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SUMMARY

Progress in the development of schistosomiasis models for use in control programmes is limited
by the considerable uncertainty in many of the biological parameters. In this paper, this
problem is addressed by a comprehensive sensitivity analysis of a schistosomiasis model using
the Latin Hypercube method. Fifty simulations with different parameter contributions are run
for 50 years with treatment during the first 20 years and reinfection thereafter. The analysis
shows only a relatively small divergence between simulations during the chemotherapy
treatment programme but considerable divergence in reinfection levels after treatment is
stopped. A skewed distribution of outcomes was seen with most simulations showing effective
control and a few where control had less impact. The most important uncertainty source was
due to the unknown levels of acquired immunity and also uncertainty in the true worm
burden. In particular, the strength of the immune response was most important in determining
whether control was effective with higher immunity leading to less effective control. Among
those simulations in which control was not very effective, those in which the mean worm
burden was high showed the least effective control. Since both these are areas of genuine
uncertainty, it is proposed that uncertainty analysis should be an integral part of any
projection of control programmes.

INTRODUCTION

Schistosomiasis is a disease which causes serious
morbidity in many parts of Africa, Asia and Latin
America [1]. It is caused by a parasitic worm that lives
in the bloodstream of the host. People in endemic
countries are typically infected for much of their lives
and it is this long term infection that causes serious
pathological changes to the internal organs [2]. All
species of schistosomes can be effectively treated with
the drug praziquantel and mass drug treatment is
considered a cost-effective control strategy [3].

Mathematical models of schistosomiasis have a

long history [4-9] and have been used to demonstrate
important processes determining patterns of infection.
However, to date, models are not used routinely in the

control of schistosomiasis although they have been for
another helminth disease, onchocerciasis [10]. An age-
structured transmission and morbidity model is being
currently developed with the intention of eventually
using it to aid control decisions [9, 11-13].
One reason why it has been difficult to use models

of schistosomiasis in a predictive way is due to
considerable uncertainty in the magnitude of many
parameters in the models and hence potential un-
certainty in the simulation results. These reflect
fundamental gaps in our knowledge of schistosome
biology. The consequences of these uncertainties can
be examined with formal sensitivity analysis in which
sets of parameter values are sampled in parameter
space, either randomly or systematically and the
simulations arising from these examined. These types
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of sensitivity analysis were developed for engineering
applications and are only now starting to be used in
epidemiological models [14-17].

In this paper, a full sensitivity analysis of the
schistosomiasis transmission and morbidity model is
undertaken using parameter values appropriate for
Schistosoma mansoni to examine both the likely
variability in outcomes of control programmes given
our level of uncertainty in the parameter values and to
identify the particular parameter uncertainties that
contribute most to the overall variability. The method
of Latin Hypercube Sampling [18, 19] was used to
generate a sample of parameter values for the
simulations using the software package UNCSAM. A
linear multiple regression model was used to determine
the specific parameter contributions to the model
outcomes.

METHODS

The schistosomiasis transmission model used in this
paper has been described in full in earlier publications
[9, 11-13] and is therefore only described in summary
here. The model consists of an age structured partial
differential equation framework that describes the
changes in intensity of infection (as mean worm
burden and mean egg count) over age and time. The
model can also predict the impact of mass and age
targeted chemotherapy programmes.

Individuals are assumed to get infected at a rate
dependent on their age, the current level of infection
(concomitant immunity) and their previous experience
of infection (acquired immunity). Worms die at a
constant rate (u) with average lifespan /,u. Infected
individuals are at risk of developing early disease
(hepatomegaly in S. mansoni) and those with early
disease are at risk of developing late disease (liver
fibrosis in S. mansoni). Both types of disease can
resolve but early disease resolves over a shorter time
scale (about 1 year) compared with late disease (about
10 years).
The model is specified by state variables describing

mean worm burden (M), the level of acquired
immunity (I), The prevalence of early disease (DE)
and the prevalence of late disease (DL) over age (a)
and time (t) as follows:

aM(a t) + dM(a, t) = A(a, t) e-(8I(a, t))X _-M(a, t)
at aa

I(a, t) + H(a, t) = M(a, t)-sI(a, t)

