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Recombinant Temporal Aberration Detection Algorithms for
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Abstract Objective: Broadly, this research aims to improve the outbreak detection performance and,
therefore, the cost effectiveness of automated syndromic surveillance systems by building novel, recombinant
temporal aberration detection algorithms from components of previously developed detectors.

Methods: This study decomposes existing temporal aberration detection algorithms into two sequential stages and
investigates the individual impact of each stage on outbreak detection performance. The data forecasting stage
(Stage 1) generates predictions of time series values a certain number of time steps in the future based on
historical data. The anomaly measure stage (Stage 2) compares features of this prediction to corresponding
features of the actual time series to compute a statistical anomaly measure. A Monte Carlo simulation procedure is
then used to examine the recombinant algorithms” ability to detect synthetic aberrations injected into authentic

syndromic time series.

Results: New methods obtained with procedural components of published, sometimes widely used, algorithms
were compared to the known methods using authentic datasets with plausible stochastic injected signals.
Performance improvements were found for some of the recombinant methods, and these improvements were
consistent over a range of data types, outbreak types, and outbreak sizes. For gradual outbreaks, the WEWD
MovAvg7+WEWD Z-Score recombinant algorithm performed best; for sudden outbreaks, the HW+WEWD Z-

Score performed best.

Conclusion: This decomposition was found not only to yield valuable insight into the effects of the aberration
detection algorithms but also to produce novel combinations of data forecasters and anomaly measures with

enhanced detection performance.

B J Am Med Inform Assoc. 2008;15:77-86. DOI 10.1197 /jamia.M2587.

Introduction

Modern automated syndromic surveillance systems can be
divided into three steps. In the first step (denoted prepro-
cessing or preconditioning), medical records such as emer-
gency room Visits or over-the-counter medication sales are
filtered and aggregated to form daily counts, proportions,
weekly aggregates, or other quantities based on predefined
syndromic classifications. These classifications are generally
fixed but may also be created or altered dynamically in
response to public health information. In the second step
(aberration detection), algorithms are used to detect tempo-
ral and/or spatial changes in the preprocessed data that may
be indicative of a disease outbreak. In the third step (re-
sponse), surveillance system users manage alerts by seeking
corroboration across time, space, and other sources of evi-
dence and initiating a public health response when appro-
priate. A demonstrably consistent algorithm improvement
can often be rapidly integrated into an operational system,
offering immediate return on investment. Increased speci-
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ficity translates directly into reduced resource requirements
because users have fewer alarms to investigate. In this
article, we investigate one novel approach to discovering
such new algorithms to obtain increased detection perfor-
mance.

Background

Over the past ten years, various researchers have developed
numerous algorithms for the detection of aberrations (Step
2) in univariate time series, drawing from such diverse fields
as statistical process control, radar signal processing, and
finance. The C1 and C2 algorithms of the Centers for Disease
Control and Prevention’s (CDC’s) Early Aberration Report-
ing Systems (EARS) are based on the Xbar control chart,’'
and C3 is related to the Cumulative Summation (CUSUM)
chart. Reis et al. have used a trimmed-mean seasonal model
fit with an Auto-Regressive Moving Average coupled to
multiday filters.>® Brillman et al. have used regression-
based models.* Naus and Wallenstein examined the Gener-
alized Likelihood Ratio Test (GLRT) applied to time series.”
The Electronic Surveillance System for Early Notification of
Community-based Epidemics (ESSENCE) biosurveillance
systems automatically select between a regression-based
algorithm and an adaptive Exponentially Weighted Moving
Average (EWMA) chart, with the selection determined by a
goodness-of-fit measure for the regression model.® Burkom
et al.” obtained promising results in adapting the general-
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ized exponential smoothing technique of Holt and Win-
ters®® to biosurveillance data.

As the field of biosurveillance continues to expand, the
situation for researchers and practitioners has become un-
clear at best. Temporal aberration detection algorithms con-
tinue to increase in complexity even while more enter the
literature. No general consensus exists as to which algorithm
is most effective at detecting potential outbreaks, even
though some of these algorithms are deployed in opera-
tional biosurveillance systems. Even if all algorithms were
freely available (many are proprietary), it is resource inten-
sive for individual researchers to evaluate the performance
of each algorithm on their own data.

Exacerbating this situation is the diversity of syndromic time
series that challenges the algorithms. Some series have a
median count of zero, whereas others have a median in the
hundreds. Some exhibit complex cyclic behaviors including
day-of-week (DOW) effects and seasonal fluctuations. For
the time series derived from data sources with multiple
locations such as hospital groups or pharmacy chains, the
series’ statistical properties can change significantly over the
course of months and even weeks as the participation of
large-scale data providers increases or decreases and as data
processing systems and networks improve. Finally, the
manifestation of a potential outbreak in a time series may be
significantly impacted by a number of different factors,
including the pathogen, its infectivity, the method of intro-
duction to the susceptible population, and the population’s
underlying social network. Thus, the unknown shape of the
resulting time series signal adds another layer of complexity
to the problem. With numerous algorithms, data types, and
outbreak shapes, two very important questions remain:
Which temporal aberration detection algorithm works best
on a specific combination of data type and outbreak, and
why?

