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Abstract
Objective—Arsenic is a pervasive contaminant in underground aquifers worldwide, yet
documentation of health effects associated with low-to-moderate concentrations (<100 μg/L) has
been stymied by uncertainties in assessing long-term exposure. A critical component of assessing
exposure to arsenic in drinking water is the development of models for predicting arsenic
concentrations in private well water in the past; however, these models are seldom validated. The
objective of this paper is to validate alternative spatial models of arsenic concentrations in private
well water in southeastern Michigan.

Methods—From 1993−2002 the Michigan Department of Environmental Quality analyzed arsenic
concentrations in water from 6,050 private wells. This dataset was used to develop several spatial
models of arsenic concentrations in well water: proxy wells based on nearest neighbor relationships,
averages across geographic regions, and geostatistically-derived estimates based on spatial
correlation and geologic factors. Output from these models was validated using arsenic
concentrations measured in 371 private wells from 2003−2006.

Results—The geostatisical model and nearest neighbor approach outperformed the models based
on geographic averages. The geostatistical model produced the highest degree of correlation using
continuous data (Pearson's r=0.61; Spearman's rank ρ=0.46) while the nearest neighbor approach
produced the strongest correlation (κweighted=0.58) using an a priori categorization of arsenic
concentrations (<5, 5−9.99, 10−19.99, ≥20 μg/L). When the maximum contaminant level was used
as a cut-off in a two-category classification (<10, ≥10 μg/L), the nearest neighbor approach and
geostatistical model had similar values for sensitivity (0.62−0.63), specificity (0.80), negative
predictive value (0.85), positive predictive value (0.53), and percent agreement (75%).

Discussion—This validation study reveals that geostatistical modeling and nearest neighbor
approaches are effective spatial models for predicting arsenic concentrations in private well water.
Further validation analyses in other regions are necessary to indicate how widely these findings may
be generalized.
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INTRODUCTION
Elevated levels of arsenic in drinking water have been detected in nearly every country, with
concentrations frequently exceeding the World Health Organization guideline and United
States (US) maximum contaminant level (MCL) of 10 μg/L in many places, including the
Bengal basin, the Mekong basin, Taiwan, Chile, and Argentina (Smedley and Kinniburgh,
2002). Arsenic occurs naturally in groundwater from dissolution of arsenic-bearing mineral
constituents in underground aquifers, with concentrations typically ranging from <1−1000
μg/L. Elevated levels of arsenic are cause for concern because arsenic is associated with a
number of adverse health outcomes, including several types of cancer, vascular diseases,
dermatological ailments, diabetes, respiratory diseases, cognitive decline, and infant mortality
(Chen et al., 1995; Chiou et al., 1997; Hopenhayn-Rich et al., 2000; Mazumder et al., 2005;
Rahman et al., 1998; Rahman et al., 2006; Tseng, 1977; Wasserman et al., 2004; Yang et al.,
2003).

Mobilization of arsenic from geological formations into groundwater is driven by a host of
biogeochemical and hydrologic factors. These factors include sediment mineralogy, well
depth, microbial oxidation or reduction of arsenic, competing elemental species for sorption
sites, groundwater recharge, groundwater flow path, and presence of fractures in bedrock
formations (Ayotte et al., 2006; Ford et al., 2006; Harvey et al., 2006; Smedley and Kinniburgh,
2002; Van Geen et al., 2003; van Geen et al., 2006). These factors are often highly variable
between wells and therefore have been difficult to incorporate into models for predicting
arsenic concentrations in well water (Ayotte et al., 2006; Van Geen et al., 2006).

In epidemiological studies, accurate and reliable estimates of arsenic concentrations at
previously used wells are critical for assessing exposure in individuals who change residences
and water sources. Given the challenges in building predictive models based on
biogeochemical and hydrologic factors, research teams have adopted a variety of spatial
modeling techniques for predicting arsenic concentrations in private wells. These models rely
on the spatial pattern of measured arsenic concentrations in generating predictions. For
example, studies of lung cancer, bladder cancer, and hypertension in Taiwan relied on average
levels of arsenic in well water in villages to estimate past exposure (Chen et al., 1995; Chen et
al., 2003; Chen et al., 2004). In a bladder cancer study conducted in the western US, arsenic
concentrations were averaged for all wells within the same geographic region (US Public Land
Survey-defined Sections) and of similar depth as a well from a past residence (Steinmaus et
al., 2003). In an Argentinean study of bladder cancer, proxy wells drilled into a common aquifer
were used to estimate arsenic concentrations for a past residence (Bates et al., 2004). In
Michigan and Bangladesh, geostatistical models were developed to predict arsenic
concentrations in well water (Goovaerts et al., 2005; Hassan et al., 2003; Serre et al., 2003).
The predictive capacity of these different spatial models, however, has yet to be evaluated.