(1)

aDE(a, t) aDE(a, t)+
aa at

rE M(a, t) (1 DE(a, t))-/DE DE(a, t) (3)
aDL(a, t) aDL(a, t)

aa + at
= rL DE(a, t) (1 DL(a, t))-,lDL DL(a, t). (4)

In these equations aM(a, t)/aa+ aM(a, t)/at represent
the partial derivatives of mean worm burden over age
and time. For example aM(a, t)/aa is the rate of
change of mean worm burden by age at a particular
instant in time.

a is the strength of immunity and 1/s is the average
duration of immune protection, rE is the rate of
development of early disease and rL is the rate of
development of late disease. The resolution rates of
early and late disease are ltDE and ,,DL respectively
with the inverses of the parameters being the average
resolution times. x is a parameter which describes the
shape of the immune response function.

A(a, t) is the rate of infection and is given by:

A(a, t)
,tRo p(a)J(M(a, t)) 7T(a) K(a) M(a, t) da

7Ta(a) K(a) p(a) da

where Ro is the basic reproductive number of the
parasite, and is biologically equivalent to the number
of offspring produced by a worm which themselves
reach maturity in the absence of density dependent
contraints, f(M(a, t)) is a density dependent con-
comitant immunity function and ir(a) is a demo-
graphic function defining the proportion of the
population in each age class. J(M(a, t) is given by:

/) +kM) -(k(M)+()
J(M) = I1 + k(M (1-e-'Y) (6)

y describes the strength of concomitant immunity.
k(M) is the aggregation parameter of the negative
binomial distribution and this is assumed to increase
linearly with M with intercept ko and slope k1j, p(a)
and K(a) are the age dependent exposure and
contamination functions respectively. These are both
assumed to take the same form and have the same
parameter values and are given by:

p(a) = K(a) = (ae- (fa)')+C, (7)

where , and c are constants.

(2) Mean egg count (arithmetic, including negatives)
was assumed to be linearly related to mean worm
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burden with a constant factor et representing the
number of eggs per gram faeces (epg) per worm.

Further details of the model and its numerical
implementation are given in earlier publications
[9, 13].
The purpose of the sensitivity analysis is to look at

the variability in predicted consequences of mass
treatment for a given observed endemic situation due
to uncertainties in values of parameters and the
structure of the model. All the simulations therefore
had the same peak intensity of 500 eggs per gram of
faeces (epg). Furthermore, the age-dependent contact
function was kept constant with peak water contact at
age 15. The treatment schedule was also constant with
children between the ages of 7 and 18 being treated
every 4 years in the first 20 years of the simulation at
a coverage of 80% and with drug efficacy 95 %.
Simulations were run for 50 years. Two types of
sensitivity analysis were carried out, structural sen-
sitivity analysis, where the structural assumptions of
the model were tested, and parameter sensitivity
analysis where the values of the parameters were
varied within a constant model structure.

Structural sensitivity analysis

The aim of this analysis was to examine whether
changes in the mathematical structure of the model
had significant consequences for the model output.
Two structural variations were used in this analysis.
Firstly, the consequences of changing the density
dependent establishment function (J(M(a, t)) into a
density dependent fecundity function was assessed.
This involves the replacement of equation (5) by:

jtRo p(a) 7T(a) K(a)J(M(a, t)) M(a, t) da
A(a, t) =

T 7T(a) K(a) p(a) da

The same function for J(M(a, t)) was used.
The second structural adjustment was that the

value of the immune response parameter x in equation
(1) was varied at three values of 0 2, 1 and 5. The
purpose of this analysis was to ascertain whether it is
possible to exclude variation in this parameter from
the parameter sensitivity analysis and use a simple
exponential function instead.

