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Abstract

Background: MicroRNAs (miRNAs) are small RNAs (sRNA) ~21 nucleotides in length that negatively
control gene expression by cleaving or inhibiting the translation of target gene transcripts. miRNAs have
been extensively analyzed in Arabidopsis and rice and partially investigated in other non-model plant
species. To date, 109 and 62 miRNA families have been identified in Arabidopsis and rice respectively.
However, only 33 miRNAs have been identified from the genome of the model tree species (Populus
trichocarpa), of which || are Populus specific. The low number of miRNA families previously identified in
Populus, compared with the number of families identified in Arabidopsis and rice, suggests that many
miRNAs still remain to be discovered in Populus. In this study, we analyzed expressed small RNAs from
leaves and vegetative buds of Populus using high throughput pyrosequencing.

Results: Analysis of almost eighty thousand small RNA reads allowed us to identify 123 new sequences
belonging to previously identified miRNA families as well as 48 new miRNA families that could be Populus-
specific. Comparison of the organization of miRNA families in Populus, Arabidopsis and rice showed that
miRNA family sizes were generally expanded in Populus. The putative targets of non-conserved miRNA
include both previously identified targets as well as several new putative target genes involved in
development, resistance to stress, and other cellular processes. Moreover, almost half of the genes
predicted to be targeted by non-conserved miRNAs appear to be Populus-specific. Comparative analyses
showed that genes targeted by conserved and non-conserved miRNAs are biased mainly towards
development, electron transport and signal transduction processes. Similar results were found for non-
conserved miRNAs from Arabidopsis.

Conclusion: Our results suggest that while there is a conserved set of miRNAs among plant species, a
large fraction of miRNAs vary among species. The non-conserved miRNAs may regulate cellular,
physiological or developmental processes specific to the taxa that produce them, as appears likely to be
the case for those miRNAs that have only been observed in Populus. Non-conserved and conserved
miRNAs seem to target genes with similar biological functions indicating that similar selection pressures
are acting on both types of miRNAs. The expansion in the number of most conserved miRNAs in Populus
relative to Arabidopsis, may be linked to the recent genome duplication in Populus, the slow evolution of
the Populus genome, or to differences in the selection pressure on duplicated miRNAs in these species.
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Background

The genus Populus encompasses approximately 30 species
divided into 6 sections [1]. Cottonwood species are in the
section Tacamahaca. The two North American cottonwood
species P. balsamifera and P. trichocarpa are so closely
related that the latter is often referred to as a subspecies,
i.e. Populus balsamifera var.trichocarpa [1]. In general, gene
sequences among the different Populus species show high
similarity (>95%) [2] and as close as 99% between P. bal-
samifera and P. trichocarpa for the few cDNAs sequenced in
P. balsamifera. In addition to its economic and ecological
importance [3], Populus was chosen as a model for trees
because it has a relatively small genome (500 MB), just
four times the size of the Arabidopsis genome. Moreover,
several genomic tools are available for poplars, such as
detailed physical and genetic maps [3], a large number of
expressed sequence tags (EST) (~116,202) [4,5]. Addi-
tionally, Populus grows rapidly, is easily transformed,
regenerated, and propagated vegetatively [3]. The first
draft of the genome sequence is now complete [3] for Pop-
ulus trichocarpa with nearly 93% of the genome being cur-
rently assembled into chromosomes. The 7% non-
assembled sequences primarily correspond to heterochro-
matic regions. The genome sequence for Populus tri-
chocarpa facilitates functional analyses of genes in Populus
as well as comparative and functional genomics with
closely related species, especially within the Salicaceae.

MicroRNAs (miRNAs) and small interfering RNAs (siR-
NAs) are short (20-24 nucleotides) non-coding RNA
molecules that have been demonstrated to play a key role
in the regulation of gene expression [6,7]. In a pattern
opposite that of siRNAs, which are generated from dou-
ble-stranded RNA, miRNAs are transcribed from a long
precursor molecule folded upon itself (hairpin). This pre-
cursor molecule is then cleaved by the Dicer-Likel
(DCL1) protein resulting in a miRNA:miRNA* complex,
which after transport to the cytoplasm separates into the
miRNA and miRNA* units [8]. One strand (miRNA) serve
as a guide for the RNA-induced silencing complex (RISC),
which cleave the RNA of target genes at the paired region
[9]. Compared to other mechanisms that regulate gene
expression, identifying a gene targeted by a miRNA is a
straightforward process in plants. Since the mature
miRNA and its complementary target sequence have
almost perfect complementarily, identifying a miRNA
usually leads to the prediction and/or identification of its
target. miRNAs have been shown to target genes that are
involved in development, metabolism, stress tolerance,
and defense in various plant species [6,7].

A great deal of effort has gone into identification of miR-
NAs in the two model plants, Arabidopsis and rice [9-23].
Recently, two thorough analyses of Arabidopsis miRNAs
were published [24,25]. These two studies dramatically
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increased the number of miRNAs identified in Arabidopsis
from 60 to 109 families. However, miRNA identification
in Populus has been limited compared to Arabidopsis. To
date, there has been only one exhaustive study [26] in
which 22 miRNAs expressed primarily in wood develop-
ment and stress resistance were identified. Eleven of these
miRNAs are conserved in other plant species and ten are
absent from Arabidopsis. In total, 33 miRNA families rep-
resented by one or a few loci in Populus are reported in
miRBase (Release 9.1) to date. In contrast, 109 and 62
families were reported for Arabidopsis and rice, respec-
tively. Moreover, most of the newly identified Arabidopsis
miRNA families [24,25] are not conserved in Populus and
rice. A similar situation was found for rice and Populus
miRNAs where 31 and 11 "species-specific" (i.e. found
only in one species to date) families were identified (miR-
Base, release 9.1; [26], respectively. The large number of
species-specific miRNAs raises questions about their func-
tion. Are these miRNAs all functional? Are they control-
ling the expression of species-specific genes? These
questions stress the importance of completing the catalog
of miRNAs in Populus by deep sequencing, identifying
Populus-specific families, and analyzing their evolution.
Identifying the targets of Populus-specific miRNAs will also
help discover their functional roles in the diversification
of Populus phenotypes and adaptation to different cli-
mates. Furthermore, comparing miRNA diversity between
Populus, a member of the eurosid I clade, and Arabidopsis,
a member of the eurosid II clade, will help to determine
the set of miRNAs that have diverged or have been lost in
these two clades since the divergence from their common
ancestor [27,28] Moreover, comparing miRNA distribu-
tion and diversity in an annual plant (Arabidopsis) and a
perennial plant (Populus), which have different life cycles,
different developmental and physiological patterns, as
well as different ecological distributions, should help to
identify miRNAs that have diverged and might be
involved in functions specific to annual versus perennial
plants.

