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Abstract
The processed products of the proopiomelanocortin gene (ACTH, α-MSH, β-MSH, γ-MSH, etc.)
interact with five melanocortin receptors, the MC1R, MC2R, MC3R, MC4R, and MC5R to modulate
and control many important biological functions crucial for good health both peripherally (as
hormones) and centrally (as neurotransmitters). Pivotal biological functions include pigmentation,
adrenal function, response to stress, fear/flight, energy homeostasis, feeding behavior, sexual
function and motivation, pain, immune response, and many others, and are believed to be involved
in many disease states including pigmentary disorders, adrenal disorders, obesity, anorexia,
prolonged and neuropathic pain, inflammatory response, etc. The roeianocortin-3 receptor (MC3R)
is found primarily in the brain and spinal cord and also in the periphery, and its biological functions
are still not well understood. Here we review some of the biological functions attributed to the MC3R,
and then examine in more detail efforts to design and synthesize ligands that are potent and selective
for the MC3R, which might help resolve the many questions still remaining about its function.
Though some progress has been made, there is still much to be done in this critical area.

INTRODUCTION
The five melanocortin receptors and their corresponding agonist ligands which are derived
from the precursor protein proopiomelanocortin (POMC) and the endogenous antagonist
protein ligands agouti and agouti related protein (AGRP) have been the subject of scientific
investigation for over 100 years, primarily for their function in melanopigmentation and
adrenal function [1–4] and disorders related to pigmentation, stress and melanoma cancer.
More recently, however, interest in both the melanotropin ligands and melanocortin receptors
has greatly accelerated due to the cloning of the receptors in the 1990s, and the discovery of a
number of important functions for the ligands and their receptors in a wide variety of biological
activities including feeding behavior, obesity, anorexia, cachexia, sexual function and
motivation, pain, immune response, cardiovascular function and many others [5,6]. And new
discoveries of the involvement of this system in an ever wider variety of biological activities
and behaviors including many diseases of the periphery and the central nervous system (CNS)
are being made.

The major focus of this paper is on the melanocortin-3 system. The melanocortin-3 receptor
(MC3R) is located on POMC neurons in the CMS, especially in the arcuate nucleus and within
other areas of the brain [7] including the hypothalamus, and in several peripheral organs as
well. It often is co-localized with the MC4R, but its precise function in obesity, cachexia, and
related feeding behaviors is still not well understood. Initially (while still an orphan receptor)
the MC3R was linked to non-insulin-dependent diabetes mellitus on human chromosome 20q
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which we now know is the MC3R [8,9], and there is some evidence that the MC3R is an
inhibitory autoreceptor on POMC neurons including the stimulation of food intake by
peripheral administration of an MC3R specific agonist [10], and inhibition of spontaneous
action of POMC neurons after application of a MC3R agonist [11]. Interestingly and
paradoxically in the MC3R knockout mice an obesity syndrome is observed with reduced lean
body mass and increased fat mass for both sexes, and with no apparent hyperphagia and with
apparent normal energy expenditure [12,13,14]. Interestingly the MC3R knockout mice appear
to be resistant to high fat diet-induced insulin resistance [14]. These and other findings suggest
that development of peptide and non-peptide ligands that are selective for the MC3R may
herald the arrival of exciting new classes of drugs for the treatment of a variety of disease states
that involve melanotropin peptides and melanocortin receptors. In addition they can serve as
valuable ligands for sorting out the detailed mechanism(s) of action of these ligands and their
receptors which are poorly understood.

THE MELANOCORTIN-3 RECEPTOR (MC3R) – OVERALL CONSIDERATIONS
The MC3R is expressed in the central nervous system, peripheral tissues and immune cells,
with initial studies highlighting expression in brain, gut, and placenta but none were detected
in the adrenal gland or melanocytes [15], This lack of expression in the adrenal glands is not
surprising given the fact that MSH peptides do not increase circulating corticosterone levels,
through activation of the hypothalamic pituitary adrenal axis (HPA) [16]. As already discussed,
a potential role in energy metabolism has been postulated for the MC3R since in MC3R null
mice there is an increased fat mass and higher ratio of weight gain to food intake [13]. Other
studies have demonstrated a central role in modulating the host inflammatory response with
receptor detection on peritoneal [16–18] and knee joint macrophages [19]. Activation of MC3R
in the heart has been shown to exhibit a protective effect in ischaemic-reperfusion injury [20,
21]. Thus the MC3R can be viewed as a fine tuner of specific mechanisms operating during
inflammation, cardiovascular function and energy metabolism.