Arsenic concentrations in groundwater as high as 335 μg/L were first reported in southeastern
Michigan in 1981 (MDPH, 1982). Since then, arsenic has been identified in unconsolidated
and bedrock aquifers throughout southeastern Michigan, with concentrations frequently
exceeding the US MCL (Haack and Treccani, 2000; Kim et al., 2002; Slotnick et al., 2006).
This region has a population of about 2.8 million people, with 1.6 million people relying on
groundwater as their drinking water source, and an estimated 230,000 people exposed to arsenic
≥10 μg/L (Meliker et al., 2007). An ongoing bladder cancer case-control study is being
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conducted in this region, and estimates of arsenic concentrations in past private wells are
required for lifetime exposure reconstruction.

This paper presents a quantitative comparison of the ability of different spatial models to predict
arsenic concentrations in private well water of southeastern Michigan. A state database of
arsenic concentrations in private wells is used to build predictive models based on nearest
neighbor relationships, averages across geographic regions, and geostatistics. The predictive
ability of these models is then compared using a separate validation dataset of arsenic
concentrations from private wells in the same region. The results can be used to place limits
on the validity of various spatial models that have been featured in exposure/risk assessments.

MATERIALS AND METHODS
Training Dataset

Data extracted from the Michigan Department of Environmental Quality (MDEQ) arsenic
database were used to construct models of arsenic concentrations in private well water. From
1993−2002, MDEQ collected water from 6,050 unique untreated private wells at single-family
dwellings in eleven counties of southeastern Michigan (Genesee, Huron, Ingham, Jackson,
Lapeer, Livingston, Oakland, Sanilac, Shiawassee, Tuscola, and Washtenaw) (Figure 1a).
Arsenic measurements from all of these 6050 wells are used in the training dataset. From 1993
−1995 the samples were analyzed for arsenic in a state laboratory using graphite furnace atomic
absorption spectrometry (AAS) and hydride flame (quartz tube AAS); since 1996 inductively
coupled plasma/mass spectrometry (ICP/MS) was used. Comparison of analytic techniques on
public supply wells revealed strong correlation between analytic methods (ρ=0.88; P<0.001)
(Meliker et al., 2007). Wells were analyzed at the request of the homeowner and, therefore,
were preferentially sampled in higher arsenic regions, a sampling pattern also found in other
States (Peters et al., 1999). In addition, quality control of water sampling varied through time.
Approximately 10% of the measurements (622 observations) were below the detection limit
and their values were set to half the value of the detection limit for the assay technique in use
at that time; that is 0.15 μg/L for 10 wells, 0.5 μg/L for 565 wells, and 1.0 μg/L for 47 wells.
No temporal trend was detected, with the yearly medians oscillating between 1.0 (for 1993)
and 6.5 (for 1997).

Models for Predicting Arsenic Concentrations in Private Well Water
Geographic Averages in Different Regions—In the 1800s, the US Public Lands Survey
designated geographic regions called townships and sections in many States, including
Michigan (NRC, 1982). The eleven-county study area of southeastern Michigan was
partitioned into 36 square mile (∼95.0 square kilometer) townships, and 1 square mile (∼2.6
square kilometer) sections. Sections were selected as a geographic level of analysis because
section-based estimates were calculated in another study of lifetime arsenic exposure
(Steinmaus et al., 2003); however, since estimates were not available for every section in the
study area (due to data sparsity in rural areas), estimates were also calculated at the township
level. For each township and section, the arithmetic mean of arsenic concentration was
calculated from the training dataset. Median values were also calculated and produced similar
results in the validation analyses; therefore, only results using the arithmetic mean are reported.
The number of wells with arsenic values in each township ranged from 0−265, with an average
of 28 wells per township. In each section, up to 21 wells were associated with arsenic
measurements, but there were no arsenic data for 50% of the sections.

