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Five-way Smoking Status Classification Using Text Hot-Spot
Identification and Error-correcting Output Codes

AArRON M. CoHeN, MD, MS

Abstract we participated in the i2b2 smoking status classification challenge task. The purpose of this task
was to evaluate the ability of systems to automatically identify patient smoking status from discharge summaries.
Our submission included several techniques that we compared and studied, including hot-spot identification,
zero-vector filtering, inverse class frequency weighting, error-correcting output codes, and post-processing rules.
We evaluated our approaches using the same methods as the i2b2 task organizers, using micro- and macro-
averaged F1 as the primary performance metric. Our best performing system achieved a micro-F1 of 0.9000 on the
test collection, equivalent to the best performing system submitted to the i2b2 challenge. Hot-spot identification,
zero-vector filtering, classifier weighting, and error correcting output coding contributed additively to increased
performance, with hot-spot identification having by far the largest positive effect. High performance on automatic
identification of patient smoking status from discharge summaries is achievable with the efficient and

straightforward machine learning techniques studied here.
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Introduction

Automated document classification can be a powerful tech-
nique to aid biomedical researchers by reducing the human
effort needed to make repeated decisions categorizing sam-
ples of text. It is useful when each of the samples from a
given source needs to be categorized into one or more of
several pre-defined categories (labels or classes), and there
already exists (or can easily be created) a set of already
categorized documents, known as fraining data, usually
created by human experts. In this situation, machine learn-
ing algorithms can be used to extract a set of rules or
procedures from the training data, and apply these rules to
new, previously unseen documents, accurately predicting
the labels that should be assigned to these documents.

Case Description

The i2b2 challenge modeled the task of identifying patient
records of interest in terms of smoking status. The challenge
was organized to evaluate automated systems identifying
the smoking status of a patient from a hospital discharge
summary. Smoking status was defined as one of five mutu-
ally exclusive categories: UNKNOWN, NON-SMOKER,
SMOKER (current status unknown), PAST SMOKER, and
CURRENT SMOKER.

Human experts created training and test sets by manually
assigning labels. The task organizers studied the perfor-
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mance of the human annotators during the creation of the
test collections. Two human annotators agreed about 81.5%
of the time on which one of the five labels to assign to each
summary. If automated systems can perform at this level
such systems could be useful in a clinical research setting.

Methods
Classifier System Approach

Our approach to this multi-classification problem training
uses a sequence of five steps.

Hot-spot Passage Isolation

We hypothesized that words would have different effects on
the classification depending upon where they occurred in
the discharge summary, and that words occurring near text
describing the smoking status of the individual would be the
most important. Since our basic classifier approach was to
treat features extracted from the text without specific posi-
tion information (“bag of words”),' we needed a simple way
to incorporate this into the algorithm.

We found that there were a small number of patterns in the
training data that indicated that the nearby text pertained to
the patient’s smoking status. We called this text “hot-spots,”
from which we could extract the word-based features. Using
cross-validation we found good performance by simply
taking a window of text up to 100 characters before and after
an identified hot-spot. The hot-spot identified passages were
then isolated and passed on to the next step in the process.
The rest of the discharge summary was ignored. The hot-
spot identifying text patterns that we used are shown in
Table 1.

Tokenization and Vectorization
Once the hot-spot identified passages were isolated, these were
tokenized into individual words and symbols using the Stan-
dardAnalyzer module available in the Apache Lucene search
engine library (available at http://jakarta.apache.org/


http://jakarta.apache.org/lucene

Journal of the American Medical Informatics Association Volume 15

Table 1 » Hot-spot Identifying Phrases for Smoking
Status Within Discharge Summaries

“tobac”
“nicotine”

“smok” “Cig”
“packs" “tob "

lucene). This tokenizer handles non-space delimiters well. It
also implements a small stop list and filters out the stop
words “no” and “not,” which we thought might be impor-
tant for determining smoking status. However, cross-valida-
tion experiments on the training data found no differences in
performance when these negation words were included or
excluded.

After tokenization, the word list was converted into a binary
vector. Each position in the vector provides a binary value
giving the status of a specific token within the text sample.
All token based features that were identified by the hot-spot
and tokenization process were included in the feature vec-
tors.

Zero Vector Filtering

After passing a discharge summary through the hot-spot
and tokenization processes, some documents resulted in a
zero feature vector, with no identified tokens for that sam-
ple. These samples will not add useful decision making
information to the machine learning algorithms, and may
bias the algorithms by contributing to class prior-probabili-
ties.

Filtering out the zero vector samples has to be done both
during training and classification of unknown samples.
Since the classification task specifically includes an UN-
KNOWN category, it makes the most sense to classify these
samples into this class without using the machine learning
model. In effect the system uses the lack of non-zero
classification features as the rule for classifying a sample as
UNKNOWN.