Until recently, most experimental miRNA isolation stud-
ies involved cloning and capillary sequencing. The concat-
amerization of sRNA clones, followed by cloning and
cDNA isolation from bacteria before sequencing make
this approach laborious and costly. Moreover, most of the
miRNAs identified using this approach are highly
expressed. The recently introduced 454 ultrahigh through-
put sequencing technology [29] provides a better alterna-
tive. This technology generates millions of bases per run
and has been used successfully for sequencing the
genomes of bacteria [30], chloroplasts [31], and mito-
chondria [32], as well as for transcriptome analyses [33].
It was also used recently for SRNA sequencing in Arabidop-
sis. and the basal eudicot Eschscholzia californica
[21,24,25,28]. In these studies, the number of miRNAs

Page 2 of 16

(page number not for citation purposes)



BMC Genomics 2007, 8:481

identified in Arabidopsis doubled the number previously
discovered in total from over 30 studies using capillary
sequencing. The greater efficiency of discovery, including
variants that are expressed at low levels, derives from the
much deeper coverage of the sRNA population provided
by pyrosequencing, and avoidance of cloning in the 454
system.

Here, we used 454 pyrosequencing [29] of small RNA
libraries isolated from leaf and vegetative bud tissues in
Populus balsamifera. P. balsamifera was chosen for this
study because of the local availability of trees for this and
future studies, the very close relationship of Populus bal-
samifera and P. trichocarpa [2], the large amount of genetic
variation among P. trichocarpa trees [1,3], and the fact that
the P. trichocarpa tree for which the genome sequence was
obtained is no longer alive. We identified 123 new loci of
previously reported miRNA families and 61 new non-con-
served, unique miRNA sequences belonging to 48 fami-
lies. We compare the distribution of these miRNA
sequences in Populus with miRNA sequences from other
land plants and discuss their evolution. Targets of these
new miRNAs were predicted, including genes involved in
development, resistance to biotic and abiotic stresses, and
other cellular processes.
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Results

sRNA sequence analysis

Pyrosequencing of small RNAs from Populus leaves and
vegetative buds generated 41,323 and 35,572 reads
respectively. Of these, 36,841 and 31,574 sequences from
leaves and vegetative buds, respectively, were complete,
containing the 9 nucleotides of both the 5' and 3' adapt-
ers. The set of leaf reads included 2,289 tRNAs, 6,146
snoRNAs, 11,594 chloroplast rRNA, and 6,867 mitochon-
drial rRNA sequences. Similar results were obtained for
vegetative buds. After removal of these contaminants, a
total of 14,768 and 12,264 sRNA sequences, with sizes
between 15 and 30 nucleotides, remained for the leaf and
bud samples. By removing redundant sequences from
these two data sets, we identified 5,998 (Additional file 1)
and 6,339 (Additional file 2) unique sRNA sequences
from leaf and vegetative buds, respectively. Of these, a
total of 2,607 and 2,167 unique sRNA sequences matched
the Populus genome assembly; these were considered for
further analysis. SRNAs of 21 nt in length were the most
abundant class among the 15-30 nucleotide sequences
(Fig. 1) suggesting that most of the small RNAs identified
are processed by the Populus DCL1 homolog. For the two
RNA samples obtained from vegetative buds and leaves,
1,619 and 1,876 unique sequences were obtained more
than twice.
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Size distribution of unique sSRNA sequences obtained from leaf and vegetative bud (Vb) tissues of Populus balsamifera by pyrose-
quencing. Length of small RNAs is given on the x-axis in base pairs. Abundance of SRNA lengths were determined from the
total number of high quality 454 reads after removal of redundant sequences but prior to selection for complete matches to

the poplar genome sequence.
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A small set of miRNA families is differentially distributed in
Arabidopsis, Populus and rice

Comparison with miRBase 9.1 [34] enabled the identifi-
cation of 262 and 303 unique sequences corresponding to
annotated poplar miRNAs in leaves and vegetative buds,
respectively. By removing redundancy due to identical
sequences from the two samples we identified 112
sequences belonging to 32 miRNA families (Additional
file 3). A search for close members from these 32 families
allowed us to identify 142 more members, which
increased the number of conserved miRNAs identified to
254 (Additional file 3). Most of the Populus miRNAs
reported previously [26], including nine miRNAs
(miR473, miR475-477) reported only in Populus, were
found in our dataset. Several miRNAs (miR171, miR408,
miR475, miR476, miR477, miR479) that have been
shown to be differentially expressed in phloem and xylem
development and physical (tension and compression)
stress [26], were found in vegetative buds and leaves
grown under normal conditions. However, five Populus-
specific miRNAs (miR474, miR478-miR481), including
miR478, for which 19 members had been previously
identified, were not found in our data.

Comparative analyses showed that 26 miRNA families
previously annotated from either Arabidopsis, rice or Phys-
comitrella were found in our data. All of the 21 miRNAs
conserved between Arabidopsis and rice [7,24] were also
found. We also observed miR828 and miR858 in Populus
which had previously been reported as Arabidopsis-specific
[24]. These miRNAs, along with miR403, miR408, and
miR473, increase to six the number of miRNAs shared by
Arabidopsis and Populus but not found in rice. In contrast,
ten miRNA families (miR413, miR414, miR415, miR416,
miR417, miR418, miR419, miR420, miR426, miR435)
were shared by Arabidopsis and rice but not found in Pop-
ulus. miR1213 was discovered in Physcomitrella [35] but
has not yet been found in Arabidopsis or rice.

Populus conserved miRNAs are encoded by large gene
families

A query of Populus small RNAs against miRBAse (release
9.1) allowed us to identify 32 previously reported families
(Additional file 3). Since it's common for identical mature
miRNAs to be encoded in multiple paralogous loci in a
single genome, we searched for all new loci corresponding
to previously identified miRNAs. Indeed, we were able to
map all conserved miRNA sequences on the Populus
genome. Their flanking sequences (300 nucleotides on
each side) were retrieved, aligned with Populus known
hairpin sequences from MiRBase (Release 9.1) and the
alignment checked manually. This analysis showed that,
from a total of 254 loci identified by sequencing and by in
silico analyses in this study, 131 correspond to previously
reported miRNA loci (Additional file 3), while 123 are
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new loci. Previously un-annotated paralogs were identi-
fied for most miRNA families, with the exception of
miR168 and miR408. For families miR156/157, miR159,
miR319, miR162, miR172, miR396, miR397, miR473,
miR475 and miR482, the number of members identified
in this study was at least twice that reported previously
[3,26] (Fig. 2). Analysis of the number of members per
miRNA family showed that most families are expanded in
size in Populus compared with Arabidopsis and rice (Fig. 2).
Seven families (miR156/157, miR159, miR160, miR319,
miR172, miR390, miR393, miR396 and miR397) at least
doubled in size compared to the numbers previously
reported for Arabidopsis and rice [7]. miR156/157,
miR159 and miR319 are represented by 22 and 38 mem-
bers respectively and three other families (miR169,
miR170/171, miR165/166) are represented by more than
20 members. All of the miRNAs identified fulfilled both
the phylogenetic conservation and the biogenesis criteria
for miRNAs (see below) [36]. Thirty-seven new loci also
fulfilled the expression criteria and can thus be considered
to be bona fide miRNAs, while the remaining ones repre-
sent miRNA candidates for which expression remains to
be confirmed.

