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Abstract
We have previously demonstrated that α-synuclein (Snca) gene ablation reduces brain arachidonic
acid (20:4n-6) turnover rate in phospholipids through modulation of endoplasmic reticulum-localized
acyl-CoA synthetase activity. Although 20:4n-6 is a precursor for prostaglandin (PG), Snca effect
on PG levels is unknown. In the present study, we examined the effect of Snca ablation on brain PG
level at basal conditions and following 30 sec of global ischemia. Brain PG were extracted with
methanol, purified on C18 cartridges, and analyzed by LC-MS/MS. We demonstrate, for the first
time, that Snca gene ablation did not affect brain PG mass under normal physiological conditions.
However, total PG mass and masses of individual PG were elevated ∼2-fold upon global ischemia
in the absence of Snca. These data are consistent with our previously observed reduction in 20:4n-6
recycling through endoplasmic reticulum-localized acyl-CoA synthetase in the absence of Snca,
which may result in the increased 20:4n-6 availability for PG production in the absence of Snca
during global ischemia and suggest a role for Snca in brain inflammatory response.
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INTRODUCTION
α-Synuclein (Snca) is widely distributed in neurons [22;24;28;31], astrocytes [9;33],
oligodendroglia [33;43], and microglia [3;36] and accounts for 0.1 - 1% of neuronal cytosolic
protein in nervous system [21;45]. Snca overexpression and mutations are associated with
familial Parkinson disease [25;38;46;54], although aggregates containing Snca are hallmark
of a number of neurodegenerative disorders [19;27;47;48;50]. Despite the close association
with neurodegenerative diseases, the physiological function of Snca is poorly defined.

While Snca may have a number of diverse roles in the nervous system, a number of studies
suggests its role in brain fatty acid metabolism. Snca facilitates palmitic acid and arachidonic
acid (20:4n-6) uptake in astrocytes [9] and in brain [14;15], although it has no affect on
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docosahexaenoic acid (22:6n-3) uptake both in astrocytes and brain [9;16], indicating a fatty
acid selective affect. More importantly, we have recently demonstrated a functional interaction
of Snca with microsomal acyl-CoA synthetases in brain, accounting for the profound reduction
in 20:4n-6 incorporation and turnover in phospholipids in Snca-/- mice [15]. Conversely,
22:6n-3 incorporation and turnover is increased in these mice as a result of metabolic
compensation for the decrease in 20:4n-6 brain metabolism [16]. Because 20:4n-6 is a precursor
for prostaglandins (PG), we hypothesize that reduced recycling of 20:4n-6 back into
phospholipid pool may result in the increased availability of 20:4n-6 for PG formation upon
20:4n-6 release during ischemia, thus increasing brain PG mass upon stimulation.

To address the potential role for Snca in brain prostaglandin formation, we measured brain
prostaglandin levels following global ischemia in Snca-/- and Snca+/+mice. Snca gene deletion
did not alter basal brain PG levels, however all measured PG masses were increased ∼2-fold
upon global ischemia as compared to wild-type animals. These data are consistent with our
proposed hypothesis and demonstrate that Snca has a key role in modulating PG formation,
suggesting a role in brain inflammatory response.

This study was conducted in accordance with the National Institutes of Health Guidelines for
the Care and Use of Laboratory Animals (NIH publication 80-23) and under an animal protocol
approved by the IACUC at the University of North Dakota (Protocol #407-9). α-Synuclein
gene-ablated mice (Snca-/-) were generated from 129/SvEv strain by gene targeted deletion
[8]. Male mice (25-30 g) were maintained on standard laboratory chow diet and water ad
libitum. In both groups, the ages of the mice were between 9-11 months.

Fasted, male mice were anesthetized with halothane (1-3%) and killed either by decapitation
or by head-focused microwave irradiation (2.8 kW, 1.35 s; Cober Electronics, Inc, Norwalk,
CT) to heat denature enzymes in situ. The whole brain was removed, frozen in liquid nitrogen,
and pulverized under liquid nitrogen temperatures to a fine, homogeneous powder. The total
time of global brain ischemia was 30 s in non - microwaved brains, while brain basal levels
were assessed in mice immediately killed using head-focused microwave irradiation.