These structural changes were examined at two
levels of immunity d= 0-001, I/s = 5 years giving a

30 % reduction of mean worm burden at age 20

compared with no immunity and d= 0-002, I/s = 10
years, giving a 60% reduction. Other parameter
values for this analysis are those listed under the
'mode' column in Table 1.

Parameter sensitivity analysis

The Latin Hypercube Sampling method requires that
the distribution ofeach variable parameter is specified.
The method then samples systematically from the
parameter space to generate n parameter sets (where n
is the number of simulations to be carried out) as
follows. First the range of each parameter is divided
into n intervals of equal probability. A random value
for the parameter is taken from each of these intervals
according to the probability distribution. The values
for each parameter are then combined at random with
the samples for other parameters [21].
Twelve parameters were varied in the parameter

sensitivity analysis, other parameters relating to the
determination of the endemic infection intensity were
kept constant. Since the distributions of the para-
meters are generally unknown, triangular distribution
was used for all parameters for simplicity. The mode
values for these distributions were the values used for
this model in previous papers [20, 9, 13] and are
appropriate for the species S. mansoni. The maximum
value was taken to be twice the mode and the
minimum value was taken to be half the mode (or zero
if appropriate). In the case of the rate of development
of early disease (rE), estimated maximum and mini-
mum values are taken from Chan and colleagues [11].
The parameter x in equation (1) is also included in this
analysis. The values of the variable parameters, their
distributions and the values of the constant para-
meters are all shown in Table 1.
The above parameter distributions are input into

the software package UNCSAM version 1.1 [21]. This
software samples the distributions and outputs the
parameter sets for each simulation. Fifty simulations
were performed which is more than adequate for 12
variable parameters (4N/3 samples is considered to be
sufficient, if N is the number of parameters) [21].

Several outcome variables were calculated from the
simulations to allow output to be compared. The
mean egg count, prevalence of early disease and
prevalence of late disease were output for ages at 5-
year intervals (i.e. age 5, 10, 15 etc) at years 0 (initial),
20 (treatment) and 50 (reinfection). In addition, the
time profile of mean egg count was calculated at 5-
year intervals for individuals of age 12 (treatment
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Table 1. Values of variable and constant parameters

Parameter Description Mode Minimum Maximum

1/,a Worm lifespan (yr) 4 2 8
y Density dependence 0 001 0 0005 0-002
ko k intercept 0-132 0.1 0 3
klin k slope 0-002 0 0004
es epg per worm 5 26 1 10
rE Early disease 0-0071 0-002 0-016
1IIDE Resolution ED (yr) 1 0 5 2
rL Late disease 0015 0007 003
1 /ItDL Resolution LD (yr) 13 7 26
8 Strength of immunity 0 001 0 0-002
x Exponent 1 0-2 5
1/s Duration immunity (yr) 5 2 10

Peak egg count constant: 500 epg
Peak water contact constant: age 15

c Contact function constant constant: 0-4
Treatment ages constant: 7-18
Treatment coverage constant: 80 %
Treatment interval constant: 4 years
Drug efficacy constant: 95 %

group). The basic reproductive number (R0,) was

calculated for each simulation. The benefit of the
treatment programme is calculated as the average egg
count reduction per person per year over the 50 years
of the treatment compared with the absence of
treatment. This was calculated for the whole com-
munity (BA) and for the treated age group only (B,).
These outcome variables are defined as follows:

cTa|r(a) K(a) p(a) da
Ro=

t {r(a)K(a) M*(a) da

or, in the fecundity model:

cX Tr(a) K(a) p(a) da
- Ta

JaXi(a) Kc(a) M*(a)J(M*(a)) da

(10)

where a is a parameter fitted by iteration to give the
pre-treatment peak mean egg count of 500 epg.