In the central nervous system, the melanocortin type 3 receptor (MC3R) is located on POMC
neurons and other areas of the hypothalamus and often is co-localized with the melanocortin
type 4 receptor (MC4R). The MC4R which regulates food intake is activated and modulated
by the endogenous agonist, α-melanocyte stimulating hormone (α-MSH), a peptide processed
from POMC, and also is modulated by an endogenous antagonist, agouti-related protein
(AGRP) (orexigenic) [22]. Leptin, an adipocyte-derived hormone, acts on POMC and AGRP
neurons in the arcuate nucleus of the hypothalamus, resulting in increased α-MSH and
decreased AGRP [23]. Several lines of evidence have indicated that activation of the MC4R
by α-MSH or synthetic peptide agonists reduces food intake, but that suppression of MC4R
signaling by AGRP or synthetic melanocortin-4 receptor antagonists increases food intake and
diminishes the hypophagic response to leptin [24,25]. Thus, the central melanocortin pathway
is extremely important for normal energy homeostasis, and energy homeostasis via this
pathway is highly susceptible to quantitative variations in MC3R/MC4R expression.

Melanocortin receptors belong to the superfamily of seven transmembrane G protein-coupled
receptors (GPCRs). The hMCRs transduce signals by coupling to the heterotrimeric Gs protein
and subsequent activation of adenylate cyclase. In many GPCRs, signaling is rapidly attenuated
within minutes of agonist exposure, a process termed desensitization [26,27]. This process is
associated with phosphorylation of serine/threonine residues in the third internal loop or
carboxyl tail of the GPCR by G protein-coupled receptor kinases (GRKs) or second-messenger-
dependent kinases [28]. There is no direct evidence for the hMC3R phosphorylation site yet.
Phosphorylation by GRKs allows the GPCRs to interact with cytoplasmic proteins, the
arrestins, which uncouple the GPCRs from G proteins [28,29]. For the hMCRs, arrestins target
the receptor to clathrin-coated vesicles, and the receptor is sequestered into an intracellular
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vesicular compartment, probably endosomes, after pinching off the vesicles from the plasma
membrane by dynamin [30]. After sequestration, the GPCRs may recycle to the surface
membrane after resensitization [31,32] or undergo lysosomal degradation [33]. Certain GPCRs
can be targeted selectively to lysosomes leading to down-regulation of the GPCR by the same
membrane pathway that mediates internalization [33]. Down-regulation of GPCRs in various
neural cell types is of particular interest because this may lead to certain diseases, such as
addiction [34], and opiate tolerance and dependence [35]. More generally any down-regulation/
desensitization, which occurs for GPCRs in response to agonists, leads to a decrease in drug
efficacy.

Despite the central importance of the MC3R/MC4R in energy homeostasis, feeding behavior
and the existence of an endogenous agonist and antagonist of the melanocortin system, highly
selective MC3R agonists and antagonists, which could have important applications in treatment
of cachexia and type II diabetes, and in evaluating the role of the MC3R in these conditions,
are not yet available. Design of selective MC3R/MC4R agonists and antagonists thus becomes
of critical importance. Our research group has been working on the design and synthesis of
selective melanotropins for many years. Describing in a single review all existing approaches
that have been taken to obtain ligands that target human melanocortin receptors (hMCRs) is
not possible. Rather we will examine a few different approaches investigators have taken for
design of selective ligands for the MC3R which reflect the current knowledge. We hope this
will address the fundamental and the methodological issues which can promote rational design
of more selective hMCR ligands. In this regard, understanding the molecular mechanisms
underlying hMCRs function is also important in the design of ligands with the desired
pharmacological profile. Knowledge of the current biostructural data is also important since it
is becoming increasingly clear that stereostructural differences between the closely related
receptors, such as the MC3R in relation to the MC1R, MC4R and MC5R, will be an important
aspect of any successful development of a selective ligand for biological and biomedical
applications [36].