Brain PG were extracted with methanol and purified on a C18 column as described previously
[29;39]. Briefly, 20 mg of non-microwaved or 100 mg of microwaved brain tissue powder was
homogenized in 3 ml of 15% methanol at pH=3 containing 0.005% of butylated
hydroxytoluene (BHT), and PGE2d4 and 6-keto-PGF1αd4 as internal standards. The tissue
debris were removed by centrifugation and supernatant was loaded onto C18 Sep-Pak classic
cartridges (Waters, Corporation, Milford, MA) that were prewashed with methanol and water.
The cartridges were then washed with 20 mL of 15% methanol following with 20 mL of water,
and then the PG were eluted with 10 mL of methyl formate (spectral grade, Acros Organics,
Pittsburg, PA). The methyl formate was removed under a stream of nitrogen and PG were then
dissolved in acetonetrile for analysis.

Reverse-phase LC electrospray ionization mass spectrometry was used for PG analysis. The
PG were separated on a Luna C-18(2) (3 μm column, 100 A pore diameter, 150 × 2.0 mm)
(Phenomenex, Torrance, CA, USA) with a stainless steel frit filter (0.5 μm) and security guard
cartridge system (C-18) (Phenomenex, Torrance, CA, USA). The LC system consisted of an
Agilent 1100 series LC pump with a wellplate autosampler (Agilent Technologies, Santa Clara,
CA). The solvent system was composed of 0.1% formic acid in water (solvent A) and 0.1%
formic acid in acetonitrile (solvent B). The flow rate was 0.2 ml/min. The separation program
started with 10% of solvent B. At 2 min, the percentage of B was increased to 65% over 8 min,
at 15 min the percentage of B was increased to 90% over 5 min, and at 35 min it was reduced
to 10% over 2 min. Equilibration time between runs was 13 min.
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MS analysis was performed using a quadrapole mass spectrometer (API3000, Applied
Biosystem, Foster City, CA, USA) equipped with a TurboIonSpray ionization source. Analyst
software version 1.4.2 (Applied Biosystem,) was used for instrument control, data acquisition,
and data analysis. The mass spectrometer was optimized in the multiple reaction-monitoring
mode. The source was operated in negative ion electrospray mode at 450 °C, electrospray
voltage was -4250 V, nebulizer gas was 8 L/min and curtain gas was 11 L/min. Declustering
potential, focusing potential, and entrance potential were optimized individually for each
analyte. The quadrupole mass spectrometer was operated at unit resolution. PGE2, PGD2,
PGF2α, and TXB2 were quantified using PGE2d4 as the internal standard and 6-keto-PGF1α
was quantified using 6-keto-PGF1αd4 as the internal standard.

All statistical comparisons were calculated using a one-way ANOVA followed by a Tukey-
Kramer post-hoc test using Instat II (Graphpad, San Diego, CA). Statistical significance was
defined as <0.05. All values are expressed as mean ± SD.

Snca gene ablation did not affect basal levels of total (Figure 1) and individual PG (Figure 2).
However, the total and individual PG mass in Snca-/- brains was elevated ∼2-fold as compared
to wild-type brains upon stimulation with 30 s of global ischemia (Figure 1 and 2).

The observed 4-to 20- fold elevation of brain PG levels upon a global ischemia modeled by
decapitation is consistent with previously reported values [2;7]. Increased PG formation is the
result of dramatic 20:4n-6 release from phospholipids following cerebral ischemia [2;5-7;10;
13] through activation of phospholipases and diacylglycerol lipases [18;26;34;53]. This
released 20:4n-6 is used by COX1 and COX2 for PG formation, thereby acting as a
proinflammatory mediator. As a possible protective mechanism against neuroinflammation
following ischemia, 20:4n-6 is recycled back into brain phospholipid pool via its initial
conversion to acyl-CoA by acyl-CoA synthetases [41;42]. As the result of acceleration of
20:4n-6 recycling following ischemia [41], brain 20:4n-6-CoA mass is increased, while
22:6n-3-CoA mass is decreased after decapitation [12;42], indicating fatty acid selectivity of
the recycling mechanism following brain ischemia. Because Snca specifically stimulates
20:4n-6 recycling by activation 20:4n-6-CoA formation through acyl-CoA synthetases
mechanism [15;16], the recycling of a released 20:4n-6 following ischemia would be depressed
in the Snca-/- brains. The reduced recycling of 20:4n-6 in Snca-/- brains would lead to increased
substrate availability for PG formation, thereby leading to the observed increase in the PG
levels in Snca-/- brains (Figure 1 and 2). Importantly, all of the PG analyzed were increased to
the same extent in Snca-/- brains, further supporting our assumption that the increased PG levels
in Snca-/- brains was the result of increased substrate availability for COX rather than
modulation of specific PG-synthetases by Snca.