Nearest Neighbor Proxy Wells—In the nearest neighbor approach, the well in the training
dataset that was nearest a well in the validation dataset was selected using ArcGIS (version
8.1, ESRI, Redlands, CA) and Hawth's Analysis Tool for ArcGIS
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(http://www.spatialecology.com/htools/tooldesc.php); the arsenic concentration from the
nearest neighbor was then used for the estimate. The distance of the nearest neighbor well to
the validation well ranged from < 0.1 km – 8.15 km, with 33% of the proxy wells within 0.5
km and 59% of the proxy wells within 1 km. Averages of all nearest neighbors within 0.5 km
were also calculated but produced similar results in the validation analyses; therefore, only
results using the first nearest neighbor are reported.

Geostatistical Model—The development of the geostatistical model is described in detail
elsewhere (Goovaerts et al. 2005). Briefly, the geostatistical model capitalizes on the spatial
correlation between arsenic values to make predictions at unsampled locations. A soft indicator
kriging approach was adopted, incorporating the spatial pattern in the arsenic data as well as
secondary data such as geographic boundaries of different types of bedrock and unconsolidated
geologic formations. A cell-declustering technique was used to account for the uneven
sampling of the training dataset (Deutsch and Journel, 1998). In the declustering technique,
the study area was divided into rectangular cells, and each observation within a cell was
assigned a weight inversely proportional to the number of samples within that cell. The
geostatistical model predicts arsenic concentration for 500 × 500 square meter pixels.

Validation Dataset
The models for predicting arsenic concentrations in private wells were validated using samples
collected between 2003 and 2006 from 371 private wells of home residences in the study area.
Homes were selected based on participation in a population-based bladder cancer case-control
study. Case participants were recruited from the Michigan State Cancer Registry and controls
were selected using a random digit dialing procedure and frequency matched to the cases by
age, race, and gender. Homes of participants served by private well water were included in this
dataset, reflecting an estimate of a population-based distribution.

The water sampling and analytic protocols have been described elsewhere (Slotnick et al.,
2006). In brief, a water sample was collected prior to any treatment systems either from the
home tap, basement, or outside spigot; any hosing was removed prior to sample collection.
Water was run for two minutes prior to sample collection and collected directly into acid-
washed 60 ml low-density polyethylene (LDPE) bottles. Samples were stored on ice in transit,
acidified with 100 μL trace-metal grade HNO3 (Fisher Chemical) in the lab, and refrigerated
until analysis. One field blank and replicate were collected each day for quality control
purposes, resulting in blanks and replicates for 15% of the drinking water samples analyzed.
Samples were analyzed for total arsenic at the University of Michigan, School of Public Health
by ICP-MS (Agilent Technologies Model 7500c). Prior reports using these data have indicated
high reproducibility and minimal measurement error (Slotnick et al., 2006). The average MDL
for arsenic was calculated as 0.02 μg/L (n=17); a value of one-half the average MDL (0.01
μg/L) was assigned for water samples below detection limit.

Statistical Analyses
The validation dataset was compared with arsenic concentrations generated by the predictive
models. Agreement between predicted and measured concentrations was analyzed using both
continuous and categorical scales.

On the continuous scale, Pearson (r) and Spearman rank (ρ) correlation coefficients were
calculated between measured and predicted arsenic concentrations using Statistical Package
for Social Science (version 10.1; SPSS, Inc., Chicago, IL). Scatter-plots were constructed to
display the degree of over- and under-estimation associated with the different models. Spatial
autocorrelation was examined in the residuals of the predictive models to assess whether any
spatial pattern remained in the error terms. Moran's I analysis using five nearest neighbors was
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conducted using Space Time Intelligence System (Version 1.3; Terraseer, Inc., Crystal Lake,
IL).

Agreement between categories of measured and predicted arsenic concentrations was
quantified using the weighted kappa statistic (κw), which measures the amount of agreement
between two measures beyond that expected by chance (Szklo and Nieto, 2000). Arsenic
concentrations were categorized a priori to reflect cut-offs commonly used in epidemiologic
studies of low-to-moderate arsenic levels in drinking water: < 5.00 μg/L, 5.00−9.99 μg/L, 10.0
−19.99 μg/L, and ≥ 20.00 μg/L. Weighted kappa values and their 95% confidence intervals
were calculated with Statistical Analysis System (version 8.0; SAS Institute, Inc., Cary, NC).
Full weight (1.00) was assigned for perfect agreement between categories for measured and
predicted arsenic values. A weight of 0.75 was assigned for disagreement between adjacent
categories, a weight of 0.5 for disagreement across two categories, and a weight of 0.25 for
disagreement across three categories.