GENERAL CONSIDERATIONS FOR THE DESIGN OF hMC3R SELECTIVE
AGONISTS AND ANTAGONISTS

Although numerous native peptides have great potential for medical applications, and over
50% of all current drugs are peptide or peptidomimetic-based, often peptides have to be
modified to enhance certain properties including metabolic stability, selectivity, and
bioavailability, to be suitable therapeutic agents. Thus design of modified peptides for
peptidomimetic and non-peptide applications has dramatically advanced during the last two
decades [e.g. 37–42], One of the most challenging aspects of this research is rational design
based on 3D-topographical features of the peptide pharmacophore. The first strategy in this
approach is to identify the core structural features which are necessary for receptor/acceptor
recognition. This is usually accomplished by truncation of the whole sequence; systematic
single amino acid modifications of the peptide such as glycine, alanine, D-amino acid, etc.
scans; ring size scans, bulky amino acid scans, etc. [e.g. 41,43]. Once the structure activity
relationships (SAR) of the peptide ligand have been elucidated, the conformation-activity
relationships have to be examined. For this purpose, a wide variety of physical/chemical
methods are employed. For example, the three-dimensional arrangement of critical side chain
groups and backbone conformations can be analyzed via NMR spectroscopy [44,45], X-ray
crystallography [46], circular dichroism measurements [47], and computational methods
[48]. The next step is to find a suitable non-peptide scaffold which can impart the same 3D
topographic structural features as the peptide based on conformational analysis, computational
chemistry and 3D modeling. The derived scaffold then can be used to replace the peptide drug
pharmacophore and position the crucial structural elements correctly in 3D space. Finally, the
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structure can be refined by evaluating the biological responses of designed ligands. The general
scheme for the de novo design of peptide drugs has been outlined in a recent review [41].
Understanding the conformation-activity relationships of biologically active peptides can
provide important guidance in the design of peptide drugs and accelerate the process from
native peptides to biologically active peptide drug or to peptidomimetics and small molecules.

STRUCTURE-ACTIVITY RELATIONSHIPS OF LINEAR MSH-DERIVED
PEPTIDES

The endogenous MC3R agonist: γ-MSH H-Tyr-Val-Met-Gly-His-Phe-Arg-Trp-Asp-Arg-Phe-
Gly-OH [49] was discovered by homologous screening of the various core sequences of POMC
that contain the critical tetrapeptide sequence -His-Phe-Arg-Trp- [50–51]. Biological screening
demonstrated that γ-MSH was selective for the hMC3R by up to 100 fold, compared to α-MSH
[49]. Grieco et al. used a D-amino acid scan of the γ-MSH sequence to obtain the first highly
selective agonist for the hMC3R (H-Tyr-Val-Met-Gly-His-Phe-Arg-D-Trp-Asp-Arg-Phe-
Gly-OH; EC50 = 0.33 nM; hMC4R/hMC3R = 300, hMC5R/hMC3R = 250) [43]. Furthermore,
replacement of the oxidizable Met3 residue with Nle increased the stability of the peptide
[52], which is being widely used as a ligand for the hMC3R in a variety of ongoing
pharmacological studies and in animal model studies related to the hMC3R. Interestingly, when
the Phe6 residue of γ-MSH was substituted with D-Nal(2′), a substitution known to convert
α-MSH analogues to antagonists at the hMC3R and hMC4R [53], the resulting analogue (H-
Tyr-Val-Nle-Gty-His-D-Nal(2′)-Arg-Trp-Asp-Arg-Phe-Gly-NH2) exhibited potent hMC3R/
hMC5R antagonist activity, while retaining potent full agonist activity at the hMC4R [54].

Hybridization of α-MSH with γ-MSH [52] proved to be an effective approach toward the design
of selective hMC3R ligands, yielding a potent hMC3R selective antagonist (H-Tyr-Val-Nle-
Gly-His-D-Phe-Arg-D-Nal(2′)-Asp-Arg-Phe-Gly-NH2; IC50 = 6 nM), which also showed
potent agonist activities at the hMC1R, hMC4R and hMC5R (Table 1).