Populus non-conserved miRNAs

Analysis of sequenced sRNA using the pipeline described
in the materials and methods section identified 61
miRNA sequences unknown in Populus or other plant spe-
cies. Analyses of the secondary structure of genes corre-
sponding to the new miRNAs identified (see for example;
Fig. 3) confirmed that they all contain features of miRNAs
previously described by [16]. Forty of the miRNAs (in 34
families) were represented by more than 2 sequence reads
in the SRNA data set from leaves and vegetative buds, and/
or their expression has been confirmed by northern
hybridization. These are thus considered as bona fide miR-
NAs by the accepted criteria of [36] (Table 1). Twenty-one
sequences represented by less than two counts in the
sRNA data set were considered as miRNA candidates.
Comparison and distribution of the 40 miRNA sequences
showed that they belong to 34 families (Table 1, Addi-
tional file 4). An exact miRNA* or a close length variant
was observed for 6 of these 48 families (Table 1). The
number of miRNAs identified in this study represents
almost twice the number of miRNA families previously
reported in Populus (miRBase, Release 9.1), which can
now be increased to 67 families. Most of these miRNAs,
including ones that are not highly expressed, start with the
nucleotide "U" (Fig. 4) indicating these miRNAs have the
same biogenesis origin as the conserved ones. The
number of loci in each family and their chromosome
locations are indicated in Table 1 (and in Additional file
4). About the same number of conserved miRNA
sequences were found in vegetative buds (35 or 72%,) as
in leaves (33 or 69%) (Table 1). However less than half
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Figure 2

Number of paralogs (bona fide miRNAs as well as candidate miRNAs) identified in Populus in this study versus Arabidopsis and
rice, from 21 conserved miRNA families. Note the general lack of correlation among sizes of miRNA families among the three
species, with the exception of the smallest families. The Populus miRNAs families were determined after removal of redundant
sequences and after selection for those with complete matches to the poplar genome sequence.

(21 or ~44%) of the non-conserved miRNA sequences
were found in both leaves and vegetative buds (Table 1).

Relative expression of the non-conserved miRNAs varied
widely, based on the number of sequences observed for
each miRNA in our dataset. The three (~4%) most highly
expressed miRNAs (7003, 7004, 7007) were represented
by more than 100 sequences in leaves, and 48-77 times in
vegetative buds. Nine (18%) of the non-conserved
miRNA families were present between 20 and 100 times,
while the remaining 37 miRNA families had lower levels
of expression. Approximately 34% of non-conserved
miRNA families were represented by more than 5
sequences in our dataset, of which six miRNAs (miR7002,
miR7003, miR7004, miR7005, miR7007, and miR7032)
were expressed relatively highly in leaves (50 or more
times) while only two were observed at those levels in veg-
etative buds (miR7003 and miR7005). To validate the
sequencing results, the expression was confirmed for 4
arbitrarily chosen genes representing 9% of these families
by northern hybridization (Fig. 5).

Target search of non-conserved miRNAs
In order to predict potential regulatory targets of non-con-
served miRNAs, a search was performed on the TIGR Pop-

ulus cDNA dataset as described in the methods section.
For 17 (35%) of the non-conserved miRNA families, no
putative target could be predicted on Populus CDSs and
cDNAs. In total, putative targets were predicted for 31
(65%) of the non-conserved miRNA families (Table 1).
We used the highest scoring Arabidopsis BLASTP hit to
annotate the putative functional category of the predicted
target genes (Fig. 6). For 16 (33%) miRNA families, the
target search allowed Populus unigenes that have no
homology to known Arabidopsis sequences to be identi-
fied. Twenty-six (54%) of the non-conserved miRNAs had
a best alignment to Arabidopsis sequences, of which two
predicted target genes were annotated only as expressed
sequences. Eleven (23%) miRNA families have more than
one predicted target, 5 of which have more than 3 pre-
dicted targets. Approximately 13% of the target genes pre-
dicted (Table 2) encode transcription factor proteins
involved in various processes of plant development such
as MYB, homeodomain-leucine zipper, ANAC (abscisic-
acid-responsive), and No Apical Meristem (NAM). Pre-
dicted target genes that encode for transcription factors
and DNA and RNA binding represented 13% of the miR-
NAs. Several other predicted targets include genes
involved in resistance to biotic and abiotic stresses such as
CC-NBS-LRR, TIR-NBS-LRR, Calmodulin-binding pro-
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Table I: Non-conserved miRNAs and miRNA candidates identified in Populus.