To help answer these questions, we decompose temporal
aberration detection algorithms into two sequential stages.
The first, the forecast stage, attempts to capture the expected
behavior of the time series in the absence of an outbreak
signal. The second, the anomaly measure stage, produces a
test statistic based on the difference between the observed
and expected data. Both stages are not always explicit and
may be abbreviated or omitted in some temporal aberration
detection algorithms.

Stage 1: Data Forecast

The data forecasting stage uses some historic portion of the
time series to make n-sample-ahead predictions of the
expected number of counts. Stage 1 can be simple or
complex. The simplest forecaster would simply use the
previous day’s value or the value from a week ago without
further modification. The EARS family of algorithms—C1,
C2 and C3—all use a 7-day moving average to generate the
expected values. The only difference among forecasts in
these techniques is that C1 uses the last 7 days of data
whereas C2 and C3 use data from 3 to 9 days in the past,
ignoring the current and two most recent days of data. This
2-day buffer, referred to as a guardband, helps to prevent
outbreak effects from contaminating the predictions. The
g-scan implementation in Wallenstein and Naus® used a
spline fit of historic data for estimation purposes.

Data forecasters can also be adaptive, updating their proce-
dures based on recent data. The Holt-Winters exponential
smoother makes predictions using three components: a
simple exponential smoother, an adjustment for trends, and
a cyclic multiplier to handle repetitive patterns. Brillman et
al.* fit an ordinary least-squares loglinear model to a set of
training series values to obtain regression coefficients. These
coefficients are used to extrapolate for expected values
beyond the training data. Regardless of the complexity of
the forecaster, one of the fundamental assumptions in this
stage is that the disease outbreaks cannot be predicted a
priori. In other words, it is assumed that the predicted series
will not contain an outbreak signal and that the appropriate
comparison to the actual data will allow timely outbreak
identification. For detection of gradual signals, this assump-
tion necessitates the use of a temporal guardband between
the baseline period and the interval to be tested to avoid loss
of sensitivity because of the presence of the early part of the
outbreak signal in the baseline.

Stage 2: Anomaly Measurement

For each time interval in which data are to be tested, the
anomaly measurement stage calculates a numeric value to
quantify the severity of positive differences between obser-
vation and prediction. Even though unusual decreases in a
time series can result from a public health event (imagine a
dropoff in reported values caused by an emergency that
interrupts the reporting procedure), the need to control alert
rates for sensitivity to high values mandates that such
overpredictions not be tested for anomaly. The calculated
numeric value or test statistic can then be used to decide
whether or not to investigate the cases causing the anomaly
for evidence of a public health event.

Typically, the comparison between observed and forecast
values is a simple differencing, resulting in a time series of
residuals that are then used to form a test statistic as the
basis for an alerting decision. Many anomaly measures
normalize the residuals either explicitly or implicitly to
account for natural variance in the baseline data. The Z-
Score, related to the Xbar chart of statistical quality control,
performs this normalization explicitly by dividing the resid-
ual by a standard deviation estimate. The quotient then
serves as the test statistic. The 7-day filtering method em-
ployed by Reis does not normalize explicitly but attempts to
account for global variability with the determination of an
empirical alerting threshold. Often, statistical process con-
trol charts such as the CUSUM or EWMA chart are used for
the anomaly measure stage.

Motivation

Decoupling temporal aberration detection algorithms af-
fords several potential advantages. Table 1 lists a variety of
published algorithms and shows one way of decomposing
them into two stages. Many combinations of these imple-
mentations are possible, but few have been explored. Once
an algorithm becomes associated with a specific organiza-
tion, publication, or acronym, developers, implementers,
and users treat the underlying combination of forecast and
anomaly measure stages as a monolithic unit, preventing
alternative combinations from being explored. However,
this study’s findings demonstrate that novel couplings of
data forecasters and anomaly measures can yield enhanced
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Table 1 m Decomposition of Several Existing Aberration Detection Algorithms from the Literature into Data

Forecast and Anomaly Measure Stages

Algorithm Data Forecasting Anomaly Measure Threshold
Fixed Data Threshold  Not applicable Not applicable Predetermined number of counts
C1 (EARS) Moving average with 7-Day window Z-Score Three standard deviations above
the mean (7-day)

C2 (EARS) Moving average with 7-day window Z-Score Three standard deviations above
and 2-day guardband the mean (7-day)

C3 (EARS) Moving average with 7-day window Sum of last three Z-Scores Three standard deviations above
and 2-day guardband the mean (7-day)

Reis [3] Auto regressive moving average applied =~ 7-day filter applied to residuals =~ Empirically derived based on
to trimmed seasonal model desired sensitivity

GScan [5] Spline fit to historic data GLRT applied to sum of values = Empirically derived based on

Brillman [4] Loglinear regression model with a fixed

baseline

simulation studies
Empirically derived

in fixed-size moving window
Page’s test applied to the
residuals in log space

algorithms. Individual consideration of each stage may
suggest new approaches or variations to explore. Either
Stage 1 or Stage 2 can be fixed while varying the other stage
for testing on a certain type of data and/or outbreak effects.
Finally, examining the multitude of possible permutations
may also help categorize existing techniques and, impor-
tantly, understand performance differences among them.
The only caveat is the necessity to ensure that the assump-
tions demanded of the input into the second stage are met
by the output produced by the first; otherwise, nonsensical
results could be produced.