GLOBAL AND LOCAL CONFORMATIONAL CONSTRAINTS IN THE DESIGN
OF hMC3R SELECTIVE PEPTIDES

The conversion of the linear α-MSH into a cyclic peptide to enhance potency, metabolic
stability, and to test hypotheses regarding a β-turn structure for the bioactive conformation of
melanotropin ligands was an early innovation in the development of approaches to peptide
ligand design. In the case α-MSH and its fragment analogues, the Cys4,Cys10(Cys11) analogues
were examined over 25 years ago [55,56] and this evolved using computational methods,
molecular dynamic simulations, conformational analysis via NMR and molecular modeling to
the development of cyclic lactam analogues of α-MSH such as the truncated analogue Ac-
Nle4-c[Asp5,D-Phe7,Lys10]α-MSH(4–10)-NH2 (MTII) [57,58] which is used worldwide for
the study of melanocortin 1, 3, 4 and 5 receptors for both in vitro and in vivo studies because
of its high potency, metabolic stability, and excellent biodistribution properties [59]. More
recently we have examined a number of other cyclization strategies to obtain melanocortin
receptor selective ligands. As an earlier effort to develop highly selective and potent agonists
and/or antagonists for the hMC receptors, a new group of linker arms and a backbone to side
chain cyclization strategy were employed (Fig. 1). A key analogue was found to have the
desired selectivity and potency at the hMC3 receptors which were implicated to play pivotal
roles in energy homeostasis and other biological effects in this study. Structure-activity studies
[60] have shown that replacing the succinyl linker arm of 1 by an o-phthalic acid group and
substituting a D-Nal(2′)7 residue in place of D-Phe7 results in a potent antagonist 7 (Fig. 1) at
the hMC4 receptor. Furthermore, increasing the 23-membered lactam ring of 1 by one carbon
atom (succinic →glutaric acid linker) gives a highly selective and potent antagonist 9 for the
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hMC3 receptor (Fig. 1). This cyclization strategy showed that a 23 membered ring is favored
for maintaining good binding at all subtypes of melanocortin receptors [60]. Increasing the
ring size or introducing an aromatic linker are likely to lead to more selective melanotropins.
Thus, the selective MC3R antagonist: c[(O)C-(CH2)3-C(O)-His-D-Nal(2′)-Arg-Trp-Lys)]-
NH2 showed good biological activity as an antagonist with a pA2= 10.6 and IC50 = 5.6 nM (24
membered ring, (hMC4R/hMC3R = 38)) [60].

In another approach, the template of SHU-9119, Ac-Nle4-c[Asp5-His6-D-Nal(2′)7-Arg8-
Trp9-Lys10]-NH2), a potent but non-selective hMC3R/hMC4R antagonist [53] was modified
in position 6 with nonconventional amino acids (Fig. 2) [61]. The biological results of this
series of compounds clearly indicate that a conformational restriction with bulky amino acids
in position 6 in a cyclic peptide can be used to obtain selective antagonists for the hMC3R and
the hMC4R (pA2 = 9.1–9.8) [61]. Furthermore, modification of the MT-II template by aNle4

→ Xaa4 substitutions (Xaa = aromatic amino acid) resulted in improved hMC4R/hMC3R
selectivities, notably yielding a highly hMC3R-selective partial agonist PG-951 (H-D-Phe4-c
[Asp5-His6-D-Phe7-Arg8-Trp9-Lys10]-NF2, IC50 = 3.7 nM, EC50 = 4.87 nM, 61% cAMP
stimulation) (Table 1) [62].

Disulfide cyclization of the native γ-MSH around the pharmacophore sequence His-Phe-Arg-
Trp provided no further leads toward the enhancement of hMC3R selectivity [54]. On the other
hand, such cyclization in the α-MSH/β-MSH hybrid series yielded potent and highly selective
hMC3R antagonists Ac-c[Cys-Glu-Pro-D-Nal(2′)-Arg-Trp-Cys]-Pro-Pro-Lys-Asp-NH2, and
Ac-c[Pen-Glu-His-D-Nal(2′)-Arg-Trp-Cys]-Pro-Pro-Lys-Asp-NH2 (IC50 = 31 and 3 nM,
respectively) (Table 1) [63].