Families Loci Chrom. Sequences Arm Len VB L miRNA*
ptr-miR7000 | scaffold_9486 AUACCCGGCCGUCGGGGCAA 3 20 3 0 yes
ptr-miR7001 | LG_lI UUACCAAUACCUCUCAUGCCAA 3 22 0 24 no
ptr-miR7002* | LG_VIi UCUUUCCAACGCCUCCCAUACC 3 22 40 73 no
ptr-miR7003 | scaffold_163 UUCAAUGGCUCGGUCAGGUUA 3 21 77 154 no
ptr-miR7004 | scaffold_148 UCGUAAUGCUUCAUUCUCACAA 5' 22 39 110 no
ptr-miR7005 | LG_VIIl UCCACAUUCGGUCAAUGUUCC 3 21 63 50 no
ptr-miR7006* | LG_Vil AGAUGGGAGAGUAUGCAAGAAG 5 22 0 2 yes
ptr-miR7007 | LG_XII UUCAUUCCUCUUCCUAAAAUGG 5' 22 48 120 no
ptr-miR7008 | scaffold_219 UCGCAAGUUGGAGGCCUGGCC 5' 21 21 0 no
ptr-miR7009- | # 5 LG_XII UUCUGAACUCUCUCCCUCAAC 5' 21 0 2 no
ptr-miR7009-2# 5 LG_XIl UUCUGAACUCUCUCCCUCAAC 5' 21 0 2 no
ptr-miR7009-3# 5 LG_XIl UUCUGAACUCUCUCCCUCAAC 5 21 0 2 no
ptr-miR7009-4# 5 LG_XV UUCUGAACUCUCUCCCUCAAC 5' 21 0 2 no
ptr-miR7010# | LG_XV UAAUCUCCACCAUCUCAGCUU 21 2 0 no
ptr-miR701 | [ scaffold_163 CACAAGCAAUCUAGUUGGCUC 3 21 0 5 no
ptr-miR7012# | scaffold_196 AACGACUCUCGGCAACGGA 5' 19 0 2 no
Ptr-miR7013* | Scaffold _129 AUUCCUCUUCCUAAAAUGG 5' 19 | | no
ptr-miR7014# | LG_VIi CUCCACAUUCGGUCAAUGUUC 3 21 2 0 no
ptr-miR7015 | LG_XIIl UUCCCAACUCCACCCAUCCCAU 3 22 0 3 no
ptr-miR7016 | scaffold_228 CCGAUUGAAUGGUCCGGUGAA 5' 21 3 5 no
ptr-miR7017 | Scafold_I31 UUUUGGUAAUGCAAGUGUUGC 3 21 0 5 no
ptr-miR7018 | LG_IX UGCAUUUGCACCUGCACCUUA 5' 21 4 0 no
ptr-miR7019 | LG_X UGCCGACCCCACCCAUGCCAA 3 21 37 2 no
ptr-miR7020 | scaffold_853 GAAUGGUCCGGUGAAGUGUU 5 20 3 0 yes
ptr-miR7021 | LG_VIIl UCUUGCCUACUCCUCCCAUUCC 3 22 7 10 yes
ptr-miR7022 | scaffold_456 CGGGGUAUUGUAAGUGGCA 5 19 3 0 yes
ptr-miR7023 | LG_V AAUCUCCACCAUCUCAGCUUC 3 21 2 2 no
ptr-miR7024* | scaffold_1029 AUUCAGCCCCAUGUCGCUC 5' 19 2 0 no
ptr-miR7025 | scaffold_20519 CAAUCCCCGACCUCGUGGC 3 19 0 3 yes
ptr-miR7026# 2 LG_XIlI UCCGAUCAUUCCUCCcUcCUCC 3 21 | | no
ptr-miR7027# 2 Scafold_11788 UGCUGCCGAGGCCUGGCCUCC 3 21 | | no
ptr-miR7028# 2 Scafold_20519 GGAGGCCAGGCCUCGGCAGCA 3 21 | | no
ptr-miR7029- |* 3 LG_VII UCUCGGACCAGGCUUCAUUCC 3 21 32 35 no
ptr-miR7029-2* 3 LG_VII UCUCGGACCAGGCUUCAUUCC 3 21 32 35 no
ptr-miR7029-3 3 LG_X UCUCGGACCAGGCUUCAUUCC 3 21 32 35 no
ptr-miR7030 2 LG_X CACAUUCGGUCAACGUUCGAG 3 21 10 8 no
ptr-miR7031-1# 4 LG_I UGUUCAUGCUAAUUAAUUAGC 5' 21 0 2 no
ptr-miR7031-2# 4 LG_I UGUUCAUGCUAAUUAAUUAGC 5' 21 0 2 no
ptr-miR7031-3# 4 LG_IX UGUUCAUGCUAAUUAAUUAGC 5' 21 0 2 no
ptr-miR7031-4# 4 LG_X UGUUCAUGCUAAUUAAUUAGC 5' 21 0 2 no
ptr-miR7032* | LG_X UUGCCGACCCCACCCAUGCCAA 3 22 37 66 no
ptr-miR7033- * 4 LG_IV UGGUUGUGGUUGCUUUUCAAA 3 21 0 2 no
ptr-miR7033-2* 4 LG_IV UGGUUGUGGUUGCUUUUCAAA 3 21 0 2 no
ptr-miR7033-3* 4 LG_IV UGGUUGUGGUUGCUUUUCAAA 5' 21 0 2 no
ptr-miR7033-4* 4 LG_VIiI UGGUUGUGGUUGCUUUUCAAA 3 21 0 2 no
ptr-miR7034# | LG_XII CGAGCCGAAUCAAUAUCACUC 3 21 0 2 no
ptr-miR7035 | LG_VIil CUACUCCUCCCAUUCCAUCUGC 3 22 0 4 no
ptr-miR7036 | LG_XIV CUCUCCCUCAAGGCUUCCAA 5' 20 3 5 no
ptr-miR7037 | scaffold_196 UAAACGACUCUCGGCAACGGA 5' 21 4 5 no
ptr-miR7038# | LG_I UGACCUUUCUUGGUGUUGUUAG 3 22 2 0 no
ptr-miR7039 | scaffold_163 UCAAUGGCUCGGUCAGGUUA 3 20 3 7 no
ptr-miR7040- | # 2 LG_XIX UUUGAUCGAUGAGGGAAUAAU 3 21 2 0 no
ptr-miR7040-2# 2 LG_XIX UUUGAUCGAUGAGGGAAUAAU 3 21 2 0 no
ptr-miR7041# | LG_XIX UUUGUGGAACUCGAACUGGU 5' 20 2 0 no
ptr-miR7042# | scaffold_163 CAGAUCAUGCCAUGACAGAAG 5 21 2 0 no
ptr-miR7043# | scaffold_245 UUGGUUGCGCAUGAACCUGA 5' 20 2 0 no
ptr-miR7044 2 scaffold_163 UGACAGAAGAGUUAAAUGUUGA 5' 22 2 2 no
ptr-miR7045 2 LG_XVIiI UGCUCACUUCUCUUCUGUCAGC 3 22 4 7 no
ptr-miR7046- | * 2 LG_VI CCACAGCUUUCUUGAACUGCA 3 21 2 | no
ptr-miR7046-2* 2 LG_XVIiI CCACAGCUUUCUUGAACUGCA 3 21 2 | no
ptr-miR7047 | LG_XIV UUGACGAAAUGUGACGACUAC 3 21 7 0 no

The length (len) of each miRNA, the number of loci (loci), the number of times a sequence was sampled in leaf (L) and vegetative buds (VB), and whether or not a
miRNA star (miRNA*) was observed are indicated. (*¥) indicate miRNAs for which the expression was confirmed by northern hybridization. (#) indicate miRNA
candidates.

Page 6 of 16

(page number not for citation purposes)



BMC Genomics 2007, 8:481

Figure 3
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Ptr-miR7021 Ptr-miR7006

Ptr-miR7025 Ptr-miR7000

Predicted secondary structures of Ptr-miR7000, Ptr-miR7006, Ptr-miR7025 and Ptr-miR7021, newly identified non-conserved
miRNAs from Populus. Sequences indicated in red and blue correspond to miRNAs and predicted miRNA* respectively. Brack-
ets highlight the area offset between the miRNA sequence and the miRNA*.
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Distribution of the first nucleotide of conserved and non-
conserved miRNAs determined by pyrosequencing.

tein, cyclic nucleotide-gated channel C, as well as trypsin
and protease inhibitor family proteins (Kunitz family).
Three miRNAs predicted target genes encoding polyphe-
nol oxidase, which belongs to the lignin synthesis path-
way. Another predicted target gene encodes
dihydroquinate dehydratase protein in the shikimate
pathway. Targets involved in other cellular and develop-
mental processes, such as transport, were also identified
(Table 2).