Arsenic data were also categorized dichotomously using the US MCL (10 μg/L) as the cut-off
value. Measures of sensitivity, specificity, positive predictive value (PPV), negative predictive
value (NPV), and percent agreement were calculated for the different models. Sensitivity is
defined as the proportion of wells predicted by the models to contain arsenic ≥ 10 μg/L, among
those measured in the validation dataset with ≥ 10 μg/L arsenic. Specificity is defined as the
proportion of wells predicted to contain arsenic < 10 μg/L, among those measured with < 10
μg/L arsenic. PPV is defined as the proportion of wells measured with arsenic ≥ 10 μg/L, among
those predicted to contain ≥ 10 μg/L arsenic. NPV is defined as the proportion of wells
measured with arsenic < 10 μg/L, among those predicted to contain < 10 μg/L arsenic.

RESULTS
The training dataset used to construct the predictive models has an arithmetic mean arsenic
concentration of 11.89 μg/L, and a median of 4.65 μg/L (Table 1). The arsenic concentrations
in the validation dataset are lower, with a mean of 7.69 μg/L and median equal to 2.30 μg/L.
The training and validation datasets display similar geographic distribution, with elevated
concentrations most frequently located toward the center of the study area, and lower
concentrations on the outer parts of the area (Figures 1a and 1b). The map generated by the
geostatistical model also reflects this spatial pattern (Figure 1c).

For all four models, the predicted values were significantly correlated with the concentrations
measured in the validation wells (p<0.001) (Figure 2). The geostatistical model resulted in the
highest correlation with Pearson's r = 0.61 and Spearman's ρ = 0.46 (Figure 2). The nearest
neighbor approach produced r = 0.46 and ρ = 0.35, slightly better than the predictions of the
township mean which led to r = 0.41 and ρ = 0.35. The correlation was higher using the section
mean, r = 0.50, ρ = 0.42, although not as high as that produced from the geostatistical model.
The section mean, however, could only be calculated using a subset of 186 wells. The other
validation wells were located in sections that were not in the training dataset, hence no data
were available for estimating the section mean in these areas. For this subset of 186 wells, the
correlation was still highest using the geostatistical model (r=0.63, ρ = 0.53). Compared with
the section mean, the correlation was similar using the nearest neighbor approach (r=0.50, ρ =
0.36) and slightly lower using the township mean (r=0.45, ρ = 0.40).

Significant correlations (p<0.001) were also found when the analysis was conducted on four
categories of concentration values defined as the following: <5 μg/L, 5−9.99 μg/L, 10−19.99
μg/L, and ≥20 μg/L (Table 2). In contrast to the correlation analyses on the continuous scale,
the nearest neighbor approach generated the strongest agreement between measured and
predicted values, as measured by the weighted Kappa statistic: κw = 0.58. For the other
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approaches, the following values were obtained: for the geostatistical model κw = 0.49, the
township mean κw = 0.39, and the section mean κw = 0.54. When these statistics were calculated
on the subset of data with section means available (N=186), the agreement remained strongest
for the nearest neighbor approach (κw = 0.60), was similar in strength using the geostatistical
model (κw = 0.53), and remained lower using the township mean (κw = 0.37).

Splitting data into two categories using a cut-off of 10 μg/L (the US MCL) resulted in slightly
better agreement using both the geostatistical model and nearest neighbor approach compared
with the other approaches (Table 3). For these two models, sensitivity ranged from 0.62−0.63,
specificity = 0.80, PPV = 0.53, NPV = 0.85, and percent agreement = 75%. In other words,
these models are ∼85% accurate at predicting arsenic concentrations below 10 μg/L, and
∼53% accurate at predicting concentrations ≥ μg/L. The models using geographic averages in
sections and townships resulted in slightly lower values for all of these measures.