(50 'a=80

eJ [M*(a)-M(a, t)] 7T(a) da dt
BA- t0 a=0 (11)

't=50 Ca18

ei [M*(a)-M(a, t)]7(a)dadt
Bc = t=0 a-7 a-18 a (12)

50 7r(a)da
a-7

where M*(a) is the equilibrium mean worm burden.
For the structural sensitivity analysis, the benefit is

given as the reduction in mean worm burden due to
the complication with reduced egg counts due to
reduced fecundity in the density dependent fecundity
model. These benefit values are calculated by taking e,
out of equations 11 and 12.
To compare the contribution of each parameter to

the overall uncertainty in the results, a multiple linear
regression model is used which is also performed by
the UNCSAM package. The Standardised Regression
Coefficient is compared for the different parameters.
This coefficient is measured relative to the standard
deviation of the parameters and hence takes into
account the differences in absolute values between
parameters. The value of the t-statistic is also
calculated.

RESULTS

Structural sensitivity analysis

The values of the outcome variables for the simu-
lations in the structural sensitivity analysis are shown
in Table 2. The values of the outcome variables are
very similar for the establishment and fecundity
models of density dependence. This suggests that this
particular structural change has little impact on the
model results. In contrast, changing the exponent, x,
of the immune response function has a profound
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Table 2. Values of outcome variables for the structural sensitivity analysis. Benefits are reduction in worm
burden

Benefit
Duration of Basic to

Density dependence Strength of immunity Exponent reproductive Community children
model immunity (a) (I /s) (x) number (RO) benefit (BA) (B,)
Establishment 0 001 5 0-2 3-31 16 42

1 2-07 14 38
5 1b57 23 58

0-002 10 0-2 3 96 14 40
1 3-69 5 19
5 2-61 2 11

Fecundity 0 001 5 0-2 3-33 15 41
1 2-08 13 38
5 1-59 21 55

0-002 10 0-2 3-96 14 40
1 358 5 21
5 2-48 2 15

(a)

a

r.

0
U

4.¢
0

Experience of infection

(b) Region A (c) 600
Region B

Time

Fig. 1. Diagram to demonstrate the consequences of the shape of the immune function on the transmission dynamics during
and after mass chemotherapy. (a) shows schematically the shapes of three response functions with the value of the exponent
x (equation 1) varied between 0 2 (dotted line), 1 (heavy solid line) and 5 (light solid line). The x axis is an unscaled measure
of experience of infection. In the area marked region A, the transmission dynamics are shown in (b) (with the same line
legend), which shows the time profiles at age 12 for the simulations where the immune parameters are a = 0 001, 1/s = 5. In
the area marked region B, the transmission dynamics are shown in (c) which shows the time profiles at age 12 for the
simulations where the immune parameters are d= 0-002, 1/s = 10.
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Fig. 2. Time profiles of mean egg count at age 12 plotted separately for all 50 simulations.

effect on the outcome variables. Furthermore, this
effect is highly non-linear, with the benefit values
being highest for a high exponent at the lower level of
immunity and the reverse being true at the higher level
of immunity.
The explanation for the above counter-intuitive

result is shown in Figure 1 which includes the actual
simulation profiles. The top figure shows the relative
infection rate (e-I(a, t)) against experience of infection
(I(a, t)). The x axis is on an arbitrary scale. We
examine the changes in the infection rate as the
population 'experience of infection' first decreases
after treatment and increases again during the period
of reinfection. If the endemic experience of infection is
in region A relative to the immune response function
(as it is for the lower immunity parameter set), there
is a greater degree of immunity when x is low and
hence a greater potential reinfection rate. In region B
(higher immunity parameter set), however, as the
effective experience of infection decreases due to lack
of exposure during the treatment programme, the
simulation with the highest exponent switches from
being the simulation with most effective immunity to
having the least effective immunity and hence gives
the highest reinfection rate and a substantial over-
shoot of the mean egg count above the initial endemic
level. Given the substantial influence of the shape of

the immune response function on the simulation
results, the value of the exponent, x, was also included
as a variable in the parameter sensitivity analysis.

