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ABSTRACT

Pseudoknots are folded structures in RNA molecules that perform essential functions as part of cellular transcription machinery
and regulatory processes. The prediction of these structures in RNA molecules has important implications in antiviral drug
design. It has been shown that the prediction of pseudoknots is an NP-complete problem. Practical structure prediction
algorithms based on free energy minimization employ a restricted problem class and dynamic programming. However, these
algorithms are computationally very expensive, and their accuracy deteriorates if the input sequence containing the pseudoknot
is too long. Heuristic methods can be more efficient, but do not guarantee an optimal solution in regards to the minimum free
energy model. We present KnotSeeker, a new heuristic algorithm for the detection of pseudoknots in RNA sequences as a pre-
liminary step for structure prediction. Our method uses a hybrid sequence matching and free energy minimization approach to
perform a screening of the primary sequence. We select short sequence fragments as possible candidates that may contain
pseudoknots and verify them by using an existing dynamic programming algorithm and a minimum weight independent set
calculation. KnotSeeker is significantly more accurate in detecting pseudoknots compared to other common methods as re-
ported in the literature. It is very efficient and therefore a practical tool, especially for long sequences. The algorithm has been
implemented in Python and it also uses C/C++ code from several other known techniques. The code is available from http://
www.csse.uwa.edu.au/~datta/pseudoknot.

Keywords: RNA pseudoknots; minimum free energy; dynamic programming; heuristic algorithms; minimum weight indepen-
dent set; RNA structure prediction

INTRODUCTION

A central dogma in biology states that sequence determines
structure determines function. This has been successfully
applied to protein tertiary structure prediction. Over the
past decades, the protein folding problem has attracted
worldwide attention from many research groups and is
seen as the holy grail of biochemistry. However, proteins
are not the only important catalytically active macromol-
ecules. It is clear that RNA can no longer be seen solely as a
carrier of genetic information from DNA to proteins. RNA
easily keeps up with the countless functions and structures
proteins exhibit, adopts diverse three-dimensional folds,

and can act like a catalyst. It is an extremely versatile
molecule and facilitates various functions, including trans-
lational regulation, intron splicing, gene expression, and
cell regulation. Novel noncoding RNAs are discovered con-
tinuously and the exciting RNA world is far from being
fully explored.

Recent studies on RNA emphasize the fact that pseudo-
knots are a prevalent structural part, occurring in most
classes of RNA (e.g., mRNA, tmRNA, rRNA, ribozymes,
aptamers) (Staple and Butcher 2005). Pseudoknots are
functionally diverse and can induce viral ribosomal frame-
shift or readthrough, be part of the catalytic core of ribo-
zymes, or promote telomerase activity (Brierley et al. 2007).
Especially retroviruses (e.g., HIV), coronaviruses (e.g., SARS),
and most plant viruses use pseudoknots for proliferation
and replication (Baril et al. 2003; Thiel et al. 2003). This
draws attention to the high relevance of pseudoknots in
antiviral drug design.

RNA secondary structure prediction methods by free
energy minimization require O(n3) time and O(n2) space
using dynamic programming (Zuker and Stiegler 1981).
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However, including a tertiary structure element like the
pseudoknot dampens the optimism of solving the RNA
structure prediction problem. The general pseudoknot
structure prediction problem is NP-complete (Lyngso and
Pedersen 2000). Practical dynamic programming algo-
rithms run in O(n6), O(n5), or O(n4) time for a restricted
class of pseudoknots (Rivas and Eddy 1999; Akutsu 2000;
Dirks and Pierce 2003; Reeder and Giegerich 2004).
Dynamic programming methods for pseudoknot predic-
tion guarantee an optimal solution in regards to the
minimum free energy (MFE) model, yet suffer from two
major drawbacks: a high running time even for a restricted
class of pseudoknots and decreasing accuracy for long se-
quences due to sparse knowledge about pseudoknot ther-
modynamics. Nevertheless, if presented with a sequence
fragment exactly harboring a pseudoknot, dynamic pro-
gramming methods are able to fold it into the correct
structure with high base-pair accuracy (Huang et al. 2005).
Detection of true positive pseudoknots as a first step in
RNA structure prediction can greatly improve the overall
performance. The route followed in this article is to per-
form efficient pseudoknot detection preliminary to struc-
ture prediction. The advantage is clear: if we can find
pseudoknots with high accuracy, the remaining sequence
can be folded in O(n3) time according to the MFE model.