Introduction of the χ-constrained phenylproline analogues into the His6 position of the MT-II
template resulted in topographical changes that lead to increased hMC5R selectivity, which
indicated that hMC3 and hMC4 receptors are more sensitive to steric effects and χ-
conformational constraints than the hMC5 receptor [64]. Another example of using χ-
constrained amino acids that lead to selective partial agonists and antagonists at the hMC3R
was obtained by introducing (o-Phe)-Phe at the D-Phe position of MT-II. yielding a selective
partial antagonist of the MC3R (Ac-Nle-c[Asp-His-(o-Phe)Phe-Arg-Trp-Lys]-NH2) [65]. This
is a typical example showing that introducing an alkyl or aryl group on the aromatic ring of an
aromatic amino acid residue, particularly in the ortho position can significantly restrict its
conformation in χ2 space. The χ2 torsional angle can be efficiently restricted by the interaction
between the aryl moiety and the β-hydrogens of the amino side-chain in the o-substituted
phenylalanine and finally increase the selectivity of melanocortin receptors.

USING NMR BASED MODELING AND COMPUTATIONAL METHODS FOR
MELANOCORTIN RECEPTOR SELECTIVE LIGANDS

Computational methods in conjunction with NMR structural determination and molecular
modeling are a very useful tool in peptide and peptidomimetic design considerations, with the
caveat that for novel structures, current force fields might not give a completely accurate picture
of the structure or energetics of the ligands. Along with the NMR structure of AGRP (the
endogenous antagonist of melanotropin) (PDB: 1HYK) [66] and MTII (potent agonist) [67],
the 3D pharmacophore of human melanocortin receptor ligands has been partially deciphered.
Results from these biophysical and chemical studies can be crucial for designing novel selective
agonist and antagonist melanotropins [52].

Recent conformation-activity relationship studies also have yielded some important structural
clues for development of hMC3R-selective ligands. Thus, Ying et al. [67] determined that
solution structures of the non-selective agonist MT-II, hMC3R/hMC4R antagonist SHU9119,
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hMC4R-selective agonist VJH085 and hMC3R-selective antagonist MK-9 all feature (β-turn-
like motifs spanning the His6 and D-Phe/D-Nal(2′)7 residues. This structural feature was
hypothesized to be very important for receptor-ligand recognition and interaction. Grieco et
al. had found that replacement of the His6 residue in SHU9119 template with a variety of
conformationally constrained amino acids leads to substantially improved receptor selectivity
(Table 1) [61,68]. On the basis of these results, Grieco et al. suggested that the improvement
in receptor selectivity was due to differences between the hMC3R and hMC4R binding pockets,
which are able to accommodate amino acid residues with different conformational profiles.

Recently, our laboratories have produced several potent and selective hMC3R agonists and
hMC3R/hMC5R antagonists by placing a bulky hydrophobic Nle residue next to the
melanocortin pharmacophore Xaa-Phe-Arg-Trp in a cyclic γ-MSH-derived template (Fig. 3]
[69]. The observed hMC3R selectivity was attributed to steric interference between the Nle4

side chain and the Arg7 binding space, based on MCMM-LMCS/OPLS-AA simulations, as
well as relatively high rigidity of the 20-membered cyclic lactam template. Similar results were
obtained when Nle was placed within the melanocortin pharmacophore, in position 6 of a cyclic
α-MSH template, yielding an hMC3R antagonist cyclo (5β→10ε)-(succinyl5-Nle6-D-Phe7-
Arg8-Trp9-Lys10)-NH2 (IC50 = 84 nM) and an hMC3R/hMC5R antagonist cyclo(5β→10ε)-
(succinyl5-Nle6-D-Nal(2′)7-Arg8-Trp9-Lys10)-NH2 (IC50 = 12 and 17 nM, respectively: pA2
= 8.3 (hMC3R) and 8.7 (hMC5R)) [70] These findings underscore the significance of steric
factors in melanocortin receptor selectivity, and suggest that introduction of bulky residues in
the direct proximity to the melanocortin pharmacophore is an effective approach to design of
novel hMC3R-selective agonists and antagonists. Congruent findings were reported by Ballet
et al for the MT-II/SHU9119 cyclic Lactam template, where the His6-Xaa7 residues were
replaced with the 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one-Xaa (Aba-Xaa) building
blocks (Fig. 4) [71] resulting in a highly hMC3R selective antagonist Aba-2 (Ac-Nle4-c
[Asp5-Aba6-D-Phe7-Arg8-Trp9-Lys10)-NH2, IC50 = 50 nM) and a hMC3R/hMC5R antagonist
Aba-4 (Ac-Nle4-c[Asp5-Aba6-D-Nal(2′)7-Arg8-Trp9-Lys10)-NH2, IC50 = 43 and 87 nM,
respectively) (Table 1). The authors hypothesized that the observed hMC3R receptor
selectivity may be caused by either steric influence of the Aba block or its unique
conformational features, or, possibly, both.