Parameter sensitivity analysis

Prediction of mean egg count

The change in mean egg count over time at age 12
years for all the simulation runs is shown in Figure 2.
The simulations show similar patterns during the
treatment programme (up to year 20) and quite
different patterns on reinfection (after year 20). All the
simulations show an initial rapid fall in infection
intensity up to year 10. Between years 10 and 20, the
infection intensity remains at a constant low level for
the majority of simulations but starts to increase in a
few simulations, with two simulations showing a large
increase in infection during this late treatment phase.
These increases are due to the breakdown in herd
immunity in the population since they are not
acquiring immunity so rapidly in the absence of
intense infection. During the reinfection phase (years
20-50) the infection intensity remains low for most of
the simulations, but for some simulations there is
rapid reinfection. Only in very few simulations is there
any overshooting to above the initial level, a phenom-
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Fig. 3. Age profiles of mean egg count at years 0 (a), 20 (b)
and 50 (c). The heavy solid lines show the median values and
the light solid lines show the means. The top and bottom
bars of the I bar represent the 95th and 5th percentile and
the internal ticks the interquartile range.

enon often suggested as being important in dynamic
helminth models with immunity.
The age profiles at different times in the simulation

are shown in Figure 3. The quantities plotted are the
mean of all the simulations, the median, and the 5, 25,
75 and 95% percentiles. The initial age profile (Fig.
3 a) shows little variation, as expected since the contact
functions are all the same. In some profiles there is a

lower peak age due to strong immunity. At year 20,
there is also little variation in the age profiles (Fig.
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Fig. 4. Histograms showing the frequency (number of
simulations) distribution of the outcome variables, RO, BA
(Fig. 4b) and BC (Fig. 4c).

3 b), suggesting that the prediction of infection levels
during the treatment phase is not that dependent on

the initial parameters. However, an interesting pattern
is emerging which was not present initially. There is an
asymmetry in the distribution with the upper percen-

tiles being much more spread out than the lower
percentiles and the mean being higher than the
median. This indicates that the distribution of in-
fection intensity is skewed, with many simulations
with low intensities and a few with higher intensities.
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Fig. 5. Scatter graphs (a-c) showing the relationship
between the different outcome variables.

The skewed distribution becomes much more exag-
gerated at year 50 (Fig. 3 c) where the median
simulation shows very low reinfection although the
95 % percentile shows reinfection to equilibrium
levels. This indicates that high rates of reinfection are
possible but unlikely within the parameter space
examined. Note that the median is a better measure of
central tendency compared to the mean in this
situation because the median is the expected conse-
quence of an 'average' simulation.
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Fig. 6. Figure showing the influence of the immune
parameters a (strength of immunity) and x (immune
function exponent) on the benefit to the community (BA).
The benefits are categorized into values above 180 (0) and
below 180 (1) with each plotted point representing the
position of one simulation in parameter space. The solid line
encloses the area in which most of the low benefit values lie
and is labelled as the high risk area.

Table 3. Standardized regression coefficients (SRC)
and t-statistics for the analysis ofparameter
uncertainty contributions to the outcome variables for
those simulations for which BA < 180. Only
parameters significant at the 5 % level are shown.
The value of the correlation coefficient (R2) is also
given for the full regression modelfor each outcome
variable

Outcome
variable Parameter SRC t-statistic

Ro ei -0-8126 -2-5211
R2 = 0-89
BA ei 1-1319 3.9903
R2 = 0-91 1/s -0-5971 -2-7552

8 -0-4654 -2-1563
y -0 3588 -2-3461

Be ei 1-1882 3-7601
R2 = 0-89 1 /s -0-5473 -2-2673

y -0 3799 -2-2300

The distributions of the outcome variables (the
basic reproductive number, Ro, and the benefits to the
population and the treated ages, BA and BC respect-
ively) are plotted as histograms in Figure 4. All the
distributions are highly skewed as would be expected
from the simulation results. The distribution of Ro is
skewed towards the right with most of the values
under 2 and a few higher values. However, the values
of the benefits are skewed towards the left with the
majority of values being at the higher end of the
distribution. These results reflect the observation that

-;.O.