Apart from dynamic programming, several other tech-
niques exist for RNA structure prediction including pseu-
doknots. Early methods comprise Monte Carlo simulations
(Abrahams et al. 1990), genetic algorithms (Gultyaev et al.
1995; van Batenburg et al. 1995), stochastic context-free
grammars (Brown and Wilson 1996; Cai et al. 2003), and
maximum weighted matching (MWM) based on graph

theory (Tabaska et al. 1999). Elaborated ab initio folding
simulations are performed in KineFold (Xayaphoummine
et al. 2003). Recent heuristic procedures include iterated
loop matching (ILM) (Ruan et al. 2004) and HotKnots
(Ren et al. 2005). ILM is a hybrid method employing dy-
namic programming and comparative information, which
iteratively chooses the highest scoring helical region and
adds it to the predicted structure. HotKnots expands this
idea by considering several alternative secondary structures
and returning a fixed number of suboptimal folding sce-
narios. HPknotter is a detection tool for pseudoknots based
on structural matching and dynamic programming kernels
(Huang et al. 2005). PLMM_DPSS was recently designed
for predicting a limited class of pseudoknots with very high
sensitivity (Huang and Ali 2007). All of these heuristic
approaches do not guarantee returning an optimal solution
with regard to the MFE model, however run in reasonable
CPU time.

Overall, there is very high demand for RNA prediction
algorithms including pseudoknots. In this article, we pre-
sent a new approach, called KnotSeeker, for detecting
pseudoknots in primary RNA sequences. Our algorithm
works as follows: Given an RNA sequence, we find se-
quence fragments possibly and exactly harboring a pseu-
doknot using certain criteria. The small number of
candidate pseudoknot sequences is folded by a well-
established dynamic programming algorithm to see
whether they indeed form a stable pseudoknot as the
minimum free energy structure. In a second step, these
verified pseudoknot candidates are tested if they are likely
to exist in the structure with minimal free energy. Only
stable, nonoverlapping pseudoknots are returned as the
final result. The main advantage of this heuristic pseudo-
knot detection is that it handles long sequences fast and
finds the correct pseudoknots with higher accuracy com-
pared to other methods.

A deeper understanding of pseudoknot thermodynamics
will yield better energy parameters and folding results.

FIGURE 1. (A) Representation of RNA secondary structure elements
as intervals on the line. Note that all secondary structure elements can
be nested, but have to be noncrossing. (B) Corresponding secondary
structure.

FIGURE 2. (A) Representation of a pseudoknot on the line. It
consists of two crossing stem intervals. (B) Corresponding pseudo-
knot structure generated by PseudoViewer (Byun and Han 2006).

Pseudoknot detection in long sequences
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However, it is unlikely that this will improve the efficiency
of dynamic programming methods. Hence, the KnotSeeker
detection tool is a substantial improvement and support for
rapid ab initio RNA structure prediction including pseu-
doknots. Additionally, KnotSeeker will benefit from pseu-
doknot thermodynamic parameter improvements in the
future.

RESULTS

RNA structure and pseudoknots

The foundation of RNA structure formation is continuous
base pairing, resulting in so-called helical regions or stems.
RNA comprises various secondary structure elements, e.g.,
single-stranded regions, stacked base pairs, hairpin loops,
multiple loops, interior loops, and bulge loops (Fig. 1).
Naturally, we can represent a stem si with start point ai and
end point bi as an interval on the line. Formally, we define a
stem interval si as follows:

d si = [ai : bi] with an associated stem length len(si).
d [ai, ai + 1, . . ., ai + len(si) � 1] is base-paired with [bi,

bi � 1, . . ., bi � len(si) + 1].

A pseudoknot basically consists of two crossing stems si

and sj (Fig. 2).
In contrast to proteins, RNA can form independently

stable secondary structures, which is crucial for RNA
folding (Brion and Westhof 1997). The common assump-
tion is that starting with the single-stranded sequence, the
majority of secondary structure elements (e.g., hairpin
loops in close vicinity) form that determine tertiary struc-
ture (Tinoco and Bustamente 1999). There are exceptions
to this rule, like secondary structure rearrangements during
RNA folding (Tinoco and Wu 1998). However, it is widely
accepted in the research community that standard RNA

folding is a hierarchical two-step process (Schroeder et al.
2004).

Pseudoknots are tertiary interactions between a loop
region and unpaired residues outside the loop. After
secondary structure formation, nucleotides in a hairpin
loop can base-pair with complementary ones in a single-
stranded sequence. These tertiary contacts result in a so-
called H-type pseudoknot consisting of two stems (S1, S2)
and three loops (L1, L2, L3) (Fig. 3). H-type pseudoknots
are the simplest and most abundant pseudoknot structures.
Over 78% of all 246 in PseudoBase reported pseudoknots
are of H-type (van Batenburg et al. 2000).

Pseudoknot folding and formation is a combination of
thermodynamics, molecular physics, and sequence com-
position. It is essential to survey pseudoknots in three-
dimensional space for a deeper understanding. The A-form
helix forces loops L1 and L3 to span the major groove of S2

and minor groove of S1, respectively (Pleij et al. 1985).
Dependent on the loops, stems, and helical junction, the
A-form geometry can deviate from the standard RNA helix.
The two stems can coaxially stack with an absent loop L2.
Bent and overtwisted pseudoknot conformations also occur
(Giedroc et al. 2000).