Discussion

Populus contains at least 100 miRNA families

Previous studies [26,3] identified 33 miRNA families
(miRBase, release 9.1) in Populus. In this study, 254 con-
served miRNA loci belonging to 38 families and 40 non-
conserved miRNA loci representing 34 new families were
also identified. Moreover, 21 miRNA candidates belong-
ing to 14 families were identified. This increased the
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number of miRNAs identified in Populus by almost 200%.
Among the newly identified miRNAs, 123 correspond to
new loci of previously identified miRNA families [26,3].
The other 61 miRNA families showed no sequence conser-
vation with miRNAs from Arabidopsis, rice, or other plant
sequences in miRBase. Some of these non-conserved
sequences may have resulted from sequencing errors
[29,31], but almost all (99%) of them were captured
repeatedly. Moreover, rarely did these variants contain
mononucleotide runs that are the expected source of most
454 errors [29,31]. Furthermore, because we analyzed
only those sequences that exactly matched the Populus
genome, most reads with sequencing errors would have
been removed and not considered as miRNAs in this
study. The sequences generated, both conserved and non-
conserved, increased the total number of miRNA families
in Populus by 67 families. Because many members of these
67 miRNA families were identified by genome-scale data
mining and sequencing, it is possible that most of the
miRNAs in Populus have now been discovered. However,
because we used 100% homology to the P. trichocarpa
genome sequence to identify miRNAs, there may be addi-
tional miRNAs in P. balsamifera that we missed due to
slight sequence divergence from P. trichocarpa. Indeed, the
sequences of the very few P. balsamifera ESTs in GenBank
differ from P. trichocarpa in the 1 - 2% range (data not
shown), including possible sequencing errors. Also, the

fact that that some miRNAs were observed only twice indi-
cates that even deeper sequencing might still capture new
miRNAs. Deeper sequencing is also likely to isolate more
miRNA* sequences for the newly identified miRNAs, as
miRNA* was identified for only six of the non-conserved
miRNAs. The low number of miRNA* identified is proba-
bly due to non-saturating coverage of the small RNA
libraries. Also, sampling of other tissues at different devel-
opmental stages, or in response to physiological condi-
tions, may result in the identification of new non-
conserved miRNA families, their corresponding members,
and miRNA* sequences.

In summary, the composition of the miRNA pool in Pop-
ulus seems to be similar to that in Arabidopsis and rice,
though they differ substantially in family number and in
the occurrence of many lineage specific miRNAs. Indeed,
Populus, Arabidopsis, and rice contain 21 conserved fami-
lies as well as large sets of non-conserved miRNAs. The
identification of such a large number of miRNAs from
Populus represents a key resource for comparative and
functional analyses of miRNAs as well as the study of their
evolution.
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Table 2: Putative target genes of non-conserved miRNAs and miRNA candidates identified in Populus.

miRNA Family Populus Predicted Target Homolog in Arabidopsis Target Predicted Function

miRNA with target predicted in Populus with homolog in Arabidopsis

ptr-miR7000* CX173939 At4g12800.1 Photosystem | reaction center subunit
ptr-miR7001 DT522234 Atlgl2230.1 Transaldolase ToTAL2
ptr-miR7002 TA2404_3696 At3g54190 Hypothetical protein
ptr-miR7006 TA2404_3696 At3g54190 Hypothetical protein
ptr-miR7007 Grail3.0035010701 At4g|7980 No apical meristem (NAM)
EstExt_fgenesh4_pg.C_LG_II1399 Atlg33060 Transcription factor (ANACO014)
ptr-miR7009-1 Eugene3.00060403 At2g41450 PAXIPIL protein
Fgenesh4_pg.C_LG_XII000915 Atlg66350 Scarecrow transcription factor
ptr-miR7009-2 Eugene3.00060403 At2g41450 PAXIPIL protein
Fgenesh4_pg.C_LG_XII000915 Atlg66350 Scarecrow transcription factor
ptr-miR7009-3 Eugene3.00060403 At2g41450 PAXIPIL protein
Fgenesh4_pg.C_LG_XII000915 Atlg66350 Scarecrow transcription factor
ptr-miR7009-4 Eugene3.00060403 At2g41450 PAXIPIL protein
Fgenesh4_pg.C_LG_XI11000915 Atlg66350 Scarecrow transcription factor
ptr-miR7010 Gwl.X2191.1 At3gl2530 DNA replication protein-related
Gwl.41.327.1 At4g09350 DNAJ heat shock
ptr-miR7013 EstExt_Genewisel_vI1.C_LG_V0549 Atlg34190 No apical meristem (NAM)
Fgenesh4_pm.C_scaffold_29000148 At2g38250 DNA-binding protein-related
Eugene3.00110906 Atlg53140 Dynamin family protein
EstExt_fgenesh4_pg.C_LG_II1399 Atlg33060 Transcription factor (ANACO014)
EstExt_fgenesh4_pg.C_LG_XIV0205 At4g17980 Transcription factor (ANACO071)
ptr-miR7015 Fgenesh4_pg.C_LG_XVIII000967 At2g24300 Calmodulin-binding protein
Gw1.245.24.1 At5g36930 Toll-Interleukin-Resistance (TIR)
EstExt_Genewisel_vI|.C_LG_XVIII0864 At5gl 1790 Ndr family protein
Eugene3.00190231 At4g27220 ATP binding
Gwl.245.9.1 At5g36930 TIR-NBS-LRR
Gwl.3272.9.1 At5g36930 TIR-NBS-LRR
Gwl.1.4710.1 At5g36930 TIR-NBS-LRR
Gwl.XI.1412.1 At5g36930 TIR-NBS-LRR
Gw|.XI.1580.1 At5g36930 TIR-NBS-LRR
ptr-miR7018 Grail3.0033032901 At2g45620 Nucleotidyltransferase
Fgenesh4_pg.C_LG_VIII001448 At5g43630 Nucleic acid binding
ptr-miR7021 Gwl.l117.167.1 At5g36930 TIR-NBS-LRR class
ptr-miR7022 TAI4145_3694 At5g41680.2 Putative senescence-associated
ptr-miR7023 CN519776 At5g15270.1 KH domain-containing protein
Eugene3.0004 1046 At5gl5270 KH domain-containing protein
TA578_3690 At4g09350 Hypothetical protein
Fgenesh4_pg.C_scaffold_70000157 At3g06350 Dehydroquinate dehydratase
Gwl.41.327.1 At4g09350 DNAJ heat shock
Gw1.1.8684.1 At4g23740 Kinase protein
Gwl.X2191.1 At3gl2530 DNA replication protein Psf2
ptr-miR7024 EstExt_fgenesh4_pg.C_LG_1X0044 Atlg76310 B-like cyclin
EstExt_fgenesh4_pg.C_LG_XVI0015 At5g47630 Acyl carrier family protein (ACP)
Grail3.0083002901 At5g49980 F-box
ptr-miR7025 DN496261 At3gl9830 C2 domain-containing protein
ptr-miR7032 TA4511_293756 At3g05560.1 60S ribosomal protein
ptr-miR7033-1 Fgenesh4_pg.C_LG_l11000186 At5g57010 Calmodulin-binding family protein
ptr-miR7033-2 Fgenesh4_pg.C_LG_l11000186 At5g57010 Calmodulin-binding family protein
ptr-miR7033-3 Fgenesh4_pg.C_LG_l11000186 At5g57010 Calmodulin-binding family protein
ptr-miR7033-4 Fgenesh4_pg.C_LG_l11000186 At5g57010 Calmodulin-binding family protein
ptr-miR7034 Fgenesh4_pg.C_LG_XI11000915 At4g08250 Scarecrow transcription factor
ptr-miR7035 Eugene3.00020435 At4g30720 Expressed protein
ptr-miR7036 Eugene3.00020435 At3g63390 Expressed protein
ptr-miR7040-1* TAIII16_113636 At4g27220.1 NBS-LRR type disease resistance
ptr-miR7040-2* TAITT16_113636 At4g27220.1 NBS-LRR type disease resistance
ptr-miR7041 CK096204 At5g53130.1 Cyclic nucleotide-gated channel C
TA14492_3694 At5g28450.1 Chlorophyll a-b binding 7
TA16704_3694 Atlg80550 Hypothetical protein
TA20868_47664 At5g53130.1 Cyclic nucleotide-gated channel C
ptr-miR7042 CK092266 At5g27380.1 Glutathione synthetase
ptr-miR7044 TA1634_80863 At3g59480.1 Putative fructokinase 2
ptr-miR7046-1 EstExt_Genewisel _vI.C_1840054 Atlgl7860 Trypsin and protease inhibitor
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Table 2: Putative target genes of non-conserved miRNAs and miRNA candidates identified in Populus. (Continued)