This study decomposes several popular temporal aberration
detection algorithms—an adaptive regression, a Holt-Win-
ters exponential smoother, sliding z-score variations gener-
alizing the EARS family of algorithms, and a temporal scan
statistic—into two stages. We then evaluate the effectiveness
of all possible recombinant temporal aberration detection
algorithms assembled from the possible combinations of the
various stages for the detection of two different types of
stochastically generated outbreaks inserted into authentic
syndromic time series. Our hypothesis is that there exist
novel combinations that yield improved detection perfor-
mance over a broad class of background data and target
signal types.

Methods

The goal of our study was to decompose existing algorithms
into two separate stages and evaluate the outbreak detection
performance of different combinations of these stages. The
outbreak detection capabilities of the various Stage 1 and
Stage 2 combinations were evaluated on real syndromic data
with stochastically generated outbreak signals inserted in
repeated Monte Carlo simulation runs.

Background Data

The background data for this study were time series of
aggregated de-identified counts of health indicators derived
from the BioALIRT program conducted by the U.S. Defense
Advanced Research Projects Agency (DARPA).' (The ap-
propriate formal agreements to use these data were signed
by the authors. Others wishing access may contact the
corresponding author for the required procedures.) This
data set contains three types of daily syndromic counts:
military clinic visit diagnoses, filled military prescriptions,

and civilian physician office visits. These records, gathered
from ten U.S. metropolitan areas, were categorized as Re-
spiratory (RESP), Gastrointestinal (GI), or Other. Although
30 time series were available, 14 series were excluded
because they contained artifacts such as temporary dropouts
and permanent step increases not representative of routine
consumer behavior or disease trends. The remaining 16
included 10 time series of RESP counts and 6 time series of
GI counts, each 700 days in length. All series demonstrated
strong DOW effects with a difference of over 200 between
median weekday and weekend counts. The RESP series also
demonstrated cyclic annual fluctuations, peaking during the
winter season; whereas, the GI series did not.

Stochastic Injects

For the signal to be detected, injected cases attributable to a
presumed outbreak were added to the background data.
Our injection process assumes that the number of outbreak-
attributable data counts on a given day is proportional to the
number of newly symptomatic cases on that day. We
consider the signal to be the number of additional data
counts attributable to a point-source outbreak on each day
after exposure; together, these attributable counts form the
“data epicurve.” These data epicurves were stochastically
drawn from two different lognormal distributions chosen to
represent outbreaks that were sudden or gradual relative to
the data time scale. The first, representing a sudden 1- to
3-day jump in cases (Spike), used lognormal parameters { =
1 and o = 0.1. (See Sartwell et al. for details)."* The second
outbreak type, representing a more gradual rise in the
number of cases over time (SlowRise), used { = 2.4 and ¢ =
0.3. The stochastic epicurves were drawn from the resulting
lognormal distribution. To challenge the algorithms, we set
the total number of cases, N, of the outbreak one, two, three,
or four times the standard deviation of the 4 weeks of
detrended background data immediately preceding the start
of the injected outbreak. Individual incubation periods were
then chosen with a set of N random lognormal draws and
rounded to the nearest day. The number of cases added to
the observed case count each day after the outbreak onset
was equal to the number of draws rounded to that day.

For each Monte Carlo trial, a single stochastic epicurve was
injected (added) to a background time series as previously
described, beginning at a randomly chosen start day beyond
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an 8-week startup period. This startup period was to accom-
modate the longest warmup interval required by any of the
methods chosen for testing. Each data forecaster was then
applied successively to make predictions of the time series
after inject counts had been added to the selected subinter-
val of the authentic data. Residuals were computed from
each set of predictions (generated by each data forecaster)
and were then run through each anomaly measure, produc-
ing a time series of test statistics for possible alerting for each
forecaster /anomaly measure combination. This process was
repeated 600 times for each possible combination of syn-
dromic time series, outbreak size, and outbreak type. The
number of trials was chosen heuristically to obtain stable
estimates of detection probability in reasonable simulation
execution time.

As the precise start and stop day of each outbreak signal
were calculated and saved, an exact determination of an
algorithm’s performance could be determined. We ac-
counted for the nonuniform, sometimes multimodal and
long-tailed shape of the stochastic outbreak signals by
counting toward empirical detection probabilities only those
anomaly measure values from days containing the first 80%
of total inject counts. Thus, algorithms were not credited for
late detections of no use to public health response. Receiver
Operator Characteristic (ROC) curves were generated, sum-
marizing the relationship between the probability of detec-
tion (sensitivity, y-axis) and the probability of a false alarm
(specificity, x-axis) for a range of practical detection thresh-
old values. The same set of epicurves and outbreak start
dates was used for testing each forecaster/anomaly measure
pair to minimize the variance of the findings, a technique
known as common random numbers.'?