Multiple Classification Using Error Correcting Output
Codes and Support Vector Machines

Error correcting output codes: Error-correcting output codes
(ECOCQ) is a technique used in communications based on
information theory that adds redundancy to an encoded bit
stream in order to allow detection and correction of incor-
rectly received bits. The application of this technique to
multi-classification problems was first described by Dietter-
ich and Bakiri,? and is a powerful way of handling mutually
exclusive text multi-classification problems.* While it is well
known in the machine learning community, it has not been
frequently applied in the biomedical informatics domain.

In the ECOC technique a multiple classification problem is
reduced to solving multiple binary classification problems
by partitioning the original classes into several positive and
negative sets. An ensemble* of classifiers is then trained on
the training data, one per partition. When an unknown
sample is to be classified, each classifier in the ensemble
makes a binary prediction, and then the set of binary
predictions is compared to the original partitioning in order
to find the original class with the closest binary partitioning.
The idea here is to create an error-correcting set of partitions
where making a few binary classification mistakes does not
prevent the classification ensemble from correctly categoriz-
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ing a sample into the correct one of several mutually
exclusive classes.

The main advantage of the ECOC technique is that it can
recover from errors in the individual binary classifiers more
gracefully than other popular multi-classification methods
such as one-against-all-others. The one-against-all-others
method creates a single classifier for each of k classes and
uses all samples from the other classes as negatives. There-
fore a single classifier error in the classifier of the sample’s
true class will result in an incorrectly classified sample. For
example, assuming that the average probability of error for
any single binary classifier in the 5-way problem is equal to
p. The 5-way problem uses 15 partitions, each with a mutual
Hamming distance of eight, meaning that four binary errors
must be made before the sample is incorrectly classified. The
probability of an error using the one-against-all-others
method on a sample of a given class is then proportional to
p, while the probability of an error using ECOC is propor-
tional to p* since four errors have to be made before the
ECOC classifier ensemble makes an error. Even if the
average probability of one of the ECOC ensemble classifiers
is larger than p, the ECOC method is likely to show
improvement until the average classifier error rate ap-
proaches the fourth root of p.

Weighted support vector machines: In practice, any binary
classification learning algorithm could be used to implement
the individual ECOC binary classifiers. However, we choose
to use the libSVM implementation of the linear support
vector machine (SVM) technique first proposed by Vap-
nik.>® SVM performs well on sparse classification prob-
lems,” and we have had good results with it in the past.®®

One issue with SVM-based classifiers that has sometimes
been troublesome is that if one class is more common than
another, then SVM will favor the more frequent class. To
address this we used the weight parameter available in
libSVM. The unweighted approach just has all the weights
set to 1.0, for all of the binary classifiers. In the weighted
approach, the positive and negative classes for each binary
classifier are weighted by their relative rarity using the
following formula:

Welgss = (N - Nclass)/N (1)

Where N is the total number of samples and N, is the
number of samples of the given class. When using the ECOC
method, N_,,, is either N, the number of samples in the

positive partition for a given binary classifier, of N, the
number of samples in the negative partition.

Post-processing Rules
We hypothesized that there might not be enough data for
the algorithm to identify all important combinations of
features. Using cross-validation on the training set, we
examined the errors that our system made and created
post-processing transformation rules based on the predicted
class of the ECOC ensemble and text patterns that we found
during the error analysis. If the sample had a prediction that
matched the text pattern assigned to the rule then the
predicted class was modified according to the rule. For
example, one of our rules was if SMOKER was the predicted
class, and the text “no history of smoking” was found, then
change prediction to NON-SMOKER. Since the rules were
derived by manual inspection of the training data we could


http://jakarta.apache.org/lucene
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Table 2 m Micro- and Macro-averaged F1 Results for 5-way Classification by Tested Systems on Test Collection

System Hot-spot Tokenization Zero Vector Filtering SVM Weighting ECOC Post-processing Rules Micro-F1 Macro-F1
Runl Yes Lucene Yes Yes Yes Yes 0.8804 0.6430
Run2 Yes Lucene Yes Yes Yes No 0.8860 0.6504
Run3 Yes Lucene Yes No Yes Yes 0.8713 0.6190
A (not submitted) Yes Simple Yes Yes Yes No 0.9000 0.6780
B (not submitted) Yes Lucene Yes No Yes No 0.8720 0.6220
C (not submitted) Yes Lucene No No Yes No 0.8470 0.5960
D (not submitted) Yes Lucene No Yes Yes No 0.8340 0.5780
E (not submitted) Yes Simple No Yes Yes No 0.8660 0.6250
F (not submitted) Yes Lucene Yes No No No 0.8380 0.5640
G (not submitted) Yes Lucene Yes Yes No No 0.8660 0.6090
H (not submitted) Yes Lucene No No No No 0.8360 0.5670
I (not submitted) No Simple Yes Yes Yes No 0.6040 0.3050
i2b2 Best 0.8955 0.7568

not accurately estimate their effect on performance before
using them on the test data.

Evaluation

The i2b2 challenge task was evaluated using the standard
classification measures of precision, recall, and Fl-measure,
extended for multiple classification problems.] The primary
measure of comparison was the Fl-measure, with precision
and recall weighted equally (beta = 1.0). Micro- and macro-
averaged F1 values were computed.

