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Real social interactions occur on networks in which each individual is connected to some, but not all, of

others. In social dilemma games with a fixed population size, heterogeneity in the number of contacts per

player is known to promote evolution of cooperation. Under a common assumption of positively biased

pay-off structure, well-connected players earn much by playing frequently, and cooperation once adopted

by well-connected players is unbeatable and spreads to others. However, maintaining a social contact can

be costly, which would prevent local pay-offs from being positively biased. In replicator-type evolutionary

dynamics, it is shown that even a relatively small participation cost extinguishes the merit of heterogeneous

networks in terms of cooperation. In this situation, more connected players earn less so that they are no

longer spreaders of cooperation. Instead, those with fewer contacts win and guide the evolution. The

participation cost, or the baseline pay-off, is irrelevant in homogeneous populations, but is essential for

evolutionary games on heterogeneous networks.
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1. INTRODUCTION
A variety of creatures from many small organisms to social

animals including humans show altruistic behaviour.

Altruism occurs even when being selfish is better for an

individual, which constitutes the social dilemma (Dawes

1980; Sugden 1986). Emergence of altruism under social

dilemmas can be explained by various mechanisms, such

as kin selection, direct reciprocity, indirect reciprocity

and group selection (Nowak 2006). In the Prisoner’s

Dilemma, altruism is also promoted by the viscosity of

populations (Axelrod 1984; Nowak & May 1992). If

players are aligned on a spatially structured graph such as

the square lattice, cooperators form close-knit clusters of

conspecifics to survive the invasion of selfish defectors.

Maintenance of such clusters is impossible in well-mixed

populations modelled by the random graph and the all-

to-all connected network. Spatial structure affects co-

operation in other games as well (e.g. Szabó & Hauert

2002). Particularly, spatial structure can be detrimental to

cooperation in the snowdrift game (Hauert 2002; Hauert &

Doebeli 2004).

To be more realistic, players often inhabit networks of

social contacts more complex than the square lattice, the

random graph, and the all-to-all connected network

(Newman 2003). First, real social networks are small

world, implying the combination of abundant localized

interactions, as in the square lattice, and sufficient short

cuts, as in the random graph. Second, players are

heterogeneous in terms of the number of contacts with

others. An extreme case of this is the scale-free network in
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which the number of neighbours is distributed according

to the power law (Barabási & Albert 1999). In contrast,

the number of neighbours of conventional networks is the

same for everybody (regular lattices and the all-to-all

connected network) or distributed with a narrow tail (so-

called Erdös–Rényi random graph). Even though not all

social networks are scale-free, the number of neighbours is

naturally heterogeneous.

Recently, it was shown that heterogeneous networks

promote evolution of cooperation in the Prisoner’s

Dilemma, the snowdrift and stag hunt games. Particularly,

scale-free networks are strong amplifiers of altruism

(Durán & Mulet 2005; Santos & Pacheco 2005, 2006;

Santos et al. 2006a,b).

To explain the mechanism of enhanced cooperation, let

us introduce the notion of the temperature of players. In

evolutionary graph theory, hot players are those replaced

often by others (Lieberman et al. 2005). By modifying this

definition slightly, we denote by hot players those who play

often, namely players with many neighbours. Cold players

are those with a small number of neighbours, such as leaves

in a network. Hot players are allowed in more rounds of the

game than cold players per generation. If the typical pay-off

obtained by playing a game is positively biased, which is a

common assumption adopted in the previous studies cited

above and others (Abramson & Kuperman 2001; Ebel &

Bornholdt 2002; Ifti et al. 2004; Eguı́luz et al. 2005;

Zimmermann & Eguı́luz 2005; Santos et al. 2006c; but see

Pacheco et al. 2006; Tomassini et al. 2006 for other set-ups),

it is largely worth participation. Then, hot players earn more

than cold players because everybody earns positive ‘base’

pay-offs proportional to the number of neighbours. As a

result, hot players are more successful in disseminating their

strategies. Particularly, cooperation once employed by a hub
This journal is q 2007 The Royal Society
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is stable due to cooperative reactions in its neighbourhood.

In addition, if hubs tend to be connected to each other, as in

themodel proposedbyBarabási& Albert (1999,BAmodel),

cooperators on hubs form loose clusters to take advantage of

a variant of spatial reciprocity (Santos & Pacheco 2005;

Santos et al. 2006a,b).

