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■ Abstract 
It is well known that pancreatic and duodenal homeobox 
factor-1 (PDX-1) plays a pleiotropic role in the pancreas. In 
the developing pancreas, PDX-1 is involved in both pan-
creas formation and β-cell differentiation. In mature β-cells, 
PDX-1 transactivates insulin and other β-cell-related genes 
such as GLUT2 and glucokinase. Furthermore, PDX-1 plays 
an important role in the induction of insulin-producing cells 
in various non-β-cells and is thereby a possible therapeutic 

target for diabetes. On the other hand, under diabetic condi-
tions, expression and/or activity of PDX-1 in β-cells is re-
duced, which leads to suppression of insulin biosynthesis 
and secretion. It is likely that PDX-1 inactivation explains, at 
least in part, the molecular mechanism for β-cell glucose 
toxicity found in diabetes. 
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A variety of transcription factors are involved 
in pancreas formation and β-cell differentia-
tion 
 

          he adult pancreas is composed of exocrine 
      (acini and ducts) and endocrine compartments 
      (α-, β-, δ-, ε-, and PP-cells). Each of the four 

endocrine cell types synthesizes and secretes one hor-
mone: glucagon (α-cells), insulin (β-cells), somatostatin 
(δ-cells), ghrelin (ε-cells) and pancreatic polypeptide 
(PP-cells). The embryonic pancreas initially develops 
by fusion of the dorsal and ventral buds of the primi-
tive gut epithelium. These two types of buds grow and 
fuse to form the definitive pancreas [1-4]. The thicken-
ing of the dorsal and ventral surface of the foregut is 
observed from E8.5-E9.5 in the mouse. It has been 
shown that pancreatic transcription networks play a 
crucial role in early pancreas organogenesis and endo-
crine cell formation (Figure 1) [5, 6]. 

Pancreatic and duodenal homeobox factor-1 
(PDX-1) (also known as IDX-1/STF-1/IPF1) [7-9], a 
member of the large family of homeodomain (HD)-
containing proteins, is expressed in precursors of the 
endocrine and exocrine compartments of the pancreas 
and is essential for pancreas development [10-18], β-
cell differentiation [19-29], and maintenance of mature 
β-cell function by regulating several β-cell-related 
genes [30-38]. PDX-1 expression is initially observed at 
E8.5-E9.0 in pancreatic progenitor cells, which means 
that early PDX-1 expression is likely to be a useful 
marker of pancreatic identity. Interestingly, a study 
based upon temporally controlled Cre recombination 
demonstrated that cells expressing PDX-1 give rise to 
all three types of pancreatic tissue: exocrine, endocrine 
and duct [39, 40]. Furthermore, it was shown that exo-
crine and endocrine progenitors express PDX-1 
throughout early embryogenesis, whereas adult duct 
progenitors express PDX-1 only between E9.5 and 
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E12.5. These results suggest that the vast majority of 
progenitors for ducts and exocrine/endocrine cells are 
separated before E12.5. Another study using lineage 
tracing demonstrated that cells expressing another 
pancreatic transcription factor Ptf1a (also known as 
PTF1-p48) give rise to all three types of pancreatic tis-
sue and supports the specification of precursors of all 
three pancreatic cell types [41]. When these two impor-
tant reports are taken together, it is likely that PDX-1 
and Ptf1a double-positive cells are pancreatic progeni-
tor cells. 

PDX-1 expression is maintained in precursor cells 
during pancreas development but becomes restricted 
to β-cells in the mature pancreas (Figure 1). Mice ho-
mozygous for a targeted mutation in the PDX-1 gene 
are apancreatic and develop fatal perinatal hyperglyce-
mia [10], indicating that PDX-1 plays a crucial role in 
the formation of endocrine and exocrine cells. It is 
noted that PDX-1 expression is not required for pan-
creatic determination of the endoderm, because initial 
bud formation is observed in PDX-1-/- mice. Loss of 
PDX-1 function results in pancreatic agenesis in hu-
mans as well as in mice [15]. 

Differentiation into β-cells as well as maintenance 
of the β-cell phenotype also requires PDX-1. In ma-
ture β-cells, PDX-1 transactivates insulin and other 
genes involved in glucose sensing and metabolism 
such as GLUT2 and glucokinase [33, 34]. It was also 
reported that PDX-1+/- mice are glucose intolerant, 
with increased islet apoptosis, decreased islet mass, and 
abnormal islet architecture, indicating that proper gene 
dosage of PDX-1 is crucial for normal glucose homeo-
stasis [16, 34, 36]. These findings are consistent with 
the report that humans heterozygous for an inactivat-

ing mutation of PDX-1 suffer from 
maturity-onset diabetes of the 
young (MODY 4) [42]. 

Furthermore, to explore the role 
of PDX-1 in the formation and 
maintenance of the pancreas, ge-
netically engineered mice were de-
veloped using the Tet-off system, in 
which PDX-1 expression can be 
controlled by treatment of the mice 
with tetracycline or doxycycline 
[18]. In these mice, the coding re-
gion of the endogenous PDX-1 
gene is replaced by a PDX-1 trans-
gene under the control of a tetracy-
cline-regulated transactivator (tTA). 
Hence, in the absence of doxycy-
cline, tTA activates the transcription 
of a transgene encoding PDX-1. 
Expression of the transgene-
encoded PDX-1 rescued the PDX-
1-null phenotype, and doxycycline-
mediated repression of the PDX-1 
transgene throughout gestation re-
capitulated the PDX-1 null pheno-
type. Doxycycline treatment at mid 
pancreogenesis blocked further de-
velopment of the pancreas [18]. In 
addition, when PDX-1 expression 

was shut off by doxycycline in adult mice, insulin bio-
synthesis was decreased and glucose homeostasis was 
disturbed [18]. These data further confirm the impor-
tance of PDX-1 in pancreas development, β-cell dif-
ferentiation, and maintenance of mature β-cell func-
tion. 