Additionally, residues in the loop regions can form
tertiary interactions with nucleotides from the minor and
major grooves. The shallow and wide minor groove allows
tertiary contacts and triple helical regions between S1 and
L3 (Batey et al. 1999). A-minor interactions resulting from
hydrogen bonds between loop adenines and the minor
groove are common (Nissen et al. 2001).

Pseudoknot thermodynamic parameters are not very
well understood. It is assumed that the free energy of
a pseudoknot consists of destabilizing (positive) energy
values for loop regions and stabilizing (negative) energy
values for stem regions (Gultyaev et al. 1999). The stacked

FIGURE 3. Representations of an H-type pseudoknot. (A) General
formation: base-pairing between a loop and single-stranded region.
(B) A coaxially stacked pseudoknot: loop–stem interactions are
indicated with dotted lines. (C) Three-dimensional view of a pseu-
doknot.

FIGURE 4. New approach for pseudoknot detection and details of its
three stages. In the first stage, enf stands for free energy evaluation.
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stem energy for S1 and S2 can be calculated using the addi-
tive sum of the nearest-neighbor model. However, the entro-
pic loop energies for L1 and L3 still have to be estimated.
The loops are not equivalent stereochemically, as they cross
different grooves. The simple nearest-neighbor model also
neglects the important stem–loop correlations (Cao and
Chen 2006). Additionally, stabilizing coaxial stacking and
base triples at the helical junction need to be taken into
account.

Detection of pseudoknots

The detection of pseudoknots must be clearly distinguished
from RNA structure prediction including pseudoknots.
Pseudoknot detection is a self-contained step without simul-
taneous secondary structure prediction aimed to return
only pseudoknots. If pseudoknots can be detected with high
accuracy, the remaining sequence can efficiently be folded
using state-of-the-art secondary structure prediction programs

TABLE 1. Summary of pseudoknot detection results on RNA sequences with less than 300 nt

Sequence pknotsRG KnotSeeker HPknotter ILM

ID nt PK S P r S P r S P r S P r

5SEColi 120 0 — — 0/0 — — 0/0 — — 0/2 — — 0/1
5SDmobilis 133 0 — — 0/0 — — 0/0 — — 0/1 — — 0/1
Bacillus-sub 271 1 0 0 0/0 33.3 41.6 1/1 20 37.5 1/3 0 0 —
BMV 282 4 100 100 1/1 100 100 2/3 100 100 2/6 0 0 —

0 0 100 100 100 100 62.5 62.5
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

BSMV 241 4 100 100 3/3 100 100 3/3 0 0 2/4 0 0 —
100 100 100 100 100 90.9 90 81.8
90 100 0 0 90 100 0 0
0 0 74.2 88.5 0 0 0 0

CAYVV 86 1 0 0 0/1 100 100 1/1 100 100 1/2 0 0 0/2
Cyanophora 290 1 0 0 0/0 66.7 54.5 1/1 66.7 54.5 1/3 0 0 —
DA0260 75 0 — — 0/0 — — 0/1 — — 0/1 — — 0/1
DA1280 73 0 — — 0/0 — — 0/0 — — 0/1 — — 0/1
DY4441 73 0 — — 0/1 — — 0/0 — — 0/3 — — 0/1
Dros-mel 81 0 — — 0/0 — — 0/0 — — 0/1 — — 0/1
GLV 266 1 69.6 69.6 1/2 69.6 69.6 1/3 26.1 66.7 1/4 0 0 —
HDVanti 91 1 0 0 0/0 86.9 71.4 1/1 0 0 0/2 100 66.7 1/1
HDV 216 1 0 0 0/0 90.6 93.5 1/3 31.2 50 1/4 0 0 0/0
Human-mi 110 0 — — 0/0 — — 0/1 — — 0/1 — — 0/1
Human-telo 210 1 0 0 0/1 35.5 50 1/2 0 0 0/2 0 0 —
IBV 220 1 0 0 0/0 72.2 92.9 1/1 0 0 0/3 72.2 68.4 —
NeRNV 287 5 0 0 1/2 100 100 4/4 100 88.9 4/6 0 0 —

0 0 77.8 87.5 44.4 57.1 44.4 57.1
0 0 90 100 40 44.4 0 0
0 0 0 0 0 0 0 0

100 100 100 100 100 100 0 0
satRPV 73 1 81.8 85.7 1/1 81.8 85.7 1/1 0 0 0/1 77.3 68 1/1
STNV1 252 4 0 0 2/2 100 100 3/3 0 0 2/5 0 0 —