ptr-miR7046-2 EstExt_Genewisel_vI.C_1840054

Atlgl7860

Trypsin and protease inhibitor

miRNA with annotated target predicted in Populus with no homolog in Arabidopsis

ptr-miR7005%* AJ777690 no
Eugene3.00100932 no
ptr-miR7012 CK110871 no
ptr-miR70 4% AJ777690 no
ptr-miR7016 AJ773830 no
TA3964_3691 no
TA7847_3695 no
ptr-miR7017 Gnl|PPLGI|CK 106645 no
ptr-miR7019 Gnl|PPLGI|TCI19799 no
ptr-miR7020 AJ773830 no
TA3964_3691 no
TA7847_3695 no
ptr-miR7030 AJ777857 no
DN483929 no
TAI14535_3695 no
ptr-miR7037 TA12949_3694 no

Polyphenol oxidase
Polyphenol oxidase
Hypothetical protein
Polyphenol oxidase
Hypothetical protein

Acl 147-like protein
CDHI-D

Hypothetical protein
Histidine kinase like ATPase
Hypothetical protein

Acl 147-like protein
CDHI-D [Gallus gallus (Chicken)]
Polyphenol oxidase
Polyphenol oxidase
Polyphenol oxidase
Hypothetical protein ART3

miRNA with target predicted non-annotated in Populus with no homolog in Arabidopsis

ptr-miR7003 Gnl|PPLGI|TC35094 no
ptr-miR7004 BU871048 no
ptr-miR7014 Eugene3.89590001 no
ptr-miR7026 DN487711 no
ptr-miR7029-1 CV259704 no
CV259944 no
DT491789 no
ptr-miR7029-2 CV259704 no
CV259944 no
DT491789 no
ptr-miR7029-3 CV259704 no
CV259944 no
DT491789 no
ptr-miR7039 CV230379 no
ptr-miR7047 BU87387| no

-" indicates that no target was found in Populus. "no" indicates that no Arabidopsis homolog of the Populus target was found. Other target were found for some

miRNAs, but they have no significant similarity either to Arabidopsis (*) or other plant (**) protein sequences.

Differential conservation of miRNAs between Populus,
Arabidopsis and rice

All 21 families conserved between Arabidopsis, Populus and
rice | 7] were identified in our dataset. The conservation of
this set of miRNA families in such taxonomically diver-
gent land plant species (Arabidopsis, Populus, rice and Phys-
comitrella) indicates these miRNAs are subject to
functional constraints which keep them highly conserved
across species. However, a small set of miRNAs seems to
be differentially distributed in Arabidopsis, Populus and
rice. We found 2 Arabidopsis (miR828 and miR858) and
one Physcomitrella (miR1213) miRNA families that were
not previously reported in Populus. This extends the
number of conserved miRNAs between Arabidopsis and
Populus to 24 families. Furthermore, 10 Arabidopsis miRNA
families (miR413-435) which have been reported as con-
served between Arabidopsis and rice were not found in our
sequence data. These sequences can not be identified in
the Populus genome and cDNA databases either, even

under relaxed alignment parameters. This indicates that
the conservation of some miRNAs between species is not
only associated with the phylogenetic distance between
the species but may also be under the control of other
undetermined constraint(s).

Organization and evolution of Populus miRNAs

Comparison of the numbers of paralogous miRNA loci
per family in Arabidopsis, Populus and rice indicate that
most conserved miRNA families have different numbers
of paralogs in the different lineages. The number of loci
per miRNA family is generally higher in Populus compared
to Arabidopsis and rice. Several Arabidopsis and rice families
such as miR156/157, miR159/319, miR162, miR172,
miR396, miR397, miR473, and miR475 are nearly double
in size in Populus. This result is not in accord with an ini-
tial report [7] that the miRNA gene family size is similar
between the three model species (Arabidopsis, rice, and
Populus). More miRNA gene duplicates appear to be
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Pie chart representation of Gene Ontology classification of putative molecular functions of the Populus predicted genes and
miRNA predicted targets as well as biological processes in which they are involved. See text for GOstat tests of significance.

retained in Populus in parallel with the greater number of
genes that have been maintained since the last genome
duplication (1.4 to 1.6 genes in Populus per gene in Arabi-
dopsis; [3]). This increase in miRNA family size is probably
not be due to a difference in the level of genome duplica-
tion alone, however, since both Arabidopsis and Populus
have extensive genome sequence duplication [37] and the
Arabidopsis and rice genomes appear to have changed
much faster relative to Populus in the time since their last
common ancestor [3]. An alternative hypothesis is that
there is a difference in the selection pressure on duplicated
miRNAs in Populus and that having more miRNA mem-
bers might be advantageous for adaptation to perennial
growth and to different ecological environments.