Hb9 is also a member of the large family of ho-
meodomain (HD)-containing proteins and plays cru-
cial roles in the early stages of pancreas development. 
While PDX-1 is involved in the development of the 
entire pancreas [5, 6, 10-18], Hb9 plays an important 
role in the development of the dorsal pancreas [43, 44] 
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Figure 1. Pancreatic transcription factor hierarchy during pancreas 
development. It is well known that many transcription factors are in-
volved in pancreas formation and β-cell differentiation. Among the various 
transcription factors, PDX-1 plays a crucial role in pancreas formation and 
β-cell differentiation as well as maintenance of mature β-cell function. 
Ngn3 and NeuroD are also important transcription factors for pancreatic 
endocrine cell differentiation. MafA expression is induced at the final 
stages of β-cell differentiation and functions as a potent activator of insu-
lin gene transcription. 
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(Table 1). Indeed, it was shown that, in Hb9-/- mice, 
the dorsal pancreas is not formed and PDX-1 expres-
sion is not observed in the endodermal epithelial cells 
that are destined to form the dorsal pancreas. There-
fore, it is likely that Hb9 functions upstream of PDX-1 
in the dorsal pancreas and plays an important role in 
differentiation of the dorsal pancreas. 

NeuroD and neurogenin3 (Ngn3), both of which 
are basic helix loop helix (bHLH) proteins, are also 
known to play important roles in pancreas develop-
ment. NeuroD, a member of the bHLH transcription 
factor family, also known as BETA2, is expressed in 
pancreatic and intestinal endocrine cells and neural tis-
sues. NeuroD also plays an important role in regula-
tion of insulin gene transcription [45-48]. Mice homo-
zygous for the null mutation in NeuroD have a striking 
reduction in the number of β-cells, develop severe dia-
betes and die perinatally [46] (Table 1). Furthermore, it 
has been reported that the insulin enhancer elements, 
E-box (NeuroD binding site) and A-box (PDX-1 bind-
ing site), are very important for insulin gene transcrip-
tion [49, 50]. Neurogenin3 (Ngn3), a member of the 

basic helix-loop-helix (bHLH) transcription factor 
family, is involved in endocrine differentiation [40, 51-
56]. After bud formation, Ngn3 is transiently ex-
pressed in endocrine precursor cells and functions as a 
potential initiator of endocrine differentiation. It has 
also been shown that Ngn3 directly regulates a variety 
of pancreatic transcription factors such as NeuroD, 

Pax4 and Nkx2.2 [57-60], 
which further strengthen 
the hypothesis that Ngn3 
plays a crucial role in the 
initiation of endocrine 
differentiation. Trans-
genic mice overexpress-
ing Ngn3 show a marked 
increase in endocrine cell 
formation, indicating that 
Ngn3 induces the differ-
entiation of islet cell pre-
cursors [52, 53]. In con-
trast, mice with a targeted 
disruption in Ngn3 have 
no endocrine cells [54] 
(Table 1). Since Ngn3 is 
not expressed in mature 
β-cells, it is likely that an 
increase in mature β-cell 
numbers after birth is not 
due to differentiation 
from Ngn3-positive en-
docrine progenitor cells.  

In addition, it is inter-
esting to note that the 
Notch pathway plays an 
important role in differ-
entiation from pancreatic 
progenitor cells to Ngn3-

positive endocrine progenitor cells [61-63]. Indeed, it 
was shown that activation of the Notch pathway in 
pancreas progenitor cells leads to suppression of 
proper differentiation to both endocrine and exocrine 
cell lineages. After Notch activation by Delta, the in-
tracellular domain of Notch and the mammalian Sup-
pressor of Hairless RBP-J activate Hairy and Enhan-
cer-of-split 1 (Hes1), which leads to suppression of 
Ngn3 expression (Figure 2). Therefore, it is likely that 
suppression of the Notch pathway leads to differentia-
tion from pancreatic progenitor cells to Ngn3-positive 
endocrine cell lineage. In contrast, activation of the 
Notch pathway would preserve pancreatic progenitor 
cells from differentiation to Ngn3-positive endocrine 
cell lineage. Indeed, it was shown that mice deficient in 

 
Table 1. Pancreas-related phenotypes in knockout mice of pancreatic transcription factors 
 

 

Transcription factor 

 

Phenotype in the pancreas 
of knockout mice 

 

 

Expression 
in mature islets 

 

 

Reference 

 

PDX-1 
 

Absence of whole pancreas 
 

β- and δ-cells 
 

10, 12 

 

Hb-9 
 

Absence of dorsal pancreas 
 

β-cells 
 

43, 44 

 

Arx 
 

Absence of α-cells, 
increase of β- and δ-cells 

 

α- and PP-cells 
 

75 

 

Isl-1 
 

Absence of islet cells and  
dorsal pancreatic mesoderm 

 

All islet cells 
 

64 

 

Pax4 
 

Absence of β- and δ-cells, 
increase of α- and ε-cells 

 

Not detected 
 

65, 72 

 

Pax6 
 

Absence of α-cells,  
decrease of β-, δ- and PP-cells,

increase of ε-cells 

 

All islet cells 
 

66, 67, 73 

 

Nkx2.2 
 

Absence of β-cells,  
decrease of α- and PP-cells 

 

α-, β- and PP-cells
 

69, 72 

 

Nkx6.1 
 

Decrease of β-cells 
 

β-cells 
 

68 

 

Ngn3 
 

Absence of endocrine cells 
 

Not detected 
 

54 

 

NeuroD 
 

Decrease of endocrine cells 
 

All islet cells 
 

46 

 

MafA 
 

Decrease of insulin biosynthesis 
and secretion 

 

β-cells 
 

79 
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Hes1 display severe pancreatic hypoplasia caused by 
depletion of pancreatic epithelial precursors, which is 
due to accelerated differentiation into endocrine cells 
[61]. It is probable, therefore, that Hes1 operates as a 
general negative regulator of endodermal endocrine 
differentiation. 