Deletion of His6 from the sequence of cyclic α-MSH analogues, reported by Bednarek et al.
[72], yielded a hMC4R-selective antagonist MBP10 (cyclo(6β->10ε)-(succinyl6-D-Nal(2′)7-
Arg8-Trp9-Lys10)-NH2). It was suggested that the tripeptide core D-Nal(2′)-Arg-Trp was
sufficient for high binding affinity toward the hMC4R, whereas the tetrapeptide core His-D-
Nal(2′)-Arg-Trp is required for high binding affinity toward the hMC3R and hMC5R. Contrary
to this hypothesis, our recent results [70] suggest that the tripeptide sequence D-Phe/D-Nal
(2′)-Arg-Trp is sufficient for high binding affinity and agonist activity not only at the hMC4R
but also at the hMC3R, as exemplified by cyclic peptides AVM75, cyclo(6β→10ε)-(2,3-
pyrazinedicarbonyl6-D-Phe-Arg8-Trp9-Lys10)-NH2, and AVM76, cyclo(6β→10ε)-(2,3-
pyrazinedicarbonyl6-D-Nal(2′)7-Arg8-Trp9-Lys10)NH2, which exhibit a potent and selective
partial agonist (EC50 = 27 nM, 70% cAMP stimulation) and antagonist (IC50 = 23 nM) activities
at the hMC3R, respectively (Fig. 5). These findings strongly suggest that the observed high
receptor selectivities in ‘tripeptide-pharmacophore’ analogues are due to different
conformational and steric properties of the linker arm, rather than different pharmacophore
sequence requirements of the melanocortin receptor subtypes. Thus, manipulation of the linker
structure is proving to be a powerful tool in the development of highly selective melanotropin
peptides.
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DEVELOPMENT OF hMC3R-SELECTIVE SMALL MOLECULE LIGANDS
Though many commercial pharmaceutical companies have been examining small molecules
that can bind to the melanocortin receptors, surprisingly few of these ligands appear to have
high potency and selectivity for the MC3R. It is worth noting that a number of publications of
small-molecule research report little or no data for the MC3R.

One of the most popular strategies to emerge in the pursuit of small-molecule ligands for the
melanocortin receptors has been the use of so-called “privileged structure” motifs, presumably
biased towards GPCR activity, in combination with a D-tetrahydro-isoquinoline carboxyl
(Tic)-D-para-chloro(p-Cl)-phenylalanine (Phe) dipeptide consensus sequence. A series of
heterocycle-substituted cyclohexylpiperidine structures emerged from this work [73].
Interestingly, analogue 1 (Fig. 6) with L(S) stereochemistry at the pCl-Phe asymmetric center,
has the highest affinity for the MC3R. Significant activation of the MC3R occurs only with
the more common D-Tic-D-pCl-Phe dipeptide, found to be optimal for MC4R activity. The
most potent ligand (2) is a partial agonist with an N-methyl substitution to the heterocycle
within the privileged structure portion of the molecule.

A number of other putatively GPCR-biased privileged structures have been appended to the
D-Tic-D-pCl-Phe sequence. Three examples of substituted arylpiperazines are shown in Fig.
7, but their affinities for the hMC3R are in the micromolar range [74–76].

Compounds with modifications to both the privileged structure and the dipeptide consensus
sequence have been reported. Two examples are shown in Fig. 8 [77]. Interestingly, in this
series only the analogue N-methylated at the II nitrogen of the imidazole shows no activity at
the MC3R. This substitution is likely to change the orientation and hydrogen-bonding
properties of this heterocycle, and illustrates the importance of the histidine or histidine-
mimicking side chain in MC3R binding and activation.

The compounds in Fig. 9 provide further support for this assertion [78]. Varying the position
of N-methylation in the His-mimicking piperazine produces the only analogue which
significantly activates the MC3R.