50 42.9 100 85.7 100 85.7 0 0
100 100 58.3 42.1 100 100 0 0

0 0 0 0 0 0 90 90
TMVdown 105 2 0 0 0/0 100 95.8 2/2 100 95.8 2/2 0 0 0/1

100 100 100 100 100 100 0 0
TMVup 84 3 71.4 62.5 3/3 71.4 62.5 3/3 71.4 62.5 3/3 85.7 66.7 1/2

77.8 87.5 77.8 87.5 77.8 87.5 0 0
88.9 100 88.9 100 88.9 100 0 0

TMV 214 5 0 0 0/0 77.8 87.5 5/5 77.8 87.5 5/6 0 0 —
0 0 81.8 90 81.8 90 0 0
0 0 88.9 100 88.9 100 0 0
0 0 95.8 100 95.8 100 0 0
0 0 100 100 100 100 0 0

TYMV 86 1 100 80 1/2 100 80 1/1 100 80 1/2 62.5 55.5 1/2

The best results in terms of sensitivity, specificity, and r are marked in bold. PK corresponds to the number of pseudoknots as reported in the
literature.
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in O(n3) time and O(n2) space. There are several programs
for RNA structure prediction including pseudoknots; how-
ever HPknotter is the only tool performing sheer pseudo-
knot detection so far (Huang et al. 2005). HPknotter can
improve RNA secondary structure prediction including
pseudoknots. However, it suffers from a high number of
returned false positive pseudoknots. HPknotter finds pseu-
doknots using the following steps: First, RNAMotif ’s struc-
tural matcher returns a great number of possible pseudoknot
fragments for a given input sequence. The NUPACK energy
calculation tool is used for removing hits with lower non-
pseudoknotted MFE structure. Second, pseudoknot verifi-
cation is performed by pknots, NUPACK, or pknotsRG to
see if a filtered hit indeed folds into the desired pseudoknot
structure. A minimum weight independent set calculation
returns a mutually disjoint pseudoknot set as the result.

The new approach for pseudoknot detection followed
in this article is presented in Figure 4. Unlike HPknotter,
KnotSeeker is based on RNA folding assumptions and free
energy minimization considering stable secondary structure

elements. Detailed descriptions of the three main steps can
be found in the Materials and Methods section.

Experimental results

We tested KnotSeeker on 34 sequences covering various
RNA classes. The sequence lengths range from 73 nucleo-
tides (nt) to 1340 nt. As KnotSeeker is designed for de-
tecting pseudoknots in primary RNA sequences, we report
sensitivity and specificity only for pseudoknotted base pairs
using the following notation as in Baldi et al. (2000):

d Sensitivity S =
100 3 TP

TP + FN

d Specificity P =
100 3 TP

TP + FP

TP (true positive) corresponds to the number of correctly
predicted base pairs in the predicted pseudoknot, FN (false
negative) to the number of base pairs in the published pseu-
doknot that were not predicted, and FP (false positive) to the

TABLE 2. Summary of pseudoknot detection results on RNA sequences longer than 300 nt

Sequence pknotsRG KnotSeeker HPknotter ILM

ID nt PK S P r S P r S P R S P r

BCV 345 1 100 100 1/1 100 100 1/1 100 100 1/3 88.3 100 1/3
EColi 363 4 0 0 0/0 100 100 2/2 100 100 2/6 0 0 —

0 0 0 0 62.5 62.5 0 0
0 0 66.7 57.1 0 0 0 0
0 0 0 0 0 0 42.1 66.7

HPeV1 709 1 54.5 54.5 1/4 100 100 1/8 100 100 1/14 0 0 —
MHV 315 1 85.7 90 1/3 85.7 90 1/2 85.7 90 1/6 38.1 27.6 —
ORSV 419 11 0 0 2/5 90 90 8/8 90 90 8/11 0 0 —

0 0 77.8 87.5 77.8 87.5 0 0
0 0 88.9 88.9 88.9 88.9 0 0
0 0 35.7 41.7 0 0 0 0
0 0 66.7 42.9 100 100 0 0
0 0 88.9 100 88.9 100 0 0
0 0 0 0 68.7 57.9 75 66.7

77.8 87.5 77.8 87.5 77.8 87.5 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

57.1 57.1 57.1 57.1 57.1 57.1 0 0
SARS-TW1 341 1 0 0 0/0 100 100 1/3 100 100 1/5 84.2 64 —
SNV 537 1 0 0 0/1 92.9 100 1/5 92.9 100 1/8 0 0 —
STMV 421 8 0 0 1/1 91.7 91.7 5/6 91.7 91.7 7/10 0 0 —

0 0 100 100 80 100 0 0
0 0 0 0 100 80 0 0
0 0 0 0 0 0 0 0
0 0 0 0 100 90 0 0
0 0 88.9 100 88.9 100 0 0
0 0 63.2 50 63.2 50 0 0

100 100 100 100 100 100 0 0
T2 946 1 100 100 1/1 100 100 1/5 100 100 1/16 0 0 —
T4 1340 1 0 0 0/1 100 100 1/8 100 100 1/17 0 0 —

The best results in terms of sensitivity, specificity, and r are marked in bold. PK corresponds to the number of pseudoknots as reported in the
literature.
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number of incorrectly predicted base pairs in the predicted
pseudoknot. We also report the ratio r = (number of correctly
predicted pseudoknots)/(number of predicted pseudoknots).