Most of the newly identified Populus miRNA families are
not conserved

Most (92%) of the Arabidopsis miRNAs and miRNA candi-
dates reported in recent studies [24,25] were not found in
our Populus data. Thirty of the rice miRNA families are not
found in either Arabidopsis or Populus (miRBase, release
9.1). Similarly, most of our non-conserved newly identi-
fied miRNA families appear to be specific to Populus at this
point. The miRNAs found only in Populus to date could be
relatively young, generated by recent duplication events
specific to Populus [25]. The identification of a large set of
miRNAs specific to each species supports the hypothesis
that most lineage-specific miRNAs are generated by recent
duplication events or other processes specific to species or
clades [24]. An alternative possibility is that they may

actually be ancient miRNAs that have been under positive
selection and divergence in Populus but have lost function
in Arabidopsis. Depending on the age of the duplication
and how strong the selection pressure is, the number of
functional miRNAs may vary between species. In this
study, at least one target was predicted for most of the
non-conserved miRNAs identified, indicating that they
may be functional. However, it has been shown in a pre-
vious report [25] that target genes could not be validated
for most of the apparently Arabidopsis-specific miRNAs,
even though they have a high degree of similarity with
known genes. Therefore, only an experimental validation
of predicted targets will allow newly identified miRNAs to
be confirmed as functional, and to determine if the
hypothesis proposed by [25] is generally valid. Further-
more, miRNA studies in additional non-model plant spe-
cies are required to determine the extent to which non-
conserved miRNAs identified to date are truly species- spe-
cific or appear in other lineages.

The non-conserved miRNAs potentially regulate a wide
variety of functions including many genes that are specific
to Populus

An important question raised by the large number of non-
conserved miRNAs found in Populus is the function of
genes targeted by these miRNAs. Prediction of gene targets
using annotated Populus cDNAs showed that nearly 65%
of the newly identified non-conserved miRNAs have tar-
gets. The remaining 35% could correspond to genes that
are not identified using automatic annotation or lowly
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expressed genes that are not yet represented in Populus
cDNA and EST datasets. Alternately, some of these miR-
NAs may have different modes of target recognition [16].
As shown in Table 1 and Table 2, 30% of the genes tar-
geted by non-conserved miRNAs have no best hit in Ara-
bidopsis indicating that these genes could be Populus
specific, or at least diverged in Arabidopsis. This impor-
tant discovery suggests that non-conserved miRNAs are
involved in the regulation of cellular, physiological or
developmental processes in a manner that is specific to
these species. Nine (14%) of annotated genes targeted by
non-conserved miRNAs are transcription factors or
nucleic acid binding proteins, all of which have been pre-
viously reported in Arabidopsis [6,7]. These transcription
factors include Ap2, MYB, Squamosa, Homeobox-leucine zip-
per, and No Apical Meristem (NAM). Another class of
highly represented non-conserved miRNAs predicted tar-
gets in Populus are genes involved in plant resistance to
biotic and abiotic stresses. The most common are CC-
NBS-LRR genes and TIR-NBS-LRR resistance genes. This
class represents the most frequently cloned resistance
genes to date, which play an important role in the detec-
tion of various pathogens [38]. Other resistance gene pre-
dicted targets included hypersensitive-induced response
protein (Band 7 protein family) involved in plant defense
against biotrophic pathogens [39], trypsin and protease
inhibitor family protein (Kunitz family,) as well as
polyphenol oxidases that are involved in plant defense
against herbivores and other stresses [40]. Moreover, sev-
eral housekeeping genes are predicted to be targeted by
the new non-conserved miRNAs.

To check if conserved and non-conserved miRNAs from
Populus target genes with similar function, we compared
the biological functions of their potential target genes
(Fig. 6). These analyses showed that conserved and non-
conserved miRNAs from Populus target genes are involved
in the same biological processes. However, non-conserved
miRNAs have twice as many putative target genes encod-
ing transcription factors, transporters, protein binding
genes, and nucleic acids binding genes as conserved miR-
NAs. A statistical analysis using the GOstat program [41]
confirmed the bias of non-conserved miRNAs towards
genes involved in two biological processes (transduction
signal and transport, p-value < 0.05). Moreover, since a
third of the non-conserved miRNA predicted targets had
no homologs in Arabidopsis, no definitive conclusions
could be drawn about the divergence of target genes
between these two classes of miRNAs. To test if conserved
and non-conserved miRNAs from Populus and Arabidopsis
target genes similarly, we compared the biological func-
tions of their predicted target genes (Fig. 7). If this hypoth-
esis is true, miRNA targets should reflect the diversity of
the Populus transcriptome. Our analyses showed that
miRNA putative targets from Arabidopsis and Populus

http://www.biomedcentral.com/1471-2164/8/481

present similar patterns in that they were both biased
toward development, transcription, DNA and RNA
metabolism, protein metabolism, electron transport and
signal transduction. The over-representation of these bio-
logical processes was confirmed with the GOstat program
[41] (P-value < 0.02). This indicates that conserved and
non-conserved miRNAs from both species are subject to
similar selection pressures allowing miRNAs that regulate
some biological processes to be retained.

Conclusion

In conclusion, pyrosequencing of uncloned sRNA permit-
ted us to make the following discoveries: (i) most mem-
bers of previously reported miRNA families are also found
in Populus leaves and buds; (ii) forty eight new miRNAs
were identified that may be Populus specific; (iii) miRNA
families are larger in size in Populus than in Arabidopsis and
rice; (iv) about a third of the genes targeted by non-con-
served miRNAs appear to be Populus-specific; (v) as in rice
and Arabidopsis, Populus miRNAs primarily target genes
that regulate development and that are involved in stress
responses; (vi) non-conserved and conserved miRNAs tar-
get genes involved in similar biological processes; and
(vii) the targets of conserved and non-conserved miRNAs
are biased towards development, transcription, DNA and
RNA binding, electron transport and signal transduction.

Methods

Tissue collection and RNA preparation

Leaves and vegetative buds were collected weekly during
the months of June and July from mature P. balsamifera
trees growing on the Pennsylvania State University cam-
pus, University Park, Pennsylvania. Total RNA was pre-
pared by the method of Chang and collaborators [42]
with modifications. Three to five grams of frozen tissue
were weighed, ground to a fine powder under liquid nitro-
gen, and dispersed in CTAB buffer. Following 2 chloro-
form extractions, RNA was precipitated with LiCl,, again
extracted with chloroform and precipitated with ethanol.
The resulting RNA pellet was resuspended in 40-100 pl of
DEPC-treated water, and the quality was assessed with an
Agilent Technologies 2100 Bioanalyzer (Agilent Technol-
ogies). Low molecular weight or small RNAs (sSRNA) were
purified from total RNA by fractionation on a polyacryla-
mide gel.

sRNA sequencing

Libraries of sRNA for 454 sequencing were constructed
from leaf and vegetative bud RNA, without cloning, as
described previously [9,28,43]. In summary, purified
sRNAs were ligated to 5' and 3' adapters, reverse tran-
scribed and amplified using Polymerase chain reaction
(PCR) to produce cDNA corresponding to sRNA. The
resulting cDNA was used to construct a "library" for
sequencing by the addition of adaptors as per the sup-
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Pie chart representation of Gene Ontology classification of putative molecular functions of non-conserved miRNAs from Arabi-
dopsis and Populus and the biological processes in which they are involved. See text for GOstat tests of significance.