0
X---.-
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reinfection levels are very low for the majority of
simulations but that a few simulations show con-

siderable reinfection.
The correlation between the outcome variables is

shown in Figure 5. It is observed that both benefit
measures are negatively correlated with the basic
reproductive number (Fig. 5a, b), as would be
expected, but that neither correlation is complete
(R2 = 0-7) which implies that the knowledge of the
value of Ro does not completely predict the benefit of
a control programme. However, the two benefit values
are almost completely positively correlated
(R2 = 0-95) and therefore can be predicted from each
other (Fig. 5c).

Initial statistical analysis of the simulation results
suggested that a multiple linear regression model was

not appropriate (R2 < 0-7). Further examination of
the results revealed that this was due to two of the
parameters showing a threshold type effect on the
results. As observed previously, the benefit values
showed a very skewed distribution with most values
being high. The values of BA can be divided into those
above 180 (0) and those below (1). When these
transformed data are plotted against the immunity

parameters, and x, (Fig. 6) the simulations with low
benefit values can be shown to almost all fall in the
region > 0 001, x < 3. This means that whether there
is significant reinfection can be considered as a

categorical variable which depends on the level of
immunity and not on other parameters. To determine
the level of reinfection in those simulations with
significant reinfection, a multiple linear regression
model was fitted to these simulations (18 simulations)
only.
The analysis for the selected simulations shows a

very good fit with the linear model (R2 = 0-89-0-91)
(Table 3). The parameter giving the most significant
correlation is ei, the estimate of eggs per gram of
faeces per worm which gave positive linear correlation
with the benefit measures and negative linear cor-

relation with the basic reproductive number. The
other parameters which give significant correlations
with the benefit measures are the strength (6) and
duration (l/s) of acquired immunity (this is in addition
to the effect of acquired immunity determining
whether or not there is reinfection). The strength of
density dependence (y) is also significant. The corre-

lations of the significant parameters for BA are shown
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Fig. 8. Age profiles of proportion with hepatomegaly at
years 0 (a), 20 (b), and 50 (c). The heavy solid lines show the
median values and the light solid lines show the means. The
top and bottom bars of the I bar represent the 95th and 5th
percentile and the internal ticks the interquartile range.

in Figure 7. This figure shows a strong positive
correlation with ei but only weak correlations with the
other parameters.

It is also worth noting that two of the simulations

Table 4. Standardized regression coefficients (SRC)
and t-statistics for the analysis ofparameter
uncertainty contributions to the observed levels of
morbidity. The early disease is evaluated at age 15
and late disease at age 35 (the respective peaks) and
at years 0, 20 and 50. Only the three most significant
parameters are shown. The value of the correlation
coefficient (R2) is also given for the full regression
model for each outcome variable

Output Parameter SRC t-statistic

Early Disease rE 0-6270 22-8477
Year 0 ei -0-5868 -21-4135
R = 0 97 /DE 0-4472 16-3310

Early Disease e1 -0-5691 -4 9563
Year 20 8 0-2738 2-3751
R' = 0 51 rE 0 2597 2-2584

Early Disease ei -0-5651 -74033
Year 50 a 04212 54958
R2= 0 79 x -0 3218 -4-1980

Late Disease rL 0 5736 13-7747
Year 0 rE 0-4442 10 6355
R = 0 94 /DL 0 3949 9 4269

Late Disease ei -0 4759 -9-4223
Year 20 rL 0-4696 9 3125
R2 = 0.91 rE 0-4402 8&7031

Late Disease ei -0 5559 -7-3150
Year 50 8 0-3920 5-1382

2= 079 r 0-3298 4-3458

showing 'unusual' behaviour, namely the simulation
showing an early increase in intensity during the
treatment phase and one of the simulations outside
the 'high risk' area on Figure 6 but showing
substantial reinfection have a combination of a high
value of the immune function exponent x and a low
value for ei (implying a high worm burden). This
suggests that they may be in the region of parameter
space denoted as region B in Figure 1 (where
breakdown of immune protection during treatment
and substantial reinfection occurs with high values of
x).
Of equal interest to those parameters showing

correlation with simulation outcomes are those which,
perhaps surprisingly, show no correlation. The life-
span of the worm (1/it) and both the intercept and
slope of the aggregation parameter function (ko and
klin respectively) do not show significant correlation
with any of the outcome variables (note that the
morbidity parameters are not expected to, and do not,
correlate with these outcomes). This is perhaps
surprising in the case of the worm lifespan since this
parameter is of importance in models without im-
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Fig. 9. Graphs comparing the relationship of the percentage of people aged 15 with hepatomegaly before the treatment
programme (a, b) and during the reinfection phase (year 50) (c, d) with the rate of development of early disease rE and the
strength of immunity, d.