We compared the results to three other methods, namely
the dynamic programming algorithm pknotsRG (mfe mode)
(Reeder and Giegerich 2004) and the heuristic approaches
HPknotter (general descriptor) (Huang et al. 2005) and
ILM (Ruan et al. 2004). We also obtained the results
achieved by HotKnots (Ren et al. 2005), which heuristically
finds 20 structures with lowest free energy. However, we
discovered that HotKnots did not return any correct
pseudoknots in the best structure with lowest free energy
for our test sequences. A comparison of the remaining sub-
optimal folding scenarios with the other algorithms would
be biased and thus we excluded HotKnots in our evalua-
tion. We were unable to obtain results from pknots (Rivas
and Eddy 1999) and NUPACK (Dirks and Pierce 2003) due
to running out of memory for sequences longer than 150 nt
and 200 nt, respectively. We discovered that ILM tends to
predict very complex pseudoknots for long sequences.

In many cases, we found that long-range pseudoknotted
helices with several internal H-type pseudoknots cover the
whole sequence. Therefore, it is hard to correctly assign the
ratio r, because the number of predicted pseudoknots is
ambiguous. Whenever this is the case, we omit the r value
for the results obtained by ILM.

The pseudoknot detection results are displayed in detail
in Tables 1 and 2 and the best results for a sequence are

TABLE 3. A comparison of running times for all RNA sequences

ID Length pknotsRG KnotSeeker HPknotter ILM

5SEColi 120 0.3 sec 2.8 sec 20 sec 0.3 sec
5SDmobilis 133 0.4 sec 5.3 sec 34 sec 0.3 sec
Bacillus-sub 271 3.9 sec 10.2 sec 1 min 46 sec 0.9 sec
BCV 345 8.4 sec 3.5 sec 2 min 0.8 sec
BMV 282 4.5 sec 5.9 sec 2 min 8 sec 0.8 sec
BSMV 241 2.3 sec 1.9 sec 1 min 3 sec 0.8 sec
CAYVV 86 0.2 sec 0.6 sec 18 sec 0.2 sec
Cyanophora 290 5.6 sec 3.5 sec 2 min 12 sec 0.9 sec
DA0260 75 0.2 sec 0.6 sec 17 sec 0.2 sec
DA1280 73 0.2 sec 0.5 sec 23 sec 0.2 sec
DY4441 73 0.1 sec 0.5 sec 24 sec 0.2 sec
Dros-mel 81 0.2 sec 0.5 sec 36 sec 0.2 sec
EColi 363 11.1 sec 17.5 sec 1 min 47 sec 1.5 sec
GLV 266 3.5 sec 5.9 sec 1 min 24 sec 0.7 sec
HDVanti 91 0.2 sec 1.9 sec 15 sec 0.3 sec
HDV 216 1.6 sec 12.7 sec 1 min 8 sec 0.5 sec
HPeV1 709 2 min 57 sec 37.6 sec 4 min 39 sec 11 sec
Human-mi 110 0.3 sec 0.6 sec 47 sec 0.3 sec
Human-telo 210 1.7 sec 17.3 sec 1 min 40 sec 0.6 sec
IBV 220 1.9 sec 6.3 sec 1 min 46 sec 0.5 sec
MHV 315 6 sec 3.3 sec 1 min 9 sec 1.1 sec
NeRNV 287 1.2 sec 5.8 sec 1 min 7 sec 0.6 sec
ORSV 419 21.4 sec 11.3 sec 3 min 32 sec 2 sec
SARS-TW1 341 9 sec 3.9 sec 1 min 40 sec 1.2 sec
satRPV 73 0.6 sec 1.2 sec 11 sec 0.2 sec
STMV 421 21.6 sec 9.3 sec 3 min 23 sec 2.3 sec
SNV 537 53.8 sec 26.5 sec 3 min 15 sec 4.7 sec
STNV1 252 3 sec 8.7 sec 1 min 41 sec 0.7 sec
TMVdown 105 0.2 sec 1 sec 24 sec 0.3 sec
TMVup 84 0.2 sec 0.4 sec 20 sec 0.2 sec
TMV 214 1.6 sec 3 sec 1 min 24 sec 0.6 sec
TYMV 86 0.2 sec 0.6 sec 10 sec 0.2 sec
T2 946 9 min 28 sec 47.7 sec 5 min 24 sec 34 sec
T4 1340 41 min 3 sec 1 min 39 sec 7 min 39 sec 1 min 54 sec