Decoupling Aberration Detection Algorithms
Six different data models were used to generate n-day-ahead
predictions of time series with and without injects.

Exponentially Weighted Moving Average (EWMA)
The first predictor used was a simple exponential moving
average using a smoothing coefficient o of 0.4. If y(t)
represents the original time series and p(t) represents the
smoothed or predicted time series, the EWMA prediction is
given by

Po= Yo ey

pe=ay; + (1 —a)p, @)
Moving Average (MovAvg)

The second and third predictors used moving averages with
window lengths of 7 (MovAvg?) and 56 days (MovAvg56),
respectively. The shorter-window average represents the
expected value used in the EARS algorithms," and the longer
one was added to give less volatile baseline parameters for
more stable predictions.

Weekend/Weekday Moving Average (NEWDMovAvg)
The fourth predictor used the average of the last 7 weekdays
or weekend /holiday days to predict n days ahead according
to whether the day of the predicted count was a non-holiday
weekday.'® This stratification of the simple moving average
reflects the W2 modification being tested by the BioSense
program.'*

Holt-Winters General Exponential Smoother (HW)
The fifth predictor used was a generalized exponential
smoother based on the Holt-Winters method detailed by
Burkom et al.” In that reference, this approach compared
well against regression models on a day-to-day prediction
basis. Along with the level L, the method includes two
additional recursive terms, one for the trend T, and one for
a seasonal component S,. The k-step ahead forecast is given

by
Dere = (Ly + KTPSphie-my (3)

where M is the number of seasons in a cycle (e.g., for a
monthly periodicity M=12); L,, T, and S, are updated as
follows:

Y

Li=a B + (1= &)Ly + T—y) 4)
Y,

Si=vp + (1= VSw ©)

Te=B(L¢— L) + (1= BTy (6)

The three smoothing coefficients, «, B and vy, were fixed at
0.4, 0, and 0.15, respectively.

Adaptive Regression
The last predictor was an adaptive regression model with a
sliding 8-week baseline interval.* This model is given by

6
Pt~ [21 CiIi,t] + [og + co X H + [c30 X /] (7)

where c¢;-c, are coefficients for DOW indicators, cg is a
constant intercept, ¢, is the slope of a linear trend using a
centered ramp function, and ¢, is a coefficient for a holiday
indicator. This method recomputes the regression coeffi-
cients for each forecast using only the series values from the
8 weeks before the forecast day. The short baseline is
intended to capture recent seasonal and trend patterns. The
holiday indicator helps to avoid exaggerated forecasts on
known holidays and also avoid the computation of spurious
values for ¢,-c, when holidays occurred in the short baseline
interval. A similar model is applied for anomaly detection in
ESSENCE biosurveillance systems when an automated
goodness-of-fit criterion is satisfied.®

The number, 1, of advance prediction days was set to 2 for
the detection of spike outbreaks and to 7 for the slow-rise
outbreaks. The purpose of this look ahead or prediction
buffer is to prevent the early portion of an outbreak from
contaminating the segment of recent data used for time
series prediction. In practice, depending on monitoring
objectives, one would choose a single value for n or could
use multiple values for general surveillance capability.

We used six different anomaly measures to compute test
statistics from the observed values and the model predic-
tions.

cusum
The first anomaly measurement method used in this study
was the fast initial response variation of a cumulative
summation applied to the Z-Score of the forecast residuals.
If z, represents the Z-Score of the residuals, the CUSUM, S,,
is given by
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k
S;=max(0,S, 1 +z, — E) (8)

with k set to 1."> When the detection statistic exceeded a
reset threshold of 4, the sum was set back to 2 to retain rapid
response capability as in'®.
Adaptive EWNMA

The second anomaly measure, an EWMA-based algorithm,
smoothes a time series of forecast residuals using dual
smoothing coefficients of 0.4 and 0.9 for sensitivity to
gradual and spike outbreaks.® The measure then computes a
modified Z-Score (zg 4, Zyo) for each of the two smoothed
series of residuals, scaling for the length of the baseline used
(28 days for this study), and returns the probability that the
test statistic will fall in the interval [-infinity, max(z, 4, Z()]
given a t-distribution with 27 degrees of freedom.

G-Scan Statistic (gScan)
The third and fourth methods implemented the g-scan
statistic, G(w), described by Naus and Wallenstein with a
7-day and 3-day window, respectively, shown in the follow-
ing equation®

Gi(w) = Y(w)In[Y(w)/E(w)] — [Yi(w) — E(w)] ©)

09 where Y (w) represents the number of counts in the time
series within window, w, and E(w) captures the expected
number of counts within the window using the predictions
provided by the data forecaster.

Z-Score

The fifth method computed a Z-Score based on the predic-
tion residuals (actual count minus predicted count), with the
mean of the previous 28 days of residuals subtracted from
the current estimate and divided by the standard deviation
of the last 28 residuals as given by

o= mean(ryy ) .

b std(ry)
Weekend/Weekday Z-Score (WEWD Z-Score)

The sixth method, the weekend /weekday (WEWD) Z-Score,
is a slight modification to the Z-Score. For the WEWD
baseline, we restricted residuals to the last 28 weekdays.
Similarly, when computing the output for a prediction of a
weekend day or a holiday, only weekend /holiday residuals
were used.