Other subclasses of homeodomain (HD) proteins 
such as Arx, the LIM domain protein Isl-1, the paired 
domain proteins Pax4 and Pax6, and the Nkx class 
proteins Nkx6.1 and Nkx2.2 also play an important 
role in pancreas development [64-75]. The pancreas-
related phenotypes observed in knockout mice of each 
of the homeodomain proteins are as follows (see also 
Table 1): 

 
- Arx-/-, absence of α-cells and increase of β- and δ-

cells [75]. 
- Isl-1-/-, absence of islet cells [64]. 
- Pax4-/-, absence of β-cells, decrease of δ-cells and 

increase of α- and ε-cells [65, 72]. 
- Pax6-/-, absence of α-cells, decrease of β-, δ- and 

PP-cells and increase of ε-cells [66, 67, 73]. 
- Nkx6.1-/-, decrease of β-cells [68]. 

- Nkx2.2-/-, absence of β-cells, decrease of α- and 
PP-cells and increase of ε-cells [68, 69, 72]. 

 
As shown in Figure 1, Pax4 and Nkx2.2 are down-

stream of Ngn3, and Nkx6.1 is downstream of Nkx2.2. 
Also, it is noted that Arx is an important transcription 
factor that facilitates differentiation from endocrine 
progenitor cells to α-cells and that Arx and Pax4 are 
upregulated in endocrine precursor cells of Pax4-/- and 
Arx-/- mice respectively [27]. Therefore, it is likely that 
Arx-Pax4 co-repression plays an important role in 
proper endocrine specification by maintaining balance 
between α-cell and β-cell lineages (Table 1). 

Finally, MafA, a basic-leucine zipper (bLZ) tran-
scription factor, plays an important role in the final 
stages of β-cell differentiation and functions as a po-
tent transactivator for the insulin gene [76-81]. During 
pancreas development, MafA expression is first de-
tected at the beginning of the principal phase of insu-
lin-producing cell production, whereas other important 
transcription factors such as PDX-1 and NeuroD are 
expressed from the early stages of pancreas develop-
ment (Figure 1). In addition, MafA is expressed only in 
β-cells and functions as a potent activator of insulin 
gene transcription, whereas PDX-1 and NeuroD are 
expressed in various islet cell types. It has also been 
reported that MafA-/- mice display glucose intolerance 
and develop diabetes mellitus [81]. Furthermore, in 
MafA-/- mice, expression of insulin 1, insulin 2, PDX-
1, NeuroD and GLUT2 was decreased and glucose-, 
arginine-, and KCl-stimulated insulin secretion was se-
verely impaired (Table 1). 

PDX-1 plays an important role in the induc-
tion of insulin-producing cells and is a possi-
ble therapeutic target for diabetes 

A decrease in the number of functioning pancreatic 
β-cells and insufficient insulin biosynthesis and/or se-
cretion is the hallmark of diabetes. It is very important, 
therefore, to search for alternative sources to induce 
insulin-producing cells. For the purpose of inducing 
insulin-producing cells from various cells and tissues, it 
would be useful to mimic and reproduce the altera-
tions in expression of various pancreatic transcription 
factors observed during normal pancreas development. 
It would also be useful to induce key pancreatic tran-
scription factors which have the potency to induce 
various β-cell-related genes, including insulin, in vari-
ous source cells or tissues. 

It has been reported that various cells and tissues 
such as liver, pancreas, intestine and bone marrow can 
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Figure 2. Role of the Notch pathway in pancreatic pro-
genitor cells. After Notch activation by Delta, intracellular 
domain of Notch and the mammalian Suppressor of Hair-
less RBP-J activate Hairy and Enhancer-of-split 1 (Hes1), 
which leads to suppression of Ngn3 expression. Therefore, 
it is likely that suppression of the Notch pathway leads to 
differentiation from pancreatic progenitor cells to Ngn3-
positive endocrine cell lineage and that, in contrast, activa-
tion of the Notch pathway preserves pancreatic progenitor 
cells from differentiation to Ngn3-positive endocrine cell 
lineage. 
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be transdifferentiated into insulin-producing cells. Fur-
thermore, it was shown that embryonic stem cells have 
the potential to differentiate into insulin-producing 
cells [82-86], but use of these cells for the treatment of 
diabetes may not be appropriate from an ethical point 
of view. Therefore, adult tissue-derived progenitor 
cells have been used to induce insulin-producing cells. 
Pancreatic ducts, acini and non-β-cells in islets have 
also been shown to have the potential to differentiate 
into insulin-producing cells [20, 23, 24, 87-91]. In addi-
tion, since the pancreas and liver arise from adjacent 
regions of the endoderm in embryonic development, 
the liver has been thought to be a potential source for 
the induction of insulin-producing cells [19, 26-29, 47, 
92, 93]. Intestinal epithelium-derived cells and some 
populations of bone marrow cells were also shown to 
have the potential to differentiate into insulin-
producing cells [21, 22, 25, 94, 95]. In such studies, 
several pancreatic transcription factors were used to 
induce insulin-producing cells from various cells or tis-
sues. Indeed, it was reported that adenoviral ex-

pression of PDX-1 in the liver of mice induced the ex-
pression of endogenous insulin mRNA [19]. 

Also, hepatic immunoreactive insulin induced by 
PDX-1 was processed to mature insulin which was 
biologically active [19]. These data indicate the capacity 
of PDX-1 to reprogram extrapancreatic tissues toward 
a β-cell phenotype, which may provide a valuable ap-
proach for generating surrogate β-cells suitable for re-
placing the impaired β-cell function found in diabetes. 
These results also demonstrate the usefulness of induc-
ing key pancreatic transcription factors in various cells 
and tissues which have the potential to induce various 
β-cell-related genes including insulin. 