FIGURE 5. GUUGle output, corresponding structural interval rep-
resentation and hairpin loop with free energy. Note that the stem
interval for the GUUGle output correlates to si = [i : j + k � 1].
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highlighted. One should note that more
than one method can give best results
for one sequence. For sequences shorter
than 300 nt, pknotsRG gives best results
for 10 of the 24 sequences. HPknotter
and ILM show poor performance, dom-
inating on only 2 and 1 sequences,
respectively. KnotSeeker clearly outper-
forms the other methods with best
results on 21 of the 24 sequences. For
the set of long sequences (>300 nt),
there is a similar scenario. KnotSeeker
achieves the best results on 9 of the 10
sequences, whereas pknotsRG and
HPknotter dominate on only two of
the 10 sequences. Both sensitivity and
specificity of the ILM predictions are
significantly lower than those for the
other methods.

The results emphasize that the strat-
egy followed by KnotSeeker and
HPknotter greatly improves the pseu-
doknot prediction results. The dynamic
programming algorithm pknotsRG
misses most pseudoknots in the test
sequences. This illustrates the limita-
tions of the dynamic programming
approach and underlying energy model
for long sequences. However, pknotsRG
has very high sensitivity and specificity
for short sequence fragments exactly
harboring a pseudoknot. This becomes
clear because KnotSeeker and HPknot-
ter mainly achieve higher sensitivity and specificity because
of the correct pseudoknot verification results returned by
pknotsRG. Our approach clearly outperforms HPknotter
for all test sequences. HPknotter returns many false positive
pseudoknots, especially for longer sequences. Even though
both procedures follow a similar idea (find sequence
fragments possibly harboring a pseudoknot and verify
them), KnotSeeker is significantly more accurate. This is
due to the fact that our approach is based on RNA folding
assumptions and takes into account competing secondary

structure elements in the minimum weight independent set
(MWIS) calculation.

We also report the running time for all approaches
(Table 3; see Materials and Methods for experimental de-
tails). HPknotter runs in the order of minutes for sequences
longer than 200 nt. pknotsRG is very efficient on short se-
quences; however, it becomes computationally expensive
for long sequences due to its time requirements of O(n4). In
contrast to that, KnotSeeker is a rapid tool and runs in the
order of seconds. It is significantly faster than pknotsRG
and HPknotter on longer sequences. KnotSeeker takes less
than 2 min to detect the pseudoknot in the very long T4
gene 32 mRNA sequence (1340 nt), whereas pknotsRG requires
more than 40 min to fold the sequence. ILM is also a very
efficient approach; however with the drawback of low
sensitivity and specificity for ab initio structure prediction.

DISCUSSION

Our approach gives the best results for pseudoknot detec-
tion when compared to pknotsRG, HPknotter, and
ILM. KnotSeeker detects almost all predicted pseudoknots

FIGURE 7. (A) Initial interval set with six stem intervals and one pseudoknot interval s5. (B)
Interval set after first step to include nested structures with new updated weights.

FIGURE 6. Construction of stem intervals with bulge loops of size
one from the given sorted list of stem intervals. A partial overlap of
size one is allowed in the second case.
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and returns significantly less incorrect pseudoknots than
HPknotter. Especially for long sequences, our method is a
substantial improvement for RNA structure prediction
including pseudoknots. Pseudoknot detection prior to
structure prediction is a successful and computationally
efficient route. This was first demonstrated by HPknotter
(Huang et al. 2005) and is now emphasized by the work
presented in this article. KnotSeeker returns significantly
more accurate results than the heuristic approaches ILM
and HotKnots for long RNA sequences. This is mainly due
to the fact that we perform a pseudoknot verification step
that is consistent with the MFE model, whereas ILM and
HotKnots simply combine highest scoring crossing helices.
However, one should acknowledge that the heuristic ap-
proaches ILM and HotKnots perform well for different
frameworks. ILM produces good results for a set of aligned
sequences, whereas HotKnots is a reliable heuristic ap-
proach for short sequences.

The pseudoknot detection approach KnotSeeker is lim-
ited by a few factors. At this stage only certain pseudoknots
that can be folded by pknotsRG are detected. These are
so-called canonical, recursive pseudoknots (Reeder and
Giegerich 2004). Using pknots with a high running time of

O(n6) can improve the results, espe-
cially for detecting more complex pseu-
doknots as in tmRNA or IRES elements
(Rivas and Eddy 1999). An experiment
using different pseudoknot thermody-
namic parameters as in Cao and Chen
(2006) or including partition function
information (McCaskill 1990) is also an
option. Furthermore, one can think of
performing an alignment with known
pseudoknot classes like retroviral frame-
shift sites to achieve more accurate results.
During the MWIS calculation for nested
structures, a free energy evaluation con-
sidering the secondary structure can be
implemented. This should improve the
results considerably and even lead to a
fast novel RNA secondary structure pre-
diction method including pseudoknots.