The residuals of the geostatistical model and the nearest neighbor approach were examined for
spatial pattern and none was detected (Figure 3). Moran's I was not significantly different from
zero: Moran's I = 0.019 (p = 0.18) for the residuals of the geostatistical model, and Moran's I
= −0.012 (p = 0.34) for the residuals of the nearest neighbor approach. Therefore, remaining
variability in the data was not likely to be captured using additional spatial modeling
techniques. In addition, the close proximity of wells with both positive and negative residuals
(Figure 3) indicates substantial variation in arsenic concentrations over short distances.

DISCUSSION
Our study is the first to compare different spatial models of arsenic concentrations in private
well water. As monitoring of groundwater for arsenic continues worldwide, a growing number
of regions are being identified as having elevated concentrations. Effective models for
predicting arsenic concentrations in private well water are critical for identifying high-risk
regions and for improving exposure assessment in environmental epidemiologic studies. We
assessed model validity using an independent validation dataset of 371 private wells. The
spatial models include those commonly applied to predict arsenic: a geostatistical model, a
nearest neighbor approach, and arithmetic averages in US Public Lands Survey-defined
townships and sections (Bates et al., 2004; Chen et al., 1995; Chen et al., 2003; Chen et al.,
2004; Goovaerts et al., 2005; Hassan et al., 2003; Serre et al., 2003; Steinmaus et al., 2003).
These models were built on a rich dataset of 6050 arsenic measurements collected over a ten-
year period in southeastern Michigan. All models resulted in significant correlations between
measured and predicted concentrations on both continuous and categorical scales. Overall, the
geostatistical model and nearest neighbor approach outperformed models based on geographic
averages in townships or sections.

Of the different models, the geostatistical approach yielded the strongest correlation coefficient
(r=0.61), similar in magnitude to that often reported in validations of biomarkers and food
frequency questionnaires (r=0.4−0.7) (Cade et al., 2004; Slotnick and Nriagu, 2006; Willett et
al., 1985). The nearest neighbor approach resulted in the highest correlation (κw = 0.58) when
data were assigned to discrete classes of concentration classified a priori (<5 μg/L, 5−9.99
μg/L, 10−19.99 μg/L, and ≥20 μg/L); the value of this κw indicates a fair-to-good range of
agreement (Szklo and Nieto, 2000). The section mean consistently out-performed the township
mean, and performed comparably to the other two approaches; however, only 50% of the wells
in the validation dataset could be estimated with the section mean. In areas where the section
mean could be calculated, the geostatistical model and nearest neighbor approach performed
better, presumably because of greater density in the training dataset in those areas.
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The geostatistical model and nearest neighbor approach also performed best in analyses where
data were split into two categories (above or below 10 μg/L, the US MCL). These models
resulted in a 75% agreement, NPV=0.85, PPV=0.53, sensitivity =0.62−0.63, and
specificity=0.80. In comparison, an arsenic regression model built for the New England area
resulted in lower sensitivity (0.37) and higher specificity (0.93) using 5 μg/L as the cut-off
value (Ayotte et al., 2006). NPV and PPV were not reported in the New England study, but
were estimated from the data provided as NPV=0.83, and PPV=0.60, similar to what we report
in this paper using a higher cut-off value (10 μg/L).

The approaches compared in this paper rely explicitly on spatial pattern in arsenic
concentrations. Alternative approaches are available, such as land-use regression (Ayotte et
al., 2006) and Classification and Regression Trees (CART) (Schroder, 2006), in which spatial
variables are classified into distinct categories and used to predict a dependent variable (e.g.,
arsenic) in a-spatial analyses. These approaches fail to explicitly consider the spatial pattern
or proximity of the dependent variable, but rather take advantage of regionally available factors,
such as geology, land use/cover, and hydrology in making predictions (Ayotte et al., 2006).
Factors that vary greatly from well to well, however, such as well depth, are often difficult to
estimate at unsampled locations, and therefore challenging to include in these predictive
models. The geostatistical model presented in our analyses incorporated geologic
characteristics in addition to the spatial pattern of the arsenic concentrations. Future research
should investigate if a model that accounts for additional hydro-geologic factors along with
spatial pattern in arsenic concentrations improves predictive power.