plier's instructions (Roche Diagnostics) and sequencing
was conducted at Penn State University on an FLX model
454 DNA sequencer (454 Life Sciences) as previously
described [32]. One quarter plate of 454 sequence data
was obtained from each library.

sRNA analysis and identification of Populus balsamifera
miRNAs and their targets

The sequences produced by the FLX sequencer which cor-
responded to sRNA-derived cDNAs were filtered for those
with 9 nucleotides of perfect match to adapter sequences
at both ends, which were selected for further analyses. In
addition, sRNA sequences that were not 15 to 30 nucle-
otides in length were discarded. sRNA sequences that
passed the adapter check and size filter were then screened
against chloroplast and mitochondrial genomes [44],
tRNA [45], rRNA [46], snoRNA [47] and repeat sequence
databases, and all contaminating rRNA, tRNA and
snoRNA sequences removed. The screen for contaminant
RNAs was done using BlastN with default parameters
(Cutoff e-value was e-10). The cleaned sequences were
then sorted by sequence identity and the relative count of
each miRNA was determined. Unique sRNA sequences
were queried against known miRNAs (miRBase, Release
9.1.1) using the program Patscan [48] with default param-
eters and two mismatches allowed to identify homologs
of known miRNAs. All sequences identified were then
searched against the Populus genome [49] to identify Pop-

ulus homologs. Sequences for which no hit was found on
the Populus genome, with 0 mismatches, were removed
from further analysis. We then retrieved 300 nt of Populus
genomic sequence upstream and downstream of each
passed sequence and checked for secondary structures
using the program MirCheck as described by [24].
Sequences that passed MirCheck were then inspected
manually and were blasted against hairpin sequences
from miRBase (Release 9.1.1.1) to determine which loci
had been previously reported and which were new loci. A
sequence was annotated as a microRNA if it fulfills the
biogenesis (folding), the phylogenic conservation and/or
the expression (detection by 454 sequencing) annotation
criteria of Ambrose [50].

Sequences with no similarity to known miRNA sequences
were used to search for non-conserved miRNAs in the Pop-
ulus genome using Patscan with a setting of 0 mismatches,
0 insertions, and O deletions. Three hundred base pairs
flanking the genomic positions were then retrieved and
the sequences folded using RNAfold [51] and the second-
ary structure was checked for miRNA features using Mir-
Check. Sequences that passed MirCheck were sorted by
their position on the chromosome and redundant
sequences linked to errors of genome assembly were
removed manually. Non redundant sequences having two
substitutions or less were grouped in the same family.
When several length variants of the same miRNA were
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sequenced, only variants with the highest representation
were considered. The six non-conserved miRNA families
for which members have identical mature miRNAs but for
which expression could not be confirmed using northern
hybridization, were also annotated as miRNAs. miRNA
sequences were checked for conservation in the Arabidop-
sis [52] and rice (O. sativa ssp. japonica cv Niponbare; [53])
genomes using Patscan, tolerating no more than three
substitutions. When a probable homolog was identified
in any of these three species, the genomic sequence sur-
rounding it was analyzed using RNAfold and the second-
ary structures were checked using MirCheck [16].

A search for miRNA target genes was then performed
using an approach previously described [54]. All newly
identified miRNA sequences were used to query the Popu-
lus CDS [3] and cDNA dataset [55] for potential target
sequences using Patscan with default parameters and
three mismatches, no insertions, and no deletions permit-
ted. Only hits with less than two mismatches in positions
1-9, no mismatches in positions 10 and 11, and less than
three mismatches after position 11 [56] in the mature
miRNAs were considered good target sequences. Target
sequences were then annotated using the Arabidopsis pro-
teome (Blastx, e-value < 0.05). For miRNAs for which no
target was identified in Populus, the same target search was
performed on the Arabidopsis cDNA dataset downloaded
from TIGR [56] using the same criteria to identify target
sequences. Molecular functions as well as biological proc-
esses were compared for genes targeted by both conserved
and non-conserved miRNAs to detect any bias in biologi-
cal function. They were also compared to the whole Popu-
lus transcriptome. A statistical analysis, showing the
probability of target enrichments in some biological proc-
esses or molecular function was conducted using the GOs-
tat program [41] set to the following parameters: GO-DB:
tair; Min Sub-GO length: 3; P-Value Cutoff: 0.1; GO-Clus-
ter Cutoff: -1; with no correction for multiple testing
because the high dependence between GO terms will
cause the test to be overly conservative [41].

miRNA expression analysis using Northern Blot

Total RNA was prepared from leaves using TRIzol reagent
(Invitrogen) according to the manufacturer's recommen-
dations with modifications. Total RNA from vegetative
buds was prepared using the protocol described previ-
ously [42]. Northern blot and hybridization were done as
described in [28]. In summary, total RNA was fractionated
on a denaturing (urea 8%) polyacrylamide gel and trans-
ferred to a nylon membrane using a vacuum transfer sys-
tem (Biorad). Probes used for hybridizations were end
labeled with gamma 32PATP using T4 polynucleotide
kinase (New England Biolabs) according to manufacturer
recommendations. Non-incorporated nucleotides were
removed using Centrispin-20 columns (Princeton Separa-
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tions). Hybridizations were performed at 20°C below the
probe melting temperature (Tm) in ULTRAhyb-Oligo
(Ambion) buffer as suggested by the manufacturer. Filters
were washed twice for 30 min at 20-22°C below Tm
using 0.5X SSPE/0.5% SDS, exposed and scanned using a
phosphoimager (Applied Biosystems).

List of abbreviations used

ABI, Applied Biosystems; cDNA, DNA complementary to
RNA; miRNA, microRNA; EST, expressed sequence tag; nt,
nucleotide; PCR, polymerase chain reaction; siRNA, small
interfering RNA; sRNA, small RNA; RNAi, RNA interfer-
ence, Ta-siRNA, trans-acting-siRNA.
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Small RNA sequences identified from leaf. The length of each sequence
and its occurrence were indicated.
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Additional File 2

Small RNA sequences identified from vegetative buds. The length of each
sequence and its occurrence were indicated.
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Additional File 3

Conserved miRNAs identified in Populus. The length (len) of each
miRNA, the number of times a sequence was sampled from leaf (L) and
vegetative buds (VB), the chromosome location (Chr), the start (start)
and the end (stop) position on the chromosome of each miRNA sequence,
the miRNA orientation (Dir), and whether or not a miRNA was observed
are indicated.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
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Additional File 4

Non-conserved miRNAs and miRNA candidates identified in Populus.
The sequence of each miRNA, the chromosme location of loci (chrom), the
coordinate of the 300 nt flanking miRNA sequences are indicated.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-481-S4 xls]|
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