MATERIALS AND METHODS

In this section, we give a detailed description
of the algorithmic details and the sequence
data used for testing.

The KnotSeeker algorithm

Find stable hairpin and bulge loops

GUUGle is a search tool that finds all exact
matches (under RNA base-pairing rules) of a
minimum specified length between target

and query sequences (Gerlach and Giegerich 2006). It makes use
of suffix arrays and runs fast. A target sequence vs. target sequence
search can be used to detect helical regions within a sequence.

In the first step, we let GUUGle detect exact matches with
length larger or equal to 3 base pairs (bp). These matches corre-
spond to helical regions. GUUGle returns sequence fragments of a
certain length k and two indices i,j (Fig. 5). The output usually
consists of a large number of matches. The goal is to identify rel-
evant matches. Following the initial assumption, we keep only
those intervals with j � i $ 6, according to minimal hairpin loop
lengths. Given the sorted stem interval list derived from the
GUUGle output, bulge loops of size one are found as well through
a simple combination of intervals (Fig. 6).

As the corresponding secondary structure is known for each
hairpin or bulge loop, we let RNAeval (Vienna RNA package 1.7)
evaluate the free energy using the Turner parameters (Hofacker et
al. 1994; Mathews et al. 1999). We only keep secondary structures
with free energy < +2.0 kcal/mol with the motivation that stems
with low free energy are likely to form in the native structure.
Formally, each stem interval si = [ai : bi] has an associated weight
w(si) corresponding to its free energy value. To further limit the
size of the hairpin and bulge loop set, the following assumption is
used: RNA folding is a two-step process and small structures with
low free energy in close vicinity form first. The set of hairpin loop
intervals is parsed as follows:

FIGURE 8. MWIS calculation using a sweep line strategy. The final result consists of the
pseudoknot interval s5.
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d Given two intervals [i : k] and [i : l] with k < l.
If w([i : k]) < w([i : l]), then delete longer interval [i : l].

d Given two intervals [k : i] and [l : i] with k < l.
If w([k : i]) > w([l : i]), then delete longer interval [k : i].

As an output for the first step, we get a list of filtered hairpin and
bulge loops with their corresponding free energy values.

Pseudoknot construction and verification

A simple H-type pseudoknot basically consists of two crossing
stems with low free energy. Given the list of filtered hairpin loops
from the first step, two entries can be combined to potentially form
a pseudoknot. An examination of entries in PseudoBase led us to
use certain pseudoknot loop length restrictions similar to HPknotter
(van Batenburg et al. 2000; Huang et al. 2005). The goal of this
heuristic is to keep the set of candidate pseudoknots as small as
possible while considering naturally occurring stem and loop
lengths.

d 1 nt # size (Loop L1) # 20 nt.
d 0 nt # size (Loop L2) # 35 nt.
d 1 nt # size (Loop L3) # 75 nt.

Overall, we assume that a pseudoknot has to have a length #90 nt,
as this returns the most significant results. These simple pseu-
doknots are among the best studied, whereas thermodynamics of
very long pseudoknots are not well understood. Additionally, the
following observation was made by us during preliminary testing:
the two hairpin loop intervals potentially forming a pseudoknot
need to have a combined free energy sum of less than �2.5 kcal/
mol. This improves the runtime drastically, as only a small por-
tion of intervals need to be combined as a pseudoknot candidate.
Two important points should be noted. First, certain secondary
structure rearrangements during pseudoknot formation are al-
lowed, e.g., stems can partially overlap. Second, three-stemmed
pseudoknots with an additional stem in their loops are also
naturally included in pseudoknot construction.

Given the list of possible pseudoknots, we test with pknotsRG
in O(n4) time and O(n2) space if they actually fold into stable
pseudoknots (Reeder and Giegerich 2004). This verification is fast,
as the list of candidates is small and the test runs on short se-
quence fragments exactly harboring a potential pseudoknot. Our
pseudoknot filter procedure returns the desired and verified
pseudoknots. However, pknotsRG returns several false positive
verified pseudoknots, which do not occur in the native structure.
This issue is tackled in the next step.

Minimum weight independent set

The verified pseudoknots plus filtered hairpin and bulge loops
form our candidate structure elements set. To eliminate false posi-
tive pseudoknots from the second step, an MWIS calculation is
performed. This corresponds to the following RNA folding as-
sumption: in the folding pathway, pseudoknot formation has to
compete with stable secondary structure elements.