Clearly the privileged structure approach has had a major impact on research efforts aimed at
developing melanocortin-targeted small molecules. Molecular modeling provides a rationale
for the activity of this molecular template, as the pharmacophore elements found in the small
molecules appear to overlap with the side-chain functionality found in the key residues of
bioactive peptide ligands [79].

A logical alternative approach to creating small molecule ligands for these receptors, then, is
the use of the experimentally-derived structures of known active ligands to rationally design
new molecules. In the first report of work employing this strategy [80], the solution structure
of an active cyclic peptide ligand related to MT-II was first determined using NMR-derived
constraints. Models of a variety of ring systems appended with the appropriate side chain
functionality were overlapped with the peptide NMR structure, and compounds demonstrating
the best overlap were synthesized. This study seems to indicate that in some compounds,
changing or removing any of the pharmacophore elements will cause the complete loss of
MC3R activity (Fig. 10). Generally, it illustrates the potential to generate active compounds
by a ligand-based design approach.

Our own rational design of small molecules for the melanocortin receptors relied on a similar
approach [81]. Instrumental to achieving this goal was the determination of an NMR solution
structure for MT-II [67], against which potential new structures could be superimposed.
Modeling indicated that our amino acid-derived scaffold could mimic the β-turn backbone of
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the peptide, and facilitated the prediction of which positional and stereochemical isomers were
most likely to be active. All members of a test set of eight compounds were found to be high-
affinity antagonists, and most subtype-selective. In this series, there appears to be a significant
similarity in the binding requirements for the MC1R and MC3R, as typified by the nanomolar
binding of 13 to both subtypes (Fig. 11). Demonstrating the crucial nature of the
stereochemistry of these ligands, inversion of the C6 center to produce the diastereomeric 12
yields complete MC5R selectivity. This work further demonstrates that a ligand-based rational
design approach may be a highly efficient means of producing hMC3R-active molecules.

More traditional approaches, such as the optimization of activity for a compound series
originally derived from a screening hit, have also led to the discovery of novel ligands for the
MCRs. An example of a pyridazinone-based molecule [82] derived in this way is shown in
Fig. (12).

DATA BASE SEARCH FOR DRUG DESIGN
Computational tools to search chemical structure databases are useful for finding leads early
in a drug discovery program. Similarity searches are among the most diverse and most useful,
and have become a standard tool for target specific library design [83,84]. The underlying
theory is that, given a compound with desired biological activities, compounds that are similar
to it in structure are likely to have similar activity. In a common practice of focused library
design, the investigator provides a set of chemical structures as a “probe” for searches of a
database of compounds, and finds those that are most similar, and then submits them for testing.
Similarity searches can be done on the basis of either 2D or 3D structure. 2D similarity searches
are computationally very inexpensive and rapid; their popularity is related to the trend of
applying high-throughput medicinal chemistry methodologies.

Successful approaches to the design of focused compound libraries have recently been reported
for the melanocortin 4 receptor and other GPCRs [73,85–88]. They range from 2D simulation
algorithms, to the analysis of ligand-receptor spatial arrangements and to neural network
learning QSAR systems. With this variety of tools, it now appears possible to design libraries
that are enriched in compounds possessing the desired target-specific properties.

THE hMC3R STRUCTURE AND RELATED ASPECTS OF LIGAND-RECEPTOR
INTERACTION

Comparison of the human melanocortin receptor sequences revealed that most of the conserved
amino acids are located within the putative transmembrane helices, with the most sequence
deviations occurring within the C-terminus, first extracellular and third intracellular loops,
whereas the other extra- and intracellular loops as well as the amino-terminus show regions of
substantial similarity [89].