Our analyses are not without limitations. The training dataset was collected under a preferential
sampling scheme in which individuals concerned about high levels of arsenic requested tests
of their well water. The validation dataset was collected under a sampling protocol that
approximated the population density of the study area. This difference in sampling protocols
resulted in a higher average arsenic concentration in the training dataset compared with the
validation dataset (Table 1). Nonetheless, wells were not consistently over-predicted; in fact,
the close proximity of wells with both over- and under-predicted arsenic concentrations (Figure
3) suggests limited consequences from using this preferentially sampled training dataset. This
was true whether or not a declustering procedure was adopted to adjust for the preferential
sampling, as was the case with the geostatistical approach.

The validation dataset was collected from 2003−2006, whereas the training dataset was
collected from 1993−2002. If temporal variability exists in arsenic concentrations in well water,
this could explain some of the differences between predicted and measured concentrations.
However, temporal analyses of arsenic in wells sampled 6−23 months apart revealed little
variability in southeastern Michigan (r=0.91) (Slotnick et al., 2006), consistent with reports of
limited temporal variability from other regions (Cheng et al., 2005; Steinmaus et al., 2005).
Nevertheless, an implicit assumption in the use of these spatial models is that arsenic
concentrations in private wells remain relatively stable over time. Reliable long-term datasets
have yet to be identified for verifying this assumption. Given our findings, the high degree of
spatial variability within each 95 km2 township likely contributes to the error in the township
mean estimate. Using the smaller spatial scale of a section (∼2.6 km2), the estimate improved,
but a section mean was only capable of being calculated for 50% of the wells in the validation
dataset. The nearest neighbor approach used an even smaller spatial scale, with 33% of the
wells within 0.5 km of the nearest neighbor predictor, and resulted in better performance.
Furthermore, the estimate was not constrained by artificial administrative boundaries. The
geostatistical model, on the other hand, took advantage of small scale, medium scale, and large
scale spatial correlation, but produced an estimate no better than the nearest neighbor approach,
which used only small-scale variability. This was surprising given that the geostatistical model
also accounted for bedrock and unconsolidated geologic boundaries. The large nugget effect
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(Goovaerts et al., 2005) and extreme variability in well water arsenic concentrations (Smedley
and Kinniburgh, 2002) may help to explain why these models performed similarly.

The spatial models of arsenic concentrations in private well water presented herein are being
examined for use in an assessment of exposure to arsenic in drinking water at past residences
in an ongoing bladder cancer case-control study in southeastern Michigan. From an
epidemiologic perspective, the predictive power reported here is better than that often reported
for nutritional and environmental biomarkers or food frequency questionnaires. In addition,
the misclassification is likely to be nondifferential as the predictive model will be applied to
past residences of both cases and controls. There are several features of the geostatistical model
that may prove useful for epidemiologic analyses. If researchers are interested in quantifying
exposure misclassification, the geostatistical approach produces a map of variance associated
with the prediction estimate. This variance could then be explored in logistic regression
analyses to assess the effect of misclassification on the results. In addition, the flexibility of
the geostatistical approach to incorporate spatial pattern along with geologic/hydrologic
characteristics could enable future improvements in the modeling approach.

Individual lifetime exposure to arsenic in drinking water is best estimated through direct
measurement at each drinking water source. Unfortunately, direct measurement at major
locations over the life-course is impossible because of (1) cost considerations and (2) wells
that no longer exist. For these reasons, models for predicting arsenic concentrations in private
well water are necessary. These results indicate that the geostatistical model and nearest
neighbor approach were the superior spatial models in predicting arsenic concentrations in
southeastern Michigan groundwater. However, similar validation analyses should be
conducted in other regions to appreciate how widely these findings may be generalized since
the processes responsible for arsenic mobilization differ from one place to another.
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Figure 1.
(a): Training dataset of arsenic concentrations in southeastern Michigan used to build predictive
spatial models; (b) Validation dataset for testing accuracy of predictive models; (c) Resulting
map of estimates from the geostatistical model.
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Figure 2. Scatterplots comparing model predictions with measured arsenic concentrations from
the validation dataset (a) Geostatistical Prediction; (b) Nearest Neighbor Prediction; (c) Township
Mean Prediction; (d) Section Mean Prediction
*p<0.001
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Figure 3. Prediction errors for geostatistical model and nearest neighbor approach
Moran's I analyses specifying five nearest neighbors did not reveal spatial autocorrelation in
the residuals of either model (See text).
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