The MWIS problem on a weighted interval set can be solved in
linear time and space with an additional O(n log n) sorting step
(Hsiao et al. 1992). It is based on a sweep line strategy and returns
the set of nonoverlapping intervals with minimum weight as an
output. For the MWIS calculation required here, one additional
assumption regarding RNA folding has to be added. There can be
nested structures; a hairpin or bulge loop can have several inter-
nally nested hairpin and bulge loops or pseudoknots. Like before,
no two structure elements are allowed to overlap. For the cal-
culation we assume that nesting results in an additional �1.5 kcal/
mol free energy gain for the outer stem interval, as this is an ener-
getically favorable process. The final output consists of the pseu-
doknots that are likely to occur in the native structure with
minimum free energy. The following notations and assumptions
are required for the MWIS algorithm:

d Let si = [ai : bi] be a structure element interval with an
associated weight w(si) corresponding to its free energy value.

d Let S = {s1, s2, . . ., sn} be the set of candidate structure elements.

TABLE 4. Overview of the sequences used in our tests

Type Sequence ID Accession no. Reference

5S rRNA 5SEColi, 5SDmobilis V00336, X07545 Cannone et al. (2002)
39UTR BCV, BMV, BSMV, MHV, NeRNV,

ORSV, SARS-TW1, STMV, STNV1,
TMV, TMVup

AF220295, V00099, X03854, AF201929,
AY751778, U34586, AY291451, M25782,
J02399, J02415, AJ011933

van Batenburg et al. (2000)

59UTR HPeV1 L02971 Nateri et al. (2002)
TLS CAYVV, TMVdown, TYMV U91413, J02415, X16378 van Batenburg et al. (2000)
tRNA DA0260, DA1280, DY4441 N/A Sprinzl et al. (1998)
miRNA Dros-mel, Human-mi AJ550546, AJ550395 Griffiths-Jones et al. (2006)
tmRNA EColi, Cyanophora U68074, U30821 Williams (2000)
mRNA T2, T4 X12460, J02513 van Batenburg et al. (2000)
frameshift IBV M27472 Napthine et al. (1999)
readthrough SNV M54993 van Batenburg et al. (2000)
ribozymes HDV, HDVanti, satRPV X04451, X04451, M63666 van Batenburg et al. (2000)
IRES GLV L13218 Garlapati and Wang (2002)
telomerase Human-telo AF221907 Chen et al. (2000)
SRP RNA Bacillus-sub X06802 Rosenblad et al. (2003)

Note that 5S rRNA, tRNA, and miRNA are all pseudoknot free.
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d The sorted endpoints list L = {e1, e2, . . ., e2n} is given.
d tempmin is a temporary variable that stores the MWIS

weight of the set of intervals whose right endpoints have been
scanned.

d m(i) = w(si) + min{m(j) | bj < ai} for any 1 # i # n.

The MWIS algorithm scans the endpoints list. If the endpoint
scanned is a left endpoint ai, the weight w(si) plus tempmin is
stored in m(i). If the endpoint scanned is a right endpoint bi, m(i)
is checked to see whether it is smaller than tempmin or not. For
m(i) < tempmin, the value of tempmin is replaced by m(i). At the
end of the calculation, the MWIS weight of S is stored in tempmin

and the resulting interval set can be recovered through a traceback
step.

First step: Including nested structures

The first step delivers nested intervals and their corresponding
updated energy values. The sorted endpoints list is scanned from
left to right. If the right endpoint bi of a hairpin or bulge loop
interval si is discovered, a search is performed to find all stems and
pseudoknots contained in the interval [ai + len(si) � 1 : bi �
len(si) + 1]. However, the resulting set Snested(i) can have over-
lapping structure elements. Therefore, a standard MWIS calcula-
tion is performed on the set Snested(i) to find only nonoverlapping
nested structures of minimum weight. The updated weight w(si)
of the outer stem si is the weight of the MWIS plus an additional
�1.5 kcal/mol. This value turned out to give the best results
during preliminary testing. The output of this first step is the list
of structure elements with new updated weights accounting for
nested structures.

Second step: MWIS calculation

In the second step, an overall MWIS calculation is performed on
the new structure element candidate set including nesting in linear
time and space. The result consists of pseudoknots, hairpin loops,
and bulge loops with combined minimum free energy. As this ap-
proach is designed for pseudoknot detection, the final output only
returns pseudoknots. The different steps of the MWIS calculation
are illustrated in Figures 7 and 8.

Sequence test data

An overview of the sequences selected for testing is provided in
Table 4. We chose both pseudoknotted and pseudoknot-free
sequences from the literature.

Experimental and implementation details

The KnotSeeker pipeline was implemented in Python 2.5 incor-
porating several existing programs, namely GUUGle (Gerlach and
Giegerich 2006), RNAeval (Vienna RNA package 1.7; Hofacker
et al. 1994), and pknotsRG (Reeder and Giegerich 2004). The ex-
periments and time measurements for pknotsRG (mfe mode),
KnotSeeker, and ILM were carried out with a dual Intel 1.66 GHz
processor and 1 GB main memory. The results for HPknotter were
obtained from its Web server, which returns also the computation
time.
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