The effect of Snca on PG formation following ischemia suggests that Snca has a role in the
brain physiological response to injury and downstream processes such as neuroinflammation.
The proposed role for Snca in suppressing neuroinflammatory response is not without
evidence. First, Snca-/- microglia have an activated phenotype that secretes elevated levels of
proinflammatory cytokines upon stimulation with proinflammatory stimuli [3]. This phenotype
may be the result of elevated phospholipase D (PLD) activity because PLD is involved in
promoting a reactive state in microglia [4;11;32;40;44] and because Snca tonically inhibits
PLD activity in vitro [1;23;37]. We have demonstrated an increase in palmitic acid (16:0)
turnover in brain phosphatidylcholine pools in Snca-/- mice [14], consistent with an increase
in turnover due to the absence of PLD inhibition by Snca. The increase in TNFα secretion in
cultured Snca-/- microglia [3] may result in increased astrocyte PG formation because TNFα
increases astrocyte 20:4n-6 release and downstream PG formation [51]. In addition,
Parkinsonism is associated with a maintained presence of reactive microglia [30;35;49].
Importantly, mutant forms of Snca, that are associated with familial forms of Parkinsonism

Golovko and Murphy Page 3

Neurosci Lett. Author manuscript; available in PMC 2009 February 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[25;38;54], do not restore 20:4n-6-CoA synthetase activity in Snca ablation which we show is
critical for 20:4n-6 recycling [15]. Collectively, this suggests a link between the functions of
Snca and neuroinflammation associated with Parkinsonism. Second, Snca expression is
significantly increased during cerebral ischemia and hypoxia [17;20;52]. Although this is not
direct evidence, our proposed role for Snca in regulating brain 20:4n-6 metabolism and
downstream of PG is consistent with this observation. Ischemic/hypoxic conditions are
characterized by increased PG formation; hence ischemia-induced increases in Snca levels may
serve as a protective mechanism to down regulate brain PG levels. Third, the level of Snca is
upregulated in neurons, astrocytes and oligodendrocytes via induced transcription of mRNA
in a model of multiple sclerosis [36]. This is important because inflammation is increased
during this disease process, once again indicating a link between Snca and neuroinflammatory
response.

Taken together, our results indicate that Snca gene deletion increases brain PG formation
following 30 s of global ischemia. This is consistent with our previously observed reduction
in 20:4n-6 recycling through endoplasmic reticulum-localized acyl-CoA synthetase in the
absence of Snca, which would result in the increased 20:4n-6 availability for PG production
in the absence of Snca. During pathological events such as ischemia where 20:4n-6 level is
increased, the absence of Snca would provide more substrate for downstream PG formation as
observed herein, suggesting Snca is an important regulator of brain PG formation during such
events. This impact of Snca may be exacerbated in its absence via a dysregulation of PLD-
mediated signaling in microglia, leading to increased cytokine release [3], resulting in a
downstream elevation in PG formation in astrocytes [51]. More than likely, in the absence of
Snca, multiple lipid-mediated signaling cascades in different cell populations in the brain are
altered, resulting in our observed increase in PG formation during ischemia.
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Figure 1. α-Synuclein gene ablation increases total prostaglandin mass following 30 sec of global
ischemia
Wild type and α-synuclein gene ablated mice were subjected to either 30 seconds of global
ischemia or the brains were fixed in situ using head-focused microwave irradiation (basal PG
levels). Brain PG were extracted with methanol, purified on C18 cartridges, and analyzed by
LC-MS/MS. Values are means ± SD. PG-prostaglandins; WT-wild type mice; KO-α-synuclein
gene ablated mice; * - significantly different from WT, p< 0.05; ** - significantly different
from WT and KO basal levels, p< 0.05.
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Figure 2. α-Synuclein gene ablation increases prostaglandin mass following 30 sec of global
ischemia
Wild type and α-synuclein gene ablated mice were subjected to either 30 seconds of global
ischemia or the brains were fixed in situ using head-focused microwave irradiation (basal PG
levels). Brain PG were extracted with methanol, purified on C18 cartridges, and analyzed by
LC-MS/MS. Values are means ± SD. PG-prostaglandins; WT-wild type mice; KO-α-synuclein
gene ablated mice; * - significantly different from WT, p< 0.05; ** - significantly different
from WT and KO basal levels, p< 0.05.
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