All data forecast and anomaly measure stages used and that
adjust for holidays use the following set of dates: New
Year’s Day, the Birthday of Martin Luther King, Jr., Wash-
ington’s Birthday (Presidents’ Day), Memorial Day, Inde-
pendence Day, Labor Day, Columbus Day, Veterans Day,
Thanksgiving Day, and Christmas Day.

Performance Measurement

The six data models coupled to each of the six anomaly
detectors yielded 36 temporal aberration detection algo-
rithms. Each of these 36 composites was applied to the 16
different background time series discussed in the section
called Stage 1: Data Forecast. Each algorithm /background
pair was tested with two different inject types (spike and
slow-rise), each with four different sizes (one, two, three,
and four times the standard deviation of the detrended
data). Computations in this procedure produced 4608 ROC
curves. We extracted two summary scalar measures from
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each such curve to simplify the analysis. The first measure
was a detection probability denoted PD84 and taken from
the point of the ROC curve corresponding to an expected
background alert rate of one every 84 days or 12 weeks. The
second measure was the average detection probability for
expected alarm rates between one per 16 weeks and one per
12 weeks, denoted Area because it was computed as the
percentage area under the portion of the ROC curve deemed
relevant for public health monitoring. Because of the large
volume of data generated, Spotfire Design Explorer (DXP)
(http:/ /www .spotfire.com/products/dxp_pro.cfm) was
used to rapidly visualize the relationships among all vari-
ables and to produce several of the graphs in this publica-
tion.

Sample Results

Figure 1 displays sample output from each stage (forecast
and anomaly measure) of two different, decomposed aber-
ration detection algorithms applied to one RESP time series
along with an ROC curve, demonstrating the two recombi-
nant algorithms’ performance. Panel (a) shows the original
time series (solid black line) along with the output of the
data forecasting stage for two different forecasters, a 7-day
moving average (MovAvg7, dashed line) and the WEWD
7-day moving average (WEWD MovAvg?7, dotted line). The
time scale, in days, shows a magnified portion of the 700-day
series. Panel (b) shows the output of the Z-Score anomaly
measure applied to the MovAvg7 residuals (dashed line)
and the WEWD MovAvg?7 residuals (dotted line) calculated
from the values plotted in panel (a).

From panel (a), it is apparent that the series predicted by
MovAvg7 lacks the original data’s weekly trend, resulting
in residuals with undesirable DOW fluctuations. The
Z-Score values in panel (b) also show a strong DOW trend
when based on the MovAvg7 predictor output and a
slight 7-day fluctuation when based on the WEWD
MovAvg?7. Neither forecaster completely eliminates the
weekly pattern from the original data, resulting in biased
output from the anomaly measure stage and decreased
detection performance. Decomposing the algorithms into
constituent stages helps to identify and isolate this prob-
lem. Notably, the MovAvg7+Z-Score predictor-detector
combination is used indiscriminately by many public
health institutions for routine health monitoring.

Panel (c) demonstrates the ROC curves produced with the
Monte Carlo stochastic inject simulation using a spike out-
break (1-o signal: total injected cases set to one standard
deviation above the mean) for the two aberration detection
algorithms from panel (b) (using the same line-marking
scheme) and graphically illustrates the two performance
metrics. PD84 is the y-value or detection probability at the
intersection of the dashed vertical line and the ROC curve,
and Area is the percentage of area beneath the ROC curve
between the two solid vertical lines. The aggregate informa-
tion of the ROC curve cannot show that the DOW problem
is the principal cause of the performance difference. One
benefit of algorithm decoupling is to clarify such sources of
bias.
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Figure 1. Prediction output of two different data forecasters applied to an RESP time series; (a) output of Z-Score anomaly
measure applied to the corresponding residuals and (b) resulting ROC curves produced with Monte Carlo simulation.

both panels representing the average Area detection metric

Aggregate Results

Because this study yielded several thousand results, we
begin this analysis by first examining highly aggregated
results before performing more stratified analyses. Each of
the 36 possible aberration detection algorithms resulting
from the different combinations of data forecasters and
anomaly measures was applied to the 16 time series as in
Figure 1. Figure 2 presents two bar charts with each bar in

with one of the two algorithm stages held constant. On the
left, panel (a) shows the Area detection metric for each data
forecaster averaged over all other variables (outbreak size,
time series, and anomaly measure). On the right, panel (b)
shows the Area detection metric for each anomaly measure
averaged over all other variables (outbreak size, time series,
and data forecaster). Because of the similarity of the data

(a) Aggregate Detection Performance by Data Forecast Stage

100.0 § £ SlowRise
844
80.0 - W Spike
64.7
© 60.0
@
—
< 400
20.0
0.0 T -
AdaptiveRegression EWMA HW MovingAvg56 MovingAvg7? WEWD
MovingAvg7

(b) Aggregate Detection Performance by Anomaly Measure Stage
9

4.8

Area

AdaptiveEWMA CuUsuUM gScan3

1 SlowRise
B Spike

Z-Score

WEWD Z-Score

gscan?