In order to carry out efficient screening of somatic 
tissues and cells that can transdifferentiate into β-cell-
like cells in response to PDX-1, we previously gener-
ated CAG-CAT-PDX-1 mice, a transgenic line which 
constitutively expresses the PDX-1 gene under the 
control of the chicken β-actin gene (CAG) promoter 
after removal of the floxed stuffer sequence (CAT) by 
Cre-mediated recombination [26] (Figure 3). When the 
mice were crossed with Alb-Cre mice, which express 
the Cre recombinase driven by the rat albumin gene 
promoter, PDX-1 was expressed in hepatocytes and 
cholangiocytes. The PDX-1-producing liver expressed 
a variety of endocrine hormone genes such as insulin, 
glucagon, somatostatin and pancreatic polypeptide as 
well as exocrine genes such as elastase-1 and chy-
motrypsinogen 1B [26]. These mice, however, exhib-
ited marked jaundice because of conjugated hyper-
bilirubinemia, and the liver tissue displayed abnormal 
lobe structures and multiple cystic lesions. Thus, the in 
vivo ectopic expression of PDX-1 in albumin-
producing cells was able to initiate, although not com-
plete, the differentiation of liver cells into insulin-
producing cells. We think that this conditional PDX-1 
transgenic mouse system should be useful for the effi-
cient screening of PDX-1 responsive somatic tissues 
and cells (Figure 3). Given that the expression of 
PDX-1 continues throughout pancreas development, 
i.e. from the embryonic pancreatic buds to adult islets, 
this Cre/loxP-mediated approach would provide a 
suitable system for evaluating the transdifferentiation 
potential of PDX-1 in vivo. 

In addition, it has been shown recently that a modi-
fied form of XlHbox8, the Xenopus homolog of 
PDX-1, carrying the VP16 transcriptional activation 
domain from Herpes simplex virus, efficiently induces 
insulin gene expression in the liver of the tadpole [96]. 
In this study, transgenic Xenopus tadpoles carrying the 
Xlhbox8-VP16 gene under the control of the 
transthyretin promoter were generated. Xlhbox8-VP16 
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Figure 3. Tissue-specific overexpression of PDX-1 us-
ing the Cre/loxP-mediated system. We previously gen-
erated CAG-CAT-PDX-1 mice, a transgenic line which 
constitutively expresses the PDX-1 gene under the control 
of the chicken β-actin gene (CAG) promoter after the re-
moval of the floxed stuffer sequence (CAT) by Cre-
mediated recombination. When the mice were crossed 
with Ptf1a-Cre mice, which express the Cre recombinase 
driven by the Ptf1a (PTF1-p48) gene promoter, PDX-1 was 
expressed in precursors of all three pancreatic cell types: 
islets, acini, and ducts. In addition, when the mice were 
crossed with Alb-Cre mice, which express the Cre recom-
binase driven by the rat albumin gene promoter, PDX-1 
was expressed in hepatocytes and cholangiocytes. 
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was expressed only in the liver of the tadpoles. In these 
tadpoles, the liver was converted into a pancreas, con-
taining both exocrine and endocrine cells. The charac-
teristics of liver were lost from the regions converted 
into a pancreas [96]. In contrast, conversion of the 
liver to a pancreas was not observed by expression of 
Xlhbox8 alone (without VP16). 

Following these findings in tadpoles, the effects of 
the PDX-1-VP16 fusion protein (PDX-1-VP16) on 
differentiation of cells into insulin-producing cells have 
been examined in mice. Indeed, it was reported re-
cently that PDX-1-VP16 rather than wild type PDX-1 
efficiently induces insulin-producing cells in the liver 
[27-29, 93]. In addition, it was shown that PDX-1-
VP16 efficiently induces insulin gene expression in the 
liver, especially in the presence of the pancreatic tran-
scription factors NeuroD or Ngn3 [27]. Although 
PDX-1-VP16 exerted only a slightly greater effect on 
the insulin promoter compared with wild type PDX-1, 
PDX-1-VP16, together with NeuroD or Ngn3, dra-
matically increased insulin promoter activity in HepG2 
cells. Furthermore, when adenovirus expressing the 
PDX-1-VP16 fusion protein (Ad-PDX-1-VP16) was 
intravenously injected into mice, both insulin 1 and 2 
mRNA was detected in the liver, although insulin 1 
was not detected upon adenoviral induction of wild 
type PDX-1 (without VP-16) [27]. Ad-PDX-1-VP16 
treatment, together with Ad-NeuroD or Ad-Ngn3, in-
duced a greater insulin gene expression. After treat-
ment with Ad-PDX-1-VP16 plus either Ad-NeuroD 
or Ad-Ngn3, insulin-positive cells and insulin secretory 
granules were observed in the liver upon immunostain-
ing and electron microscopy, respectively [27]. Fur-
thermore, various endocrine pancreas-related factors 
such as islet-type glucokinase, glucagon and soma-
tostatin were induced after treatment with Ad-PDX-1-
VP16 plus either Ad-NeuroD or Ad-Ngn3. Conse-
quently, in STZ-induced diabetic mice, blood glucose 
levels were decreased by PDX-1-VP16 plus either 
NeuroD or Ngn3 [27].  

The marked effects of PDX-1-VP16 expression, 
together with NeuroD or Ngn3, on insulin production 
and glucose tolerance indicate that this combination is 
useful and efficient for replacing the reduced insulin 
biosynthesis found in diabetes, and that PDX-1 re-
quires the recruitment of coordinately functioning 
transcription factors or cofactors in order to exert its 
function fully. In addition, these results suggest that 
the synergistic activation of the insulin promoter by 
PDX-1 and bHLH transcription factors such as Neu-
roD or Ngn3 is important for the induction of insulin-
producing cells from non-β-cells in order to achieve β-

cell regeneration therapy in the future. 
It was also shown recently that PDX-1-VP16 ex-

pressing hepatic cells were converted into functional 
insulin-producing cells in the presence of high glucose 
[28]. In this study, the authors generated a stably trans-
fected rat hepatic cell line named WB-1 that expresses 
PDX-1-VP16. Expression of several genes related to 
endocrine pancreas development and islet function 
were induced by PDX-1-VP16 in the liver, although 
some pancreatic transcription factors were missing. In 
addition, these cells failed to secrete insulin upon glu-
cose challenge. However, when WB-1 cells were trans-
planted into diabetic NOD-scid mice, they possessed 
similar properties as β-cells. Almost all β-cell-related 
transcription factors were induced and glucose intoler-
ance was ameliorated [28]. In addition, in vitro culturing 
in high glucose medium was sufficient to induce the 
complete maturation of WB-1 cells into functional in-
sulin-producing cells [28]. These results suggest that 
PDX-1-VP16 is very efficient and useful for replacing 
reduced insulin biosynthesis and for amelioration of 
glucose intolerance, but that PDX-1-VP16 alone is not 
sufficient to induce the complete transdifferentiation 
of various cells to functional insulin-producing cells. 