munity but it appears that when immunity is present,
the effects of immunity are much stronger than that of
worm lifespan.

Prediction of chronic morbidity levels

Age profiles ofhepatomegaly (early disease) are shown
in Figure 8. There is a wide distribution of levels of
early disease initially and this variation shows a

symmetrical distribution (Fig. 8a). At year 20 (Fig.
8 b), the median level of early disease has reached very

low levels and the distribution of simulation has
become skewed with a minority of simulations
retaining high levels of disease, mirroring the pattern
observed with the mean egg count. At year 50 (Fig.
8c), the skewed distribution has become much more

pronounced with a high level of morbidity in a few
simulations.
The parameter contributions to the uncertainty in

both early disease and late disease (fibrosis) are shown
in Table 4. Since there are many significant para-

meters, the three with the highest t statistics for each
outcome variable only are shown. The values of early
disease are given at age 15 and those for late disease
at age 35 (the respective peaks). For both outcome

variables, it is observed that the initial levels are

mostly determined by the morbidity parameters and
the reinfection levels (year 50) are mostly determined
by the immunity parameters. Hence, as with the
infection intensity, the immunity parameters are of
primary importance in determining the consequences

of control. The patterns are further illustrated in
Figure 9 which shows that a stronger correlation is
seen with the morbidity parameter initially and with
the immunity parameter on reinfection. There is also
a strong correlation with et at all time points. Also of
interest is the fact that the parameter for early disease
development is significant with respect to late disease
(although less so than the development rate of late
disease) and that in all cases it is the development of
strength parameters (rE, r, and d) which appears more

significant than the rates of decay (s, ,DE,DL) of either
immunity or morbidity.

DISCUSSION

The results of this investigation should be considered
with an understanding of the necessary constraints
imposed by the considerable uncertainty in the system.
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With respect to the structural sensitivity analysis it is
not possible to include all types of schistosome models
in the analysis. The sensitivity analysis was therefore
restricted within the type of model to which the
original model belonged. The central assumptions of
this class of models are that the dynamics of the
system can be represented in terms of differential
equations of the mean worm burden, that the
dynamics of the parasite in the intermediate host can
be set to equilibrium and that immunity is modelled as
a function of accumulated experience of infection
[6, 7, 22]. Structural adjustments in the mechanism of
density dependence and the type of immune response
function are made within this framework. Therefore
the analysis does not question the general approach to
modelling schistosomiasis but only varies the form of
some of the functional relationships between different
model components.

Similar considerations apply to the parameter
sensitivity analysis. There is a genuine considerable
uncertainty in the expected values of most of the
parameters and very little is known about their
distributions. Therefore the same proportional change
in the parameter values were included for those
parameters where the distribution was unknown. The
analysis is therefore actually estimating the relative
parameter sensitivity of the model in the region of
parameter space that is thought to reflect reality. The
analysis is also intended to reflect biological un-
certainty (the consequences of uncertainty in the
knowledge of biological processes and parameters)
and therefore experimental errors in estimating egg
counts, for example, are not included. The results of
the analysis should therefore be viewed from the
perspective of these necessary limitations.
One general observation from the sensitivity analy-

sis is the marked skewed distribution of model
outcomes despite initial input parameter distributions
which were almost symmetrical. The pattern observed
was that in most simulations there was little reinfec-
tion but in the minority of cases reinfection levels were
very high. Whether or not there was significant
reinfection was almost entirely dependent on the
parameters determining the strength and shape of the
immune response function. Note that this should not
be interpreted to mean that in most cases there will be
little reinfection if control programmes are termina-
ted, since this is dependent on the initial range of
endemic parameters used.