Figure 2. Comparison of performance influence of all algorithm stages using relevant detection probabilities averaged
across all time series and 3- and 4-sigma outbreak sizes for (a) data forecast stages averaged across all anomaly measure stages
and (b) anomaly measure stages averaged across all data forecast stages.
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Table 2 m Percent Area Under the ROC Curve Averaged Across All 16 Data Series and 3- and 4-sigma
Outbreak Sizes for All Possible Combinations of Data Forecasters and Anomaly Measures for Both SlowRise

and Spike outbreaks

CUSUM Adaptive EWMA GScan3 GScan?7 Z-Score WEWD Z-Score Mean Range
SlowRise
EWMA 37.97 46.19 46.61 37.74 46.91 43.13 43.097 9.17
MovAvg7 50.02 53.59 51.32 33.43 59.81 61.97 51.69 28.54
MovAvg56 54.16 57.44 55.97 42.61 63.50 63.66 (4) 56.22 21.05
WEWD MovAvg7 57.67 65.84 (2) 52.32 34.21 58.31 68.69 (1) 56.17 34.48
Holt Winters 58.16 61.22 65.13 (3) 46.51 59.81 63.28 59.02 18.62
AdaptiveRegression 53.82 55.66 36.33 14.02 54.64 59.47 45.66 45.45
Mean 51.97 56.66 51.28 34.75 57.16 60.03
Range 20.19 19.65 28.8 32.49 16.59 25.56
Spike
EWMA 7117 71.00 59.25 48.18 58.78 79.70 64.68 31.52
MovAvg7 74.83 86.20 68.62 43.56 83.92 98.12 75.88 54.56
MovAvg56 74.01 86.80 60.77 53.52 84.51 97.35 76.16 43.83
WEWD MovAvg7 93.08 98.78 (2) 45.73 38.73 97.39 97.57 78.55 60.05
Holt Winters 95.27 98.76 (3) 50.57 63.98 98.73 (4) 98.90 (1) 84.37 48.33
AdaptiveRegression 82.14 96.33 40.67 24.23 97.60 97.29 73.04 73.37
Mean 81.75 89.65 54.27 45.37 86.82 94.82
Range 24.10 27.78 27.95 39.75 39.95 19.20

series in scale and in behavior, we averaged the Area
measures over all 16 time series in these charts. The top chart
gives these averaged measures for SlowRise outbreaks and
the bottom chart for Spike outbreaks. The solid dark line
shows the average performance across all recombinant al-
gorithms for the associated outbreak type.

Performance of the recombinant algorithms was greater for
Spike than SlowRise outbreaks with an average Area of
approximately 60% versus 43%. This observation is a result
of the evaluation methodology for the two signal types and
the relative difficulty of detection. The SlowRise outbreaks
are variably intermittent events spread over a 2- to 3-week
interval, and they are important because they represent the
likely data effects of non-communicable disease outbreaks
for which the disease has a long incubation period, as well as
communicable disease outbreaks with certain transmission
characteristics.

When the anomaly measure was held constant, recombinant
algorithms using either the HW or WEWD MovingAvg7
data forecasters yield the highest aggregate performance for
SlowRise outbreaks, and the HW data forecaster yielded the
best performance for Spike outbreaks. When the data fore-
caster was held constant, recombinant algorithms using the
WEWD Z-Score were followed by the Z-Score because their
anomaly measure offered the top performance for SlowRise
outbreaks. In the case of Spike outbreaks, recombinant
algorithms using the WEWD Z-Score followed closely by the
AdaptiveEWMA yielded the best performance.

Table 2 shows Area performance results averaged over 3-
and 4-sigma outbreaks and all 16 time series for SlowRise
outbreaks in the top chart and Spike outbreaks in the bottom
chart. Data forecasters are listed vertically as rows (top
performer in a column is bold), and anomaly measures are
listed horizontally as columns (top performer in a row is
shaded) to explore the individual contributions of each stage
of the recombinant algorithms. The top four performing
recombinant algorithms in each section of the table are
denoted parenthetically.

Table 2 demonstrates several general results. Large perfor-
mance differences among the various recombinant algorithms
are apparent, with high scores observed for some unexpected/
untested combinations of data forecasters and anomaly mea-
sures. For SlowRise outbreaks, the top four algorithms were
WEWD MovingAverage7+WEWD Z-Score (68.69%), WEWD
MovingAverage7+AdaptiveEWMA  (65.84%), HW+gScan3
(65.13%), and MovingAvgb6+WEWD Z-Score (63.66%). For
Spike outbreaks, the top four algorithms, all tightly clustered,
were HW+WEWD Z-Score (98.90%), WEWD MovAvg7+
AdaptiveEWMA (98.78%), HW + AdvancedEWMA (98.76%), and
HW+Z-Score (98.73%). All of these combinations included at least
one stage that modeled the prominent DOW effect, and the best
values came from the combination that included day-of-week
effects in both stages.