However, hot players are successful not owing to

playing well but owing to the connectivity. In the present

paper, we critically re-examine the effect of heterogeneous

networks on emergence of cooperation. In real lives,

participation in the game may be costly. A link to a

neighbour implies building and maintaining communi-

cation, and this cost has actually been modelled for

studying network formation (Jackson & Wolinsky 1996;

Bala & Goyal 2000; Goyal & Vega-Redondo 2005).

Expensive entry fees would dismiss the premium of hot

players to change the entire scenario.

We study two-person games on networks with partici-

pation costs. For simplicity, networks are assumed to be

fixed in size and topology. We show that there are three

regimes depending on how costly participation is. First,

when participation is inexpensive, cooperation is enhanced

on heterogeneous networks as discovered previously.

Second, when the participation cost is intermediate, the

effect of the local pay-off structure, namely the configuration

of the two-person game, and that of the network are

comparable. Then, altruism does not develop. Third,

when participation is very costly, initial strategies of cold

players have long transients and propagate to hot players.

With small and large participation costs, the network rather

than the local pay-off structure determines evolutionary

dynamics. In the intermediate regime, evolution is most

sensitive to the local pay-offs.
2. MODEL
We compare effects of two types of networks on the

evolution of cooperation by means of Monte Carlo

simulations. A diluted well-mixed population is modelled

by the regular random graph in which each player has eight

neighbours who are chosen randomly from the popu-

lation. The heterogeneous networks are modelled by

scale-free networks generated by the BA model, in which

the number of neighbours denoted by k follows the power

law p(k)fkK3 (Barabási & Albert 1999). The average

number of neighbours in the scale-free networks is set

equal to 8 for fair comparison with the regular random

graph. Both types of networks consist of nZ5000 players.

To probe the network effect, we consider only two

simple strategies without memory, namely unconditional

cooperation and unconditional defection. The initial

fraction of cooperators is set equal to 0.5. In one

generation, everybody participates in the two-person

game with all the neighbours. The pay-off matrix will be

specified in §3.

Each player tends to copy successful strategies in their

neighbourhood. We apply the update rule compatible with

the replicator dynamics, following the previous literature

(Santos & Pacheco 2005; Santos et al. 2006a,b). Suppose

that player x with kx neighbours has obtained generation

pay-off Px. To update the strategy, x selects a player y among

the kx neighbours with equal probability (Z1/kx). Then, x

copies y’s strategy with probability (PyKPx)/(max(kx, ky)!
(uppermost pay-off in one gameKlowermost pay-off in one
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game)), if PyOPx. The denominator is the normalization

constant so that the replacement probability ranges between

0 and 1. If Py%Px, the strategy of x is unchanged. All the

players experience updating according to this rule synchro-

nously. This completes one generation.

Each evolutionary simulation consists of 5000 gener-

ations. The final fraction of cooperators denoted by c f is

calculatedas the average fractionof cooperatorsbasedon the

last 200 generations of five runs with different initializations

for each network and five different realizations of the

network. When the participation cost is not very large, c f

corresponds to values close to stochastic stationary values.

Otherwise, c f represents transient values.
3. RESULTS
(a) Prisoner’s Dilemma

We start with two well-known pay-off matrices of the

simplified Prisoner’s Dilemma. The first one is given by

1
A

0
@

C D

C 1 0

D T 0

:
ð3:1Þ

The entries of equation (3.1) indicate the pay-off that the

row player gains when playing against the column player.

The first (second) row and column correspond to

cooperation (defection). The Prisoner’s Dilemma arises

when TO1, and larger T results in more defectors. With

participation cost h, the pay-off matrix becomes

1K h Kh

TK h Kh

 !
: ð3:2Þ

Note that introducing h does not trespass the notion of the

Prisoner’s Dilemma as far as TO1.

Actually, the game defined by equation (3.1) or (3.2)

lies on the boundary between the snowdrift game analysed

in §3b and the Prisoner’s Dilemma. Therefore, we also

examine another standard pay-off matrix of the generic

Prisoner’s Dilemma given by

1
A

0
@

C D

C bKc Kc

D b 0

;
ð3:3Þ

where bOc. With the participation cost, equation (3.3) is

transformed to

1KrK h KrK h

1K h Kh

 !
; ð3:4Þ

where rZc /b is the cost-to-benefit ratio. In the following, we

refer to numerical results for the pay-off matrix given by

equation (3.2). The results that are qualitatively the same as

the following are obtained for equation(3.4) (as shown in the

electronic supplementary material figure 1b–d ).