It was also observed that the trajectories of infection
intensity for the different simulations were very close

during the treatment phase which suggests prediction
of consequences of treatment can be carried out with
relative confidence during his phase. In 2 out of 50
runs there was a 'breakdown' in control with infection
intensity increasing while control was still occurring
which suggests that this is a relatively unlikely event if
the parameter space explored reflects reality. How-
ever, the reinfection phase is much more sensitive to
parameter values with a wide range of outcomes being
possible.
The most important source of uncertainty is very

clearly demonstrated to be those relating to acquired
immunity. Of the immune parameters the most
important is the strength of immune protection
followed by the shape parameter of the immune
response function. The duration ofimmune protection
appears to have less of an influence on the outcomes.
This contrasts with results from sensitivity analyses
where parameters are varied one at a time [13, 22].
The other parameter which strongly influences the

results is ei, the measure of eggs per gram of stool per
worm. Since the endemic mean egg count was set to
the same value for all simulations, ei is essentially an
inverse measure of worm burden. With the current
formulation of the model, the rate of development of
immunity and morbidity is scaled with respect to the
worm burden, hence the worm burden will have a
profound effect on the outcome of simulations.
An equally important result is the fact that all other

parameters have very little effect on the model
outcomes. Even for the prediction of morbidity,
where the initial levels are determined by the mor-
bidity parameters, the reinfection levels are also
mainly determined by the immunity parameters and
ei. This suggests that uncertainty in the other
parameters may not have significant influence on the
accuracy of predictions.
The above results have several implications for the

prediction of outcomes of control. The results suggest
that the focus of prediction should be on the risk of
the breakdown of control (since levels of infection
during control where there is no breakdown are very
similar) and on the amount of reinfection. This is
important since sometimes control programmes may
be abandoned abruptly when funding for a project
terminates. The results also suggest that uncertainty in
the majority of parameters has little effect on the
overall results and it is only the immunity parameters
and e, which have a major influence on the results.

There are two approaches to tackling the un-
certainty in the parameter e. Firstly, it may be
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possible to improve the estimates of this parameter by
the use of data from post-mortem studies [23], and
perfusion studies [24] which are the only direct method
currently available to estimate worm burden. Reliable
estimates are difficult to obtain since it is not possible
to use large sample sizes and there is considerable
variability in the results. Alternatively, statistical
methods can be used [9, 25, 26] but these present
similar problems. Another approach would be to
remove this parameter from the model altogether and
rescale the model formulation in terms of mean egg
count. Since there is a linear relationship between the
worm burden and egg count in the model, this
reformulation will not involve any change in the
model structure but has the added advantage that
parameters will be easier to estimate in terms of egg
counts.

Despite numerous laboratory studies of schisto-
somiasis immunology, there are considerable gaps in
our current understanding of the role of immunity in
schistosomiasis epidemiology and in particular very
little quantitative information from which to estimate
parameters is available. Again, there are two ap-
proaches to dealing with this uncertainty. Greater
understanding of both the actual role of immunity in
schistosomiasis infection [27, 28] and of the behaviour
of different immuno-epidemiological models [22] will
eventually reduce the uncertainty in the predictions.
Immunoepidemiological studies in which both specific
antibody levels and infection intensity are measured
can be used to increase our understanding of
immunological processes. Model parameterization
from such studies is extremely difficult due to the
variability in immunological variables and the number
of parameters which would need to be estimated. It is
recognized that for the foreseeable future, most of the
uncertainty will still be unresolved. In this case,
sensitivity analysis can be used as an integral part of
the prediction process. For example, all projections
can be accompanied by a base case (median) and a
bad (75 percentile) and worst case (95 percentile)
scenarios. In this way, both a prediction based on our
understanding of the situation and the risk of adverse
outcomes can be taken into account.
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