Another study evaluated the effects of PDX-1-
VP16 in a cell culture system as well as using hepato-
cytes isolated from adult rats. Adenoviral overexpres-
sion of PDX-1-VP16 efficiently converted hepatocytes 
into insulin-producing cells. In addition, immunoreac-
tivity of albumin was downregulated in the transdiffer-
entiated cells and some cells lost albumin expression 
almost completely [93]. These results add further 
weight to the hypothesis that hepatocytes possess the 
potential to transdifferentiate into insulin-producing 
cells. 

Many studies have been performed to overexpress 
pancreatic transcription factors in different tissues us-
ing various virus-mediated approaches, but such ap-
proaches would be difficult to apply in clinical medi-
cine. Therefore, new strategies are necessary to deliver 
safely various pancreatic transcription factors. Protein 
transduction domains (PTDs) such as the small PTD 
from the TAT protein of human immunodeficiency 
virus-1 (HIV-1), the VP22 protein of Herpes simplex 
virus and the third α-helix of the homeodomain of An-
tennapedia, a Drosophila transcription factor, are known 
to allow various proteins and peptides to be efficiently 
delivered into cells through the plasma membrane. For 
this reason, there has been increasing interest in their 
potential usefulness for the delivery of bioactive pro-
teins and peptides into cells [23, 48, 56]. With regard to 
the potential of pancreatic transcription factors as 
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therapeutic targets, the protein delivery system appears 
to be very promising at this point, because of the prac-
tical difficulties in applying virus-mediated approaches 
to clinical medicine without side effects. 

In order to induce surrogate β-cells and apply them 
to clinical medicine, it would be advantageous to de-
liver key pancreatic transcription factors into pancre-
atic source cells and tissues using the protein delivery 
system. It was shown recently that the PDX-1 protein 
can enter various cells on its own because of an An-
tennapedia-like protein transduction domain sequence 
in its structure and that transduced PDX-1 functions 
similarly to endogenous PDX-1: it binds to the insulin 
promoter and activates its expression [23]. In addition, 
it was shown that PDX-1 protein transduction occurs 
by endocytosis and its subsequent release from en-
dosome, followed by homogenous location in the cy-
toplasm and nuclei [97]. More recently, it was shown 
that the NeuroD protein can also enter various cells on 
its own because of an arginine- and lysine-rich protein 
transduction domain in its structure and that trans-
duced NeuroD functions similarly to endogenous 
NeuroD [48]. These data clearly suggest that PDX-1 
and NeuroD transduction would be a safe and valuable 
strategy for inducing surrogate β-cells from non-β-cells 
without requiring gene transfer technology. 

A variety of pancreatic transcription factors 
are involved in PDX-1 gene expression 

Since PDX-1 plays a crucial role in pancreas devel-
opment, β-cell differentiation and maintenance of ma-
ture β-cell function, it is very important to understand 
the regulation of PDX-1 expression in the pancreas. It 
has been reported that PDX-1 activity is regulated by 
various nutrients such as glucose and insulin. It was 
shown that a high concentration of glucose and/or in-

sulin increased PDX-1 DNA binding activity to the 
insulin gene promoter region through activation of 
phosphatidylinositol 3-kinase (PI3-kinase) and p38 mi-
togen-activated protein kinase (MAPK) [98-102]. In 
addition, PDX-1 gene transcription is regulated by 
various pancreatic transcription factors (Figure 4). 

Normal endocrine pancreas development and func-
tion depend on a highly integrated transcription factor 
network, and subtle abnormalities in islets caused by 
heterozygosity or reduced gene dosage of MODY sus-
ceptibility genes lead to diabetes in humans [103]. Pro-
moter analyses of genes involved in β-cell differentia-
tion and function suggest complex genetic interactions 
among these factors. Indeed, alignment of the mouse 
and human PDX-1 gene sequences revealed three con-
served regions referred to collectively as Area I-II-III. 
The Area I-II-III region harbors binding sites for 
MODY transcription factors such as HNF-1α (Foxa1) 
and PDX-1 itself as well as other transcriptional regu-
lators such as HNF-3β (Foxa2), Pax6, MafA and 
HNF-6 (OC-1) [104-113], and it has been shown that 
PDX-1 gene transcription is actually regulated by these 
various pancreatic transcription factors. 

It has recently been reported that another pancre-
atic transcription factor, Ptf1a (also known as PTF1-
p48), regulates PDX-1 gene expression (Figure 4) 
[104]. Ptf1a, a member of the basic helix-loop-helix 
(bHLH) family, is known to be expressed in pancreatic 
progenitor cells and to bind to the mammalian Sup-
pressor of Hairless (RBP-J) within the PTF1 complex 
[115, 116]. In addition, all three factors (PDX-1, Ptf1a 
and RBP-J) have been shown to be essential for early 
pancreas development [41, 117-119]. Reporter gene 
analyses showed that Ptf1a transactivates the PDX-1 
gene promoter in pancreatic Panc-1 cells, which is en-
hanced by RBP-J. The Ptf1a binding site was also iden-
tified in the well-conserved regulatory sequence do-
main termed Area III. In addition, adenoviral overex-
pression of Ptf1a, together with RBP-J, markedly in-
creased PDX-1 expression levels in pancreatic AR42J-
B13 cells, which have been reported to differentiate 
into insulin-producing cells [120, 121]. Furthermore, it 
was recently demonstrated using Cre-mediated lineage 
tracing in mice that Area III mediates pancreas-wide 
PDX-1 expression during early pancreas development 
and that Ptf1a occupies sequences within Area III in 
pancreatic buds [122]. 