The detection scores of the WEWD Z-score were consistently
high for Spike outbreaks and relatively high for SlowRise
signals. The combination of this detector with MovAvg?7 is
much like the W2 algorithm under testing by the BioSense
program at CDC.'* A likely explanation of the relative
performance of this stratified Z-Score is that none of the
other detectors accounts for either modeled or unmodeled
DOW effects in residuals and the weekly pattern is the most
prominent feature of the city-level data series of this study.

The six anomaly measures produced their weakest results
when coupled with the EWMA forecaster, although the
EWMA-based anomaly detector performed well. The gScan
anomaly measures gave poor performance for Spike out-
break detection for 3- and 7-day window sizes, regardless of
the underlying forecaster. Area measures for 7-day gScan
were also low for the SlowRise outbreaks. These findings
agree with past experience that, for syndromic data, the
utility of the gScan methods is for sparse data streams unlike
those of the current study. Furthermore, coupling the Adap-
tiveRegression forecaster to either gScan anomaly measure
resulted in a larger performance drop when compared to
other forecasters, suggesting that the predictions made by
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the AdaptiveRegression forecaster were particularly ill-
suited for this anomaly measure.

Among the six forecasters (rows) of Table 2, the bottom three
account in some way for the DOW patterns, whereas the top
three ignore these patterns. As noted, the gScan algorithms
are not well matched to the study data, and if we set the
gScan columns aside, the anomaly detector Area measures
are almost uniformly higher for the bottom three forecasters
for both types of signal. For the Spike outbreaks, this
difference is over 10% for the CUSUM, EWMA, and Z-Score
detectors; this difference is small but consistent for the
WEWD Z-Score. The only exception to the advantage of the
DOW modeling is that the Z-Score detector for SlowRise
outbreaks has a higher score for the MovAvg56 (63.50)
forecaster than for the WEWD MovAvg7 (58.31), and this
difference is likely a combination of the volatility of the
7-day baseline of the latter forecaster and the difficulty of
detection of the SlowRise signals.

It is interesting to compare the Area scores of the WEWD
Z-score (which accounts for DOW effects) and the Z-score
(that does not) applied to the three data forecasters that
include DOW adjustment. The small but consistent im-
provements of the WEWD Z-score suggest that the residuals
produced by these three data forecasters still contain DOW
effects that may bias aberration detection. Furthermore, the
performance jump for WEWD Z-Score versus Z-score Spike
outbreak detection applied to residuals of the EWMA and
moving average forecasters is sizable and seemingly indi-
cates that the anomaly measure alone can effectively correct
for DOW and DOW correction is more important for Spike
detection than gradual signal detection because of the rela-
tive temporal concentration and difficulty of detecting these

signal types.

Figure 3 shows results for the top performing SlowRise (left)
and Spike (right) recombinant algorithms (WEWD
MovAvg7+WEWD Z-Score and HW+WEWD Z-Score, re-
spectively) stratified by outbreak size and time series. In

87
9

Data Series
Figure 3. Comparison of average detection probabilities for practical false alarm rates for top performing algorithms for
SlowRise (gray bars) and Spike (black bars) signals across signal strengths averaged over all data series and individual time
series averaged over all signal strengths.

panel (a), the gray bars show the Area detection metric of the
WEWD MovAvg7+WEWD Z-Score recombinant algorithm
applied to different size SlowRise outbreaks; whereas, the
black bars show the Area detection metric of the
HW-+WEWD Z-Score recombinant algorithm applied to
different size Spike outbreaks. The Area detection perfor-
mance metric scaled linearly with SlowRise outbreak size.
Also, there appears to be a large jump in detection capability
for HW+WEWD Z-Score algorithm applied 1- and 2-sigma
Spike outbreaks. In panel (b), gray bars again show the
performance (standard deviation of 6.5) of the WEWD
MovAvg7+WEWD Z-Score recombinant algorithm aver-
aged over all four SlowRise outbreak sizes stratified by time
series. Likewise, the black bars show the Area performance
(standard deviation of 3.0) of the HW+WEWD Z-Score
algorithm averaged over all four Spike outbreak sizes strat-
ified by time series. Both series of bars show relatively
consistent performance by the top performing recombinant
algorithms across all 16 time series.

Discussion

The aggregate performance results indicate that novel re-
combinant algorithms offer excellent temporal aberration
detection capabilities. For SlowRise outbreaks, WEWD
MovAvg7+WEWD Z-Score recombinant algorithm per-
formed best; for Spike outbreaks, the HW+WEWD Z-Score
recombinant algorithm performed best. The localization of
the surge of counts over 1 or 2 days from the spike outbreak
makes it critically important that either the data forecaster or
anomaly measure or both compensate for this DOW effect
when detecting such outbreaks in time series with strong
weekly fluctuations. For SlowRise outbreaks that last longer
than a week, DOW compensation does not appear to be as
important. Even though not all data will have such weekly
patterns, their presence in the test data set afforded an
excellent opportunity to evaluate how effectively different
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stages of each recombinant algorithm removed or handled
this type of systemic bias.