The fraction of cooperators c f is not affected by h on the

regular random graph (electronic supplementary material

figure 1a). Since each player has the same number of

neighbours, participation cost does not differentiate the

players. In contrast, h drastically affects c f for the scale-free

networks, as shown in figure 1a. In figure 1b, c f for the scale-

free networks relative to c f for the regular random graph is

plotted. We identify three qualitatively different regimes in
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Figure 1. The Prisoner’s Dilemma on the scale-free networks with participation costs. The pay-off matrix is represented by
equation (3.2). (a) The final fraction of cooperators c f. (b) c f for the scale-free networks shown in (a) Kc f for the regular random
graph shown in the electronic supplementary material figure 1a.
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Figure 2. The effect of the number of neighbours in the Prisoner’s Dilemma on the scale-free networks. (a) The average
generation pay-off and (b) the average number of flips are plotted in terms of the number of neighbours that a player has. Note
that the log scale is used for the abscissa of (b) for clarity. The lines correspond to hZ0 (thinnest line), 0.2, 0.23, 0.24, 0.25, 0.3
and 0.5 (thickest line). The pay-off matrix is given by equation (3.2) with TZ1.5.
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terms of h, which roughly correspond to (I) h!0.24, (II)

0.24%h!2 and (III) hR2. The transition between (II) and

(III) is fairly gradual.
(i) Regime (I): costless participation

When h!0.24, participation is inexpensive, and hot

players such as hubs are strong competitors regardless of

the strategies of their cold neighbours. The pay-off of a

player increases linearly with the number of contacts, as

shown by thin lines with positive slopes in figure 2a. In

particular, cooperation spreads from hot cooperators to

their cold neighbours, the local density of cooperators

increases, and hot cooperators gain more by mutual

cooperation. Cooperation triggered by hot players is self-

promotive. Defective hot players may also win for a

moment. However, defection then prevails in their

neighbourhood so that hot defectors can no longer exploit

the neighbours owing to mutual defection. This results in

a null generation pay-off of hot defectors so that they can

be outperformed by their cold neighbours. A hot player

sticks to cooperation but not to defection.

In sum, heterogeneous networks enhance altruism,

which recovers the previous work corresponding to hZ0

(Santos & Pacheco 2005, 2006; Santos et al. 2006a,b). Note

that this regime extends to h!0, i.e. when gifts are given for

participation so that everyone wins a positive pay-off.

To illuminate on different dynamics of hot and cold

players, we measure how often players flip the strategy.

The average number of flips throughout the evolutionary

run (including the contribution from both transients and

stationary states) is shown in figure 2b. Colder players

experience more flips when h!0.24 (thin lines). They
Proc. R. Soc. B (2007)
myopically follow what hotter players do in both transients

and stationary states. Cooperation on hubs is stabilized in

an early stage, yielding less flips of hotter players.

(ii) Regime (II): moderately expensive participation

Interestingly, cold players spread their strategies to hot

players when hR0.24 (regimes (II) and (III)), which is

opposite to what happens in regime (I). As a result,

enhanced cooperation diminishes, even with a relatively

small participation cost.

Regime (II) is defined by small to intermediate

h(0.24%h!2). Now, the local pay-off structure as well

as the network topology is relevant. When hZ0.3, scale-

free networks surpass the regular random graph in terms

of the number of cooperators only for 1%T%1.4. When

hZ0.6, this range shrinks to 1%T%1.1. The privilege of

scale-free networks is entirely lost, when hZ1. In regime

(II), the pay-off of a player linearly decreases with the

number of contacts (thick lines with negative slopes in

figure 2a). Consistent with this, hot players flip strategies

more often than cold players (thick lines in figure 2b).

Hubs no longer conduct the dynamics.

(iii) Regime (III): costly participation

When h is roughly greater than 2, participation is really

costly. Then, cold players with any strategy surpass hot

players and govern the dynamics. This is not because cold

players are tactical but because they play less often and lose

less than hot players do. Strategies of cold players are not

often replaced owing to the small number of neighbours.