These results strongly suggest a novel transcrip-
tional network in which Ptf1a regulates PDX-1 gene 
expression through binding to Area III in pancreatic 
progenitor cells. It is noted, however, that since PDX-
1 expression is likely to be regulated in a different 
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Figure 4. A variety of pancreatic transcription factors 
are involved in PDX-1 gene expression. Alignment of 
the mouse and human PDX-1 gene sequences revealed 
three conserved regions (Area I, II and III) which harbor 
binding sites of various transcription factors such as HNF-
3β, HNF-1α, PDX-1, Pax6, MafA and Ptf1a. 



 
216  The Review of Diabetic Studies Kaneto, Miyatsuka, et al. 

  Vol. 4 ⋅ No. 4 ⋅ 2007 
 

Rev Diabet Stud (2007) 4:209-225  Copyright © by the SBDR 

manner at each stage of pancreas development, in vitro 
promoter analysis does not necessarily recapitulate the 
regulation of PDX-1 expression in the developing 
pancreas. Therefore, the study using mice with deletion 
of a specific PDX-1 promoter region is very useful in 
evaluating the regulation of PDX-1 expression in the 
developing pancreas. 

It has been reported that islet-specific and β-cell-
specific cis-regulatory regions overlap with Area I-II-
III, suggesting that Area I-II-III functions specifically 
in the differentiation and maintenance of pancreatic 
islets [104-113]. It has also recently been reported that 
deletion of Area I-II-III from the endogenous PDX-1 
locus results in a decreased level as well as abnormal 
spatiotemporal expression of the PDX-1 protein. In 
addition, the pancreas of homozygous Area I-II-III 
knockout mice did not undergo ventral pancreatic bud 
specification and demonstrated early-onset hypoplasia 
in the dorsal bud [123]. In these mice, acinar tissue 
formed in the hypoplastic dorsal bud, but endocrine 
maturation was greatly impaired. In addition, while the 
pylorus was distorted and Brunner’s glands were not 
observed in PDX-1-/- mice, these structures formed 
normally in the homozygous Area I-II-III deletion mu-
tant mice. These results suggest that Area I-II-III is 
not essential for extra-pancreatic expression of PDX-1. 
Furthermore, Area I-II-III heterozygous knockout 
mice had abnormal islets and showed more severe glu-
cose intolerance compared to PDX-1+/- mice [123]. 
These results supply further confirmation of the im-
portance of Area I-II-III in pancreas formation and 
maintenance of β-cell function. 

While PDX-1 is expressed in pancreatic progenitor 
cells and plays a crucial role in pancreas development 
and β-cell differentiation, PDX-1 expression is down-
regulated in exocrine and ductal cells after late embry-
onic development. On the other hand, re-upregulation 
of PDX-1 has been reported in human patients and 
several mouse models with pancreatic cancer and pan-
creatitis [124-126]. We have recently reported that pro-
grammed downregulation of PDX-1 is required for 
exocrine tissue formation during pancreas differentia-
tion and that persistent expression of PDX-1 causes 
acinar-to-ductal metaplasia [127]. To determine 
whether the sustained expression of PDX-1 affects 
pancreas development, PDX-1 was constitutively ex-
pressed in all pancreatic lineages by transgenic ap-
proaches. 

As mentioned earlier, we previously generated 
CAG-CAT-PDX-1 mice, a transgenic line which con-
stitutively expresses the PDX-1 gene under the control 
of the chicken β-actin gene (CAG) promoter after the 

removal of the floxed stuffer sequence (CAT) by Cre-
mediated recombination [26] (Figure 3). When these 
mice were crossed with Ptf1a-Cre mice, which express 
the Cre recombinase driven by the Ptf1a (PTF1-p48) 
gene promoter [41], PDX-1 was expressed in precur-
sors of all three pancreatic cell types: islets, acini, and 
ducts. Two weeks after birth, the whole pancreas of 
the Ptf1a-Cre, CAG-CAT-PDX-1 mouse was much 
smaller compared to the non-transgenic pancreas, and 
marked abnormalities in the exocrine tissue were ob-
served. While acinar areas with normal morphology 
substantially disappeared in the transgenic pancreas, a 
large number of cells with duct-like morphology were 
observed [127]. Severe atrophic cells and abnormal 
duct-like morphology were observed exclusively in the 
cells expressing exogenous PDX-1, suggesting that the 
phenotypes in the transgenic pancreas are caused by 
the cell-autonomous effect of PDX-1. 

To induce exogenous expression of PDX-1 selec-
tively in the exocrine lineage, CAG-CAT-PDX-1 mice 
were crossed with the resulting transgenic Elastase-Cre 
mice, after which recombination occurred primarily in 
the exocrine lineage [128]. Furthermore, lineage tracing 
was performed using Ptf1a-Cre, CAG-CAT-PDX1, 
ROSA26-lacZ and Elastase-Cre, CAG-CAT-PDX1, 
ROSA26-lacZ mice (Figure 3). Interestingly, a large 
number of duct-like cells, marked as blue β-
galactosidase-positive cells, were observed in the pan-
creas of Elastase-Cre, CAG-CAT-PDX1 and 
ROSA26-lacZ mice, similar to those seen in the pan-
creas of Ptf1a-Cre, CAG-CAT-PDX1 and ROSA26-
lacZ mice [127]. In addition, in immunostaining for 
BrdU and Ki67, cell proliferation was not observed in 
these duct-like cells. 

When these results are considered together, we 
think that duct-like cells were induced by acinar-to-
ductal transdifferentiation rather than by self-
proliferation of duct cells. In summary, it is likely that 
programmed downregulation of PDX-1 is required for 
exocrine formation and that persistent upregulation of 
PDX-1 is sufficient to induce acinar-to-ductal metapla-
sia in the exocrine lineage. 

