and temperature-dependent speed of sound, after
Straube and Arthur (1994).
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Figure 2.
Typical variation of experimental images during heating. One image region is shown from an
abattoir specimen of bovine lever for four temperatures in the heating range of 37 to 50°C.
Color scale is in dB with dynamic range of approximately 43 dB. Compare to simulated B-
mode images of Figure 5.
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Figure 3.
Typical CBE computed from experimental images during heating. These images of the CBE
were computed directly from the backscattered energy images of Figure 2. Scale is in dB.
Compare to CBE computed from simulated B-mode images in Figure 6.
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Figure 4.
Average of positive and negative CBE computed for multiple regions in motion-compensated
images of a bovine liver specimen, after Arthur et al. (2005).
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Figure 5.
Typical simulated B-mode images generated over the 37 to 50°C temperature range for
temperature-dependent scatterers. These images were generated using populations of lipid and
aqueous scatterers with the lipid concentration twice that of the aqueous population. Region
size is 1cm2, and the SNR is approximately 19 dB. Images are log-compressed, with color
scale in dB. Compare to experimental images of Figure 2.
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Figure 6.
Typical images of CBE over the hyperthermia temperature range. CBE was computed from
the simulated B-mode images shown in Figure 5, referenced to the image at 37°C. Color scale
is in dB. Compare to experimental images of CBE in Figure 3.

Trobaugh et al. Page 15

Ultrasound Med Biol. Author manuscript; available in PMC 2008 March 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
CBE for 37 to 50°C computed from simulated B-mode images without additive noise.
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Figure 8.
CBE for 37 to 50°C computed from simulated B-mode images with additive noise.
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Figure 9.
CBE for multiple trials and with change in size of the region.
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Figure 10.
CBE (mean ± std of 25 trials) for regions of varying size.
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Figure 11.
Variation (mean ± std of 25 trials) with region size of three possible CBE parameters.
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Figure 12.
Variation (mean ± std of 25 trials) with tissue type of three possible CBE parameters. Naq/
Nlip denotes the ratio of aqueous to lipid scatterers assumed.
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Figure 13.
Variation (mean ± std of 25 trials) with noise level of three possible CBE parameters.
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Figure 14.
Use of mean CBE curve (left, from simulated B-mode images) for calibration and estimation
of temperature (center) from subsequent simulated B-mode images, resulting in estimate mean
and standard deviation (right).
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Table 1
Accuracy (95%) in °C for estimating temperature at 44°C in configurations tested with simulation, assuming
normal distribution with computed standard deviation and slope (dCBE/dT) of CBE as function of temperature.
Naq/Nlip denotes the ratio of aqueous to lipid scatterers assumed. Values marked baseline were used while varying
other parameters, e.g., simulations for varying region size employed a 2:1 aqueous-to-lipid ratio and SNR of
19dB.

Mean + CBE Mean - CBE STD CBE

Scatterer Population Accuracy (±°C) Accuracy (±°C) Accuracy (±°C)

Naq/Nlip = 2 (baseline) 0.716 1.385 0.971
Naq/Nlip = 1 0.897 1.649 1.116

Random f(T) 0.612 2.222 1.227

Signal-to-Noise Ratio

13.5dB 0.917 1.839 1.175
19dB (baseline) 0.716 1.385 0.971

33dB 0.907 1.144 0.768

Region Size (cm2)

.5×.5 1.485 2.291 1.817
1×1 (baseline) 0.716 1.385 0.971

1×3 0.488 0.768 0.583
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