Consequently, cold players persist in their initial strategies,

actually up to more than 300 000 generations. In the
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meantime, strategies of cold players tend to spread to hot

neighbours. As a result, c f, which is measured at 5000

generations, is almost the same as the initial fraction of

cooperators (Z0.5) regardless of T (figure 1a). Figure 1b

indicates that c f is larger for the scale-free networks than for

the random graph, but this is due to long transients. After a

very long period, the fraction of cooperators will be smaller

than c f shown in figure 1a to eradicate the spurious

advantage of scale-free networks.
(b) Snowdrift game

The snowdrift game, which is also known as the chicken

game or the hawk–dove game (Sugden 1986; Hauert &

Doebeli 2004), is illustrated as a situation of two drivers

caught in a snowdrift. For the two cars to get out, which is

equivalent to pay-off b (more than 1) for each driver, the

snow must be shovelled away. A total effort of unity must

be invested to this task. Two players may cooperate to

share the cost so that each pays half, or one player may

cover the full cost. Otherwise, both players miss b.

Cooperation benefits not only the opponent but also the

focal player itself. Different from the Prisoner’s Dilemma

in which defection is beneficial, in the snowdrift game,

cooperation can deserve even when the opponent defects.

If the participation is free, the pay-off matrix of the

snowdrift game is given by

1
A

0
@

C D

C bK1=2 bK1

D b 0

:
ð3:5Þ

In this case, heterogeneous networks reinforce evolution of

cooperation as in the Prisoner’s Dilemma (Santos &

Pacheco 2005; Santos et al. 2006a,b). Without dismissing

the structure of the snowdrift game, the participation cost

translates the pay-off matrix to the following form:

bK1=2K h bK1K h

bK h Kh

 !
: ð3:6Þ

As shown in the electronic supplementary material

figure 2, the participation cost h does not influence c f on

the regular random graph. The fraction of cooperators

converges to a value close to the theoretical estimate

c fZ1Kr, where rZ1/(2bK1) is the cost-to-benefit ratio

(Sugden 1986; Hofbauer & Sigmund 1998; Hauert &

Doebeli 2004). If cooperation is relatively costly with a

small b (large r), cooperators decrease in number.
Proc. R. Soc. B (2007)
On heterogeneous networks, how the fraction of

cooperators varies as a function of r depends on the

participation cost. We again find three regimes as shown in

figure 3. The scale-free networks host more cooperators

than the regular random graph only when h is near zero or

negative (regime (I)). The advantage of the scale-free

networks is neutralized by intermediate h (roughly speak-

ing, hy1), which defines regime (II). Note that the

reduction of cooperation is not as much as that for the

Prisoner’s Dilemma. With large h (roughly speaking,

hR2), c f is rather insensitive to the local pay-off structure

due to long transients (regime (III)).
(c) General two-person games

With the participation cost incorporated, general sym-

metrical two-person games with two strategies are

represented by

1
A

0
@

C D

C RK h SK h

D TK h PK h

:
ð3:7Þ

In accordance with the previous sections, we denote by

cooperation (defection) the strategy corresponding to the

first (second) row and column. As T increases, players are

tempted to defect, and c f decreases. As S decreases,

players would refuse cooperation to avoid exploitation by

defectors. Therefore, c f decreases. The Prisoner’s

Dilemma, the snowdrift and stag hunt games are defined

by TOROPOS, TOROSOP and ROTOPOS, respect-

ively. The Prisoner’s Dilemma usually accompanies

another condition 2ROTCS so that mutual cooperation

is more beneficial than alternating unilateral cooperation.

Multiplying each element of equation (3.7) by a

common constant modifies just the time-scale of

evolution. Accordingly, there are three free parameters in

the pay-off matrix, which are chosen to be T, S and h, while

we set RZ1 and PZ0.

In figure 4a, c f for hZ0 is plotted in the T–S parameter

space for the regular random graph. As expected, the

number of cooperators decreases with Tand increases with

S. The results are independent of h. For the scale-free

networks, we plot c f in figure 4b–e for four values of h (also

see electronic supplementary material figure 3 for the

direct comparison of c f for the scale-free networks and c f

for the regular random graph). We confirm the existence

of the three regimes, extending the results shown in figures

1 and 3. First, as shown in figure 4b, scale-free networks
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promote evolution of cooperation when the participation

is costless (Santos et al. 2006a). Cooperation is strength-

ened in the Prisoner’s Dilemma (TO1, S!0), the

snowdrift game (TO1, SO0) and also the stag hunt

game (T!1, S!0). Second, the advantage of the

heterogeneity is lost for a wide range of T and S, when

hZ0.5 (figure 4c) and hZ1 (figure 4d ). Third, the

transient is very long when participation is costly (hZ2).