Expression and/or activity of PDX-1 in β-cells 
are reduced under diabetic conditions and are 
likely to be involved in pancreatic β-cell glu-
cose toxicity 

Under diabetic conditions, chronic hyperglycemia 
causes the gradual deterioration of pancreatic β-cell 
function. This process is often observed in diabetic 
subjects and is clinically well known as β-cell glucose 
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toxicity [129-133]. It has been shown that in the dia-
betic state, hyperglycemia per se and subsequent pro-
duction of oxidative stress decrease insulin gene ex-
pression and secretion [129-145]. It has also been 
shown that the loss of insulin gene expression is ac-
companied by decreased expression and/or DNA 
binding activity of PDX-1 [129, 130, 137-139]. After 
chronic exposure to a high glucose concentration, 
PDX-1 expression and/or its DNA binding activity are 
reduced. Abnormalities in lipid metabolism have also 
been proposed as contributing factors to the deteriora-
tion in pancreatic β-cell function. Prolonged exposure 
to excessive concentrations of fatty acids inhibits insu-
lin gene expression and secretion [146-148]. Further-
more, it has been shown recently that prolonged expo-
sure of islets to palmitate inhibits insulin gene tran-
scription by impairing the nuclear localization of PDX-
1 [149]. 

Under diabetic condi-
tions, hyperglycemia induces 
oxidative stress, which is in-
volved in the β-cell glucose 
toxicity found in diabetes, 
through various pathways 
such as the electron transport 
chain in mitochondria, the 
non-enzymatic glycosylation 
reaction and the NADPH 
oxidase pathway [136-145, 
150-153]. β-cells express 
GLUT2, a high-Km glucose 
transporter, and thereby dis-
play highly efficient glucose 
uptake when exposed to a 
high glucose concentration. 
In addition, β-cells are rather 
vulnerable to oxidative stress 
because of the relatively low 
expression of antioxidant en-
zymes such as catalase and 
glutathione peroxidase [154, 
155]. Indeed, it was shown 
that expression of the oxida-
tive stress markers 8-
hydroxy-2’-deoxyguanosine 
(8-OHdG) and 4-hydroxy-2, 
3-nonenal (4-HNE) were increased in islets under dia-
betic conditions [136, 143]. It has also been shown that 
when β-cell-derived cell lines or rat isolated islets are 
exposed to oxidative stress, insulin gene promoter ac-
tivity and mRNA expression are suppressed [137-139, 
141-144]. When those cells or rat isolated islets were 

exposed to oxidative stress, binding of PDX-1 to the 
insulin gene promoter was markedly reduced. Fur-
thermore, it was shown that the decrease of insulin 
gene expression after chronic exposure to a high glu-
cose concentration could be prevented by treatment 
with antioxidants [138, 139, 142-144]. Reduction of the 
expression and/or DNA binding activity of PDX-1 by 
chronic exposure to a high glucose concentration was 
also prevented by antioxidant treatment. 

These results suggest that chronic hyperglycemia 
suppresses insulin biosynthesis and secretion by pro-
voking oxidative stress, accompanied by the reduction 
of PDX-1 expression and/or its DNA binding activity. 
Therefore, it is likely that PDX-1 inactivation explains, 
at least in part, the suppression of insulin biosynthesis 
and secretion and is thus involved in β-cell glucose 
toxicity (Figure 5). 

In order to evaluate the role of oxidative stress in 
diabetes in vivo, obese diabetic C57BL/KsJ-db/db mice 
were treated with antioxidants (N-acetyl-L-cysteine 
plus vitamin C and E) [138]. Antioxidant treatment did 
not affect glucose-stimulated insulin secretion and 
moderately ameliorated glucose tolerance. β-cell mass 
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Figure 5. Nucleo-cytoplasmic translocation of PDX-1 is induced by oxi-
dative stress and the subsequent activation of the JNK pathway. Oxida-
tive stress and the subsequent activation of the JNK pathway induce the nu-
cleo-cytoplasmic translocation of PDX-1, which leads to reduction of its DNA 
binding activity and suppression of insulin biosynthesis. It is likely that oxida-
tive stress and the JNK pathway are involved in the β-cell dysfunction found in 
type 2 diabetes. 
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was significantly larger in mice treated with the anti-
oxidants. Insulin content and insulin mRNA levels 
were also preserved by the antioxidant treatment. Fur-
thermore, PDX-1 expression was more clearly visible 
in the nuclei of islet cells after the antioxidant treat-
ment [138]. Similar effects were observed using Zucker 
diabetic fatty rats, another model animal for type 2 
diabetes [139]. Taken together, these data indicate that 
antioxidant treatment can protect β-cells against glu-
cose toxicity. 

In addition, we examined the possible anti-diabetic 
effects of probucol, an antioxidant widely used as an 
anti-hyperlipidemic agent, on the preservation of β-cell 
function in diabetic C57BL/KsJ-db/db mice [143]. 
Immunostaining for oxidative stress markers such as 4-
hydroxy-2-nonenal (HNE)-modified proteins and 
heme oxygenase-1 revealed that probucol treatment 
decreases ROS in β-cells of diabetic mice. Probucol 
treatment also preserved β-cell mass, insulin content 
and glucose-stimulated insulin secretion, leading to 
improvement of glucose tolerance [143]. These data 
suggest the potential usefulness of antioxidants for 

diabetes and provide further support for the involve-
ment of oxidative stress in the β-cell glucose toxicity 
found in diabetes. 