For the i2b2 smoking status classification task, the organiz-
ers applied micro- and macro- averaged F1 in two ways.
Submissions were scored as 5-way tasks as given in the
training data, with each sample being classified into one of
the five smoking status categories. They also created a 3-way
task post-hoc, grouping SMOKER, PAST SMOKER, and
CURRENT SMOKER into a single one SMOKER class.

In addition to the officially submitted and scored runs, we
conducted a series of experiments to make it possible to
determine which features of our system lead to improved
performance. Table 2 shows the results of these experiments
for the 5-way classification problem, and Table 3 shows the
performance of our submissions on the 3-way task.

The systems labeled Runl-3 were our officially submitted
runs, the systems labeled A-I are additional system config-
urations scored using methods equivalent to those used by
the task organizers. The system labeled “i2b2 Best” was the
best performing system run submitted to the task organiz-
ers. Configurations A-I systematically vary properties of our
classification approach making it possible to determine the
contribution to performance for each property.

As seen in Table 2, Run2 was our best submitted run, using
Lucene tokenization, zero-vector filtering, SVM weighting,

Table 3 m Micro- and Macro-averaged F1 Results for
3-way Classification by Tested Systems on Test
Collection

System Micro-F1 Macro-F1
Runl 0.9516 0.9136
Run2 0.9615 0.9317
Run3 0.9713 0.9493
i2b2 Best 0.9713 0.9518

and ECOC, but not the post processing rules. This run
scored second out of all runs submitted. Though we did not
see this effect on our cross-validation experiments before
submitting our official runs, on the test data there is degra-
dation in performance when using stop word filtering.
Comparing system A to Run2, the only difference is the
tokenization and lack of stop word filtering in system A.
System A has a micro-F1 of 0.9000, which is 0.0140 better
than Runl, actually higher than the best performing system
submitted to the i2b2 challenge task.

By far the largest effect was due to the hot-spotting tech-
nique. This can be seen by comparing the results of System
A with System I, hot-spotting being the one difference
between these approaches. The micro-F1 difference is huge,
0.2960, with the hot-spotting system achieving a micro-F1 of
0.9000 and the non-hot-spotting system only 0.6040. Simply
removing hot-spotting transforms the best performing sys-
tem presented here into the worst.

Table 2 includes several other informative comparisons. The
difference between Run2 and E is the use of zero-vector
filtering. Run2 outperforms E by 0.02. SVM weighting is the
difference between Run2 and B, and Run 2 outperforms B by
0.014. The ECOC technique is compared to the one-against-
all-others in Runl versus system G. This time Runl outper-
forms G by 0.020. For the 5-way evaluations, the use of the
post-processing rules was counterproductive. The use of this
technique is the only difference between Runl and Run2,
and Run2 does a little better without it.

Finally, System H uses the inferior choice for each of the
three alternative techniques (zero-vector filtering, weight-
ing, ECOC), using hot-spotting but no post-processing rules
(as with our best system), and achieves a micro-F1 of 0.8360,
which is 0.0640 less than the best performing system. Inter-
estingly this is very close to the sum of the individual
contributions of each of the left-out features: 0.0140 + 0.20 +
0.0140 + 0.20 = 0.0680.

Discussion

By far, the biggest difference in performance was due to
hot-spot filtering of the discharge summary text. The hot-
spotting technique was a simple way to determine what
areas of text to focus on, and to filter out a large amount of
noise. Furthermore, the hot-spotting technique was com-
pletely reliable for this task using only the six identifying
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phrases shown in Table 1. For systems implementing hot-
spotting and zero-vector filtering, in our experiments with
the test collection, precision and recall of the UNKNOWN
class were both 100%.

Besides hot-spotting, the other techniques proposed and
used here, including zero vector filtering, SVM inverse
proportional weighting, and the use of ECOC for multi-
classification problems all add a noticeable improvement to
the system performance. While it was unexpected that these
techniques would additively combine to produce an overall
linear increase in performance, this does appear to be
approximately the case.

The post-processing rules did not help performance. Never-
theless, one of our systems that included these rules, Run3,
was the top performing submitted system when evaluated
on the Micro-F1 on the 3-way task. Since systems were not
optimized for the 3-way problem, it is not clear that these
results are meaningful for comparison purposes across sub-
missions. However, the results are meaningful for under-
standing how well systems can do when training on 5-way
data for tasks where the 3-way labeling is important. At
micro-F1 measures of over 0.97, it is clear that the top
performing submissions can assign 3-way smoking status
with performance adequate for many practical purposes.

We have shown the effectiveness of several general tech-
niques that are particularly well suited to the 5- and 3-way
smoking status multi-classification task. The techniques are
of modest implementation complexity, highly runtime effi-
cient, and based on solid theory and straightforward as-
sumptions. Evaluation on independent test data shows
performance competitive with the best available techniques,
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including more complex NLP-based methods and additional
customized training and lexicon data. Further work will
study the level of performance required for specific applica-
tions, the effectiveness of these systems to support specific
areas of biomedical research. An expanded version of this
paper is available as a JAMIA on-line data supplement at
WWW .jamia.org.
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