This allows defectors to survive for a long time even

without dilemma (SO0, T!1) and considerable coopera-

tors to survive under the Prisoner’s Dilemma (figure 4e).
4. DISCUSSION
We have discovered that the participation cost, which is

irrelevant in well-mixed populations and on homogeneous

networks including the regular lattices, casts a dramatic

effect on evolutionary dynamics on heterogeneous net-

works. When participation is nearly free (regime (I)),

heterogeneous networks promote cooperation (Durán &

Mulet 2005; Santos & Pacheco 2005, 2006; Santos et al.

2006a,b). This is because the cooperation on hot players is

robust against invasion of whatever strategies of cold

players. Even if a cold player is good at exploiting

cooperators in the neighbourhood, the aggregated pay-off
Proc. R. Soc. B (2007)
would be much smaller than that of a hot player that would

earn a lot just by playing the game many times. Hot players

are leaders, and cold players are myopic followers.

However, this phenomenon is not robust against variation

in participation costs, which is consistent with the loss of

cooperation under positive affine transformation of the

pay-off matrix (Tomassini et al. 2006). When the

participation cost is intermediate (regime (II)), coopera-

tors do not really increase and even decrease on

heterogeneous networks. When participation is costly

(regime (III)), hot players myopically follow cold players.

In regimes (I) and (III), not local pay-off structure but

network structure governs evolution. The local pay-offs are

relevant only in regime (II), for which cooperation is not

enhanced by heterogeneous networks. Regimes (II) and

(III), which have been largely unexplored, may be relevant

in, for example, environmental problems, political conflicts

and human relationships. In these situations, players are

often forced to play and incur participation costs. In other

words, the best one could get may be the least disastrous,

but not really wonderful, solution.

For replicator-type and many other update rules in

well-mixed populations, evolution is invariant under

uniform addition of a constant to the pay-off matrix
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(e.g. participation cost). Then, a game in regimes (II) and

(III) can be translated into a game in regime (I). However,

this operation is disallowed for heterogeneous networks.

Since multiplying the pay-off matrix by a positive constant

alters just the evolutionary time-scale in either case, there

are two free parameters for two-person games in

homogeneous populations, whereas there are three of

them in heterogeneous populations (e.g. S, Tand h as used

in figure 4).

The present results can be generalized in some aspects.

First, two-person games can be asymmetrical. Second, the

update rule does not have to be of a replicator type

(Hofbauer & Sigmund 1998; Ohtsuki et al. 2006) as far as

the reproduction rate is not extremely nonlinear in the

generation pay-off. Third, large noise would blur but

would not break down the three regimes. For example,

irrational actions may cause hot cooperators, which are

stable with small participation costs and small noise, to

defect and elicit upsurges of defectors nearby. However,

noise does not overturn the fact that hot (cold) players are

better off for small (large) participation costs. Fourth,

network models can be arbitrary. For example, the scale-

free networks based on the configuration model (without

growth and preferential attachment) and the Erdös–Rényi

random graph promote altruism in regime (I), albeit to a

lesser extent than the BA model (Santos & Pacheco 2005;

Santos et al. 2006a,b). These heterogeneous networks as

well as the BA model do not enhance altruism in regimes

(II) and (III) (data not shown).

The present results also have limitations. First, we have

only assumed memoryless strategies, namely unconditional

cooperators and unconditional defectors. Second, the

networks have been static. In coevolutionary dynamics in

which players form and sever links aswell as play games, only

regime (I) has been considered, a main conclusion being

enhanced cooperation (Skyrms & Pemantle 2000; Eguı́luz

et al. 2005; Zimmermann & Eguı́luz 2005; Santos et al.

2006c). In regime (III), for example, everybody must sever

links to be loners (Goyal & Vega-Redondo 2005; for the role

of loners, also refer to Hauert et al. 2002). Third, we have

used the additive pay-off (Nowak et al. 1994; Abramson &

Kuperman 2001; Ebel & Bornholdt 2002; Ifti et al. 2004;

Santos & Pacheco 2005, 2006; Durán & Mulet 2005; Santos

et al. 2006a,b). An alternative is to use the average pay-off, or

division of the generation pay-off of each player by the

number of neighbours (Kim et al. 2002; Santos & Pacheco

2006; Taylor & Nowak 2006). The average pay-off is not

affected by the number of neighbours and hampers the

enhanced altruism on heterogeneous networks (Santos &

Pacheco 2006; Tomassini et al. 2006). We have adopted the

additive pay-off scheme because its intuitive meaning is

clearer than the average pay-off. These topics warrant

future work.

We thank Hisashi Ohtsuki and Eizo Akiyama for their
valuable discussions and critical reading of the manuscript.
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