A primary systematic feature of the data streams in this
study is the DOW day-of-week effect, and algorithms may
be classified according to how this effect is modeled. The
sliding 7-day average of the widely used C1-C3 ignores this
effect, treating all days as equivalent, i.e., a count on a
Sunday is equivalent to a count on a Monday. For a second
management strategy, the CDC W2 algorithm divides the
data into weekday and weekend-plus-holiday counts. The
most detailed strategy handles each day uniquely. Muscatel-
lo’s 7-day differencing technique'® and the regression of
Brillman et al.,* with DOW indicator covariates, fall into this
category. This categorization suggests numerous variations
of pre-existing techniques. Treating weekends and week-
days separately improved the Z-Score anomaly measure
producing the WEWD Z-Score. It is also possible to modify
other anomaly measures, such as the CUSUM and gScan, in
a similar fashion to handle weekends and weekdays. These
three could then be stratified by DOW, yielding three
additional anomaly measures.

It also appears that some forecasters have a far more
detrimental effect on certain control-chart approaches than
others. For example, the detection probabilities found with
the gScan measure applied to adaptive regression residuals
were significantly below those found when they were ap-
plied to Holt-Winters residuals. This difference may result
from the reduced autocorrelation in the residuals of the
latter forecaster, as discussed by Chatfield.® Moreover, al-
though most statistical process control charts typically re-
quire independent and identically distributed input data,
the detection performance penalty for violation of these
conditions needs to be better understood for use with
residuals computed for the evolving data streams character-
istic of biosurveillance.

Furthermore, recombinant algorithms offer numerous re-
search directions. There are many more data forecaster and
anomaly measure combinations to test, including simple
parameter changes in existing techniques. Also, the anomaly
measure variations suggested should be evaluated, afford-
ing a more precise investigation into the balance between
temporal stratification and data adjacency. One can imagine
an automated biosurveillance system that would automati-
cally switch from a standard Z-Score to a WEWD Z-Score
when the data’s temporal 7-day autocorrelation increased
above a particular threshold. Forecast techniques from many
other fields could also be matched with various control chart
ideas. Many novel combinations could be efficiently evalu-
ated with the methodology given herein.

A surveillance designer or manager wishing to seek addi-
tional detection performance from the recombinant ap-
proach might follow the following procedure:

a) Obtain a quantity of historic data thought to be similar to
the series that will need to be monitored. For monitoring
daily data that are nonsparse (in the sense of a positive
median daily counts) with the methods described above,
a year of data could give reasonable results. For very
sparse data or for more complex prediction modeling,
several years of data would be preferable.
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b) Restrict attention to prediction methods that seem rea-
sonable for the time series to be monitored. For example,
to monitor counts of a syndrome grouping known to be
nonseasonal, one would not use a predictor that includes
covariates for annual trending.

¢) In selecting the anomaly detection methods to be applied
to the residuals, consider the outbreak signal types that
are consistent with the public health goals of the system.
For example, a temporal scan statistic with a long time
window might not be appropriate for monitoring gastro-
intestinal syndrome data for evidence of a food poisoning
outbreak.

d) Given the available data and size of the monitored
population, how small an outbreak effect is the system
required to detect? Having chosen a small, plausible set
of prediction and anomaly detection methods, apply
them to the test data with inject data scaled to the
required detection size, and compare the resultant detec-
tion probabilities at the required alert rates, i.e., choose
among the algorithms based on a few selected points on
the ROC curves.

Aside from detection performance, additional factors for
choosing among algorithm combinations are the difficulty of
implementation and expected need for technical expertise as
the data streams change. A complex predictor based on
autoregressive error modeling is likely to be more sensitive
to nonstationary behavior than a Holt-Winters predictor,
though it may give smaller errors on a training set.

We discuss two limitations beyond those already noted.
First, this research was limited to time series that contain
strong DOW patterns. Not all syndromic time series contain
such patterns. Second, synthetic outbreaks were inserted
randomly into the data on all days of the week. Because of
the strong DOW effect in the data, the outbreaks peaking on
weekends will represent far greater deviations from the
expected count than those peaking on weekdays. One can
argue that the DOW effect should impact outbreak shape
proportional to the severity and novelty of the symptoms. A
patient with apparently life-threatening symptoms will take
drastic measures to seek health care regardless of local clinic
hours or daily schedule. However, the diseases of most
interest to syndromic surveillance are those that present like
other common illnesses, such as the common cold or influ-
enza.'"” In this situation, the syndromic records from an
outbreak would show the same DOW dependence as the
underlying data. Thus, future studies may want to modulate
the outbreak signal based on DOW effects to make the
research more relevant to plausible outbreak situations.

Conclusion

This study found that the decomposition of aberration
detection algorithms into two separate, sequential stages
yielded new aberration detection algorithms with improved
performance. The analysis of each stage separately offers
insight into performance differences among candidate
algorithms. This understanding can be used to develop a
classification system to select the best aberration detection
algorithm to surveil syndromic time series based on data
characteristics. For example, the current default method
used in ESSENCE applies a regression model goodness-of-fit
measure and automatically selects the algorithm based on
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the result.”® When aberration detection algorithms are
treated as monolithic techniques, opportunities for substan-
tial improvement are lost.
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