It has been suggested that activation of the c-Jun 
N-terminal kinase (JNK) pathway is involved in the 
pancreatic β-cell dysfunction found in diabetes. It was 
reported that activation of the JNK pathway is in-
volved in reduction of insulin gene expression by oxi-
dative stress and that suppression of the JNK pathway 
can protect β-cells from oxidative stress [156]. When 

isolated rat islets were exposed to oxida-
tive stress, the JNK pathway was acti-
vated, preceding the decrease of insulin 
gene expression. Adenoviral overex-
pression of a dominant-negative type 
JNK1 (DN-JNK) inhibited the decrease 
in insulin gene expression and secretion 
resulting from oxidative stress. More-
over, overexpression of wild type JNK1 
(WT-JNK) suppressed both insulin gene 
expression and secretion [156]. These 
results were correlated with the reduc-
tion of PDX-1 binding to the insulin 
promoter. Adenoviral overexpression of 
DN-JNK preserved PDX-1 DNA bind-
ing activity in the presence of oxidative 
stress, while WT-JNK overexpression 
decreased PDX-1 DNA binding activity 
[156]. Thus, JNK-mediated suppression 
of PDX-1 DNA binding activity proba-
bly accounts for some of the suppres-
sion of insulin gene transcription upon 
oxidative stress. 

In summary, it is likely that activa-
tion of the JNK pathway leads to de-
creased PDX-1 activity and the conse-
quent suppression of insulin gene tran-
scription found in the diabetic state 
(Figure 5). Furthermore, as a potential 
mechanism for JNK-mediated PDX-1 

inactivation, it was recently reported that PDX-1 trans-
locates from the nucleus to the cytoplasm in response 
to oxidative stress. When β-cell-derived HIT cells were 
subjected to oxidative stress, PDX-1 translocates from 
the nucleus to the cytoplasm [157]. Addition of DN-
JNK inhibited this translocation, suggesting an essen-
tial role of the JNK pathway in mediating this phe-
nomenon. In addition, leptomycin B, a specific inhibi-
tor of the classical, leucine-rich nuclear export signal 
(NES), inhibited the nucleo-cytoplasmic translocation 
of PDX-1 induced by oxidative stress. Indeed, we 
identified an NES at position 82-94 of the mouse 
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Figure 6. Involvement of Foxo1 in the nucleo-cytoplasmic 
translocation of PDX-1 which is induced by oxidative stress 
and the subsequent activation of the JNK pathway. Oxidative 
stress and the subsequent activation of the JNK pathway induce 
nuclear translocation of Foxo1 through modification of insulin sig-
naling in β-cells, which leads to the nucleo-cytoplasmic transloca-
tion of PDX-1 and reduction of its DNA binding activity. 
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PDX-1 protein [157]. Conclusively, it is likely that oxi-
dative stress induces the nucleo-cytoplasmic transloca-
tion of PDX-1 through activation of the JNK pathway, 
which leads to reduction of its DNA binding activity 
and suppression of insulin biosynthesis (Figure 5). 

Furthermore, while the role of the forkhead tran-
scription factor Foxo1 in β-cell function has attracted 
considerable attention [158, 159], we have recently re-
ported that Foxo1 plays a role as a mediator between 
the JNK pathway and PDX-1 [160]. In β-cell-derived 
HIT cells, the intracellular localization of Foxo1 
changed from the cytoplasm to the nucleus under oxi-
dative stress conditions. In contrast to Foxo1, as men-
tioned above, the amount of nuclear PDX-1 decreased 
and its cytoplasmic distribution was increased by oxi-
dative stress. JNK overexpression also induced the nu-
clear localization of Foxo1, although, on the other 
hand, suppression of the JNK pathway reduced the 
oxidative stress-induced nuclear localization of Foxo1, 
suggesting the involvement of the JNK pathway in 
Foxo1 translocation [160]. In addition, oxidative stress 
or activation of the JNK pathway decreased the activ-
ity of Akt in HIT cells, leading to decreased phos-
phorylation of Foxo1 following nuclear localization. 
Furthermore, adenoviral Foxo1 overexpression re-
duced the nuclear expression of PDX-1, whereas re-
pression of Foxo1 by a Foxo1-specific small interfer-
ing RNA resulted in retained nuclear expression of 
PDX-1 under oxidative stress conditions [160]. When 
considered as a whole, these data indicate that oxida-
tive stress and the subsequent activation of the JNK 
pathway induce nuclear translocation of Foxo1 
through the modification of insulin signaling in β-cells, 
which leads to the nucleo-cytoplasmic translocation of 
PDX-1 and reduction of its DNA binding activity 
(Figure 6). Finally, we think that suppression of oxida-
tive stress and/or inactivation of the JNK pathway 
protects β-cells from glucose toxicity found in diabetes 
and thus are potential therapeutic targets for diabetes. 

Conclusions 
The number of diabetic patients is dramatically in-

creasing all over the world, and diabetes has recently 
been recognized as one of the most prevalent and seri-
ous metabolic diseases. Although pancreas and islet 
transplantation have achieved beneficial effects for 
type 1 diabetic patients, the availability of insulin-
producing cells is limited and life-time immunosup-
pressive therapy is required. It is very important, there-
fore, to search for alternative sources to induce insulin-
producing cells. 

PDX-1 is a pancreatic transcription factor which 
plays a crucial role in pancreas formation, β-cell differ-
entiation and maintenance of mature β-cell function. 
Furthermore, it is likely that PDX-1 plays a crucial role 
in inducing insulin-producing cells in various non-β-
cells and thus could be a therapeutic target for type 1 
diabetes. It is noted, however, that current strategies 
involve some problems with the differentiation of 
various cells into insulin-producing cells. For example, 
although insulin biosynthesis and secretion can be in-
duced in several types of non-β-cells, it is very difficult 
to obtain substantial glucose-responsive insulin secre-
tion, which is very important to maintain normal glu-
cose tolerance. 

Under diabetic conditions, chronic hyperglycemia 
gradually leads to the deterioration of β-cell function, 
which is often observed in type 2 diabetic subjects and 
is clinically well known as β-cell glucose toxicity. These 
phenomena are accompanied by a reduction in the ex-
pression and activity of pancreatic transcription fac-
tors. Therefore, it is likely that PDX-1 plays an impor-
tant role in mediating mature β-cell function and that 
PDX-1 inactivation is involved in the β-cell glucose 
toxicity found type 2 diabetes. 
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