Chen et al. examined the significance of 19 transmembrane domain amino acids for molecular
recognition and receptor signaling (Fig. 13) [90]. The hMC3R residues E131, D154, D158,
and H298 were found to be homologous to the hMC1R residues E94, D117, D121, and H260,
and to the hMC4R residues E100, D122, D126, and H264, respectively [91–93]. The existence
of an ionic pocket formed by amino acid residues E131 in transmembrane domain 2 [TM2)
and D154, D158 in TM3 of hMC3R and a second hydrophobic binding pocket consisting of
F295, F296, and H298 in TM6 of hMC3R was hypothesized, as replacement of these amino
acids with alanine resulted in dramatically reduced NDP-α-MSH binding affinity and agonist
potency (Fig. 14). Furthermore, substitutions of D121 in TM2 and D332 in TM7 with alanine
resulted in the complete loss of ligand binding, ligand induced receptor activation, and cell
surface protein expression. These findings suggest that TM3 and TM6 are important for NDP-
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α-MSH binding, while D121 in TM2 and D332 in TM7 are crucial for receptor signaling.
Interestingly, unlike MC1R and MC4R, only TM6 of hMC3R seems to be involved in a
hydrophobic binding pocket, as mutations of F216A, F233A, F234A, F288A, F290A, and
F318A did not significantly alter NDP-α-MSH binding affinity and receptor activity. Tao and
Segaloff also described the hMC3R mutation 1183N, found in patients with high fat contents,
which completely abolishes agonist-mediated receptor activation [93].

POTENTIAL THERAPEUTIC USES FOR THE MC3R
Until the discovery and cloning of the MC3R, MC4R and MC5R receptors in the 1990s most
of the work with POMC related peptides (β-endorphin not included) centered around the
possible roles of α-MSH in pigmentation, pigmentary disorder, and melanoma cancer, and the
role(s) of ACTH in adrenal function. Though much critical research still is ongoing in these
areas, since then a large number of academic, pharmaceutical and biotechnology groups have
been examining the role(s) primarily of α-MSH and related peptides, peptidomimetics and non-
peptide ligands on the MC3R, MC4R and MC5R. It is not our intention here to review this
rapidly expanding literature (see e.g. refs. [5,6] for examples of many areas under
investigation). In this review we will concentrate on those aspects related to the MC3R.

In the last 15 years, major advances in our understanding of the regulation of body weight and
energy homeostasis have been reported [59,94]. It is now widely understood that the disorders
of leptin feedback or hypothalamic melanocortin signaling can lead to pathological weight gain
and diabetes in humans [e.g. 95, 96]. Downstream of leptin signaling, the interplay between
melanocortin peptides and neuropeptide Y (NPY) has been examined [e.g. 97] and it has been
demonstrated that melanocortin peptide administration within the PVH leads to the regulation
of feeding behavior as well as energy expenditure. The central melanocortin system modulates
energy homeostasis through the actions of the agonist α-MSH, a POMC cleavage product, and
the endogenous antagonist AGRP on the MC3R and MC4R [98,99]. The MC3R is primarily
expressed in the brain in the regions of the hypothalamus and limbic system, as well as in the
placenta and gut [100,101]. On the other hand, MC4R is widely expressed throughout the brain
[15,102]. Additionally, the control of food intake has been suggested to be modulated through
the MC4R [103], whereas the MC3R and MC5R have not been linked to any specific actions
on feeding behavior. Several investigators [12,13,104] have attempted to solve this puzzle by
studying MC3R-deficient mice and to comparing these mice with mice deficient for both the
MC3R and MC4R genes. It was suggested that inactivation of the mouse MC3R leads to
increased fat mass, reduced lean mass and higher feed efficiency than their wild type
littermates. Furthermore, MC3R−/− mice also exhibited a unique metabolic syndrome leading
to ≈50% increase in adipose mass, an unusual increase in respiratory quotient and reduced
energy expenditure [13].

The role of MC3R also has been proposed for anti-inflammation as well as cardiovascular
regulation. Getting et al. [105] have suggested that activation of MC3R by ACTH(4–10)
suppresses cytokine release from microphages which then leads to the inhibition of
inflammation. Furthermore, the MC3R is the only melanocortin receptor subtype for which
γ2-MSH is selective [106] which makes this receptor an obvious leading candidate for
mediation of cardiovascular regulation [107,108] and inhibition of TRH release [109].
Recently, Marks et al. [110] have shown that peripheral injections of D-Trp8-γ-MSH, a potent
and selective MC3R agonist can stimulate food intake in mice which suggests that individuals
affected with involuntary weight loss due to chronic diseases can be helped [111]. This is the
first time such a physiological role for MC3R has been suggested where this receptor acts as
an inhibitory autoreceptor of POMC neurons. Table 1 describes a number of potent and
selective MC3R agonists and antagonists that might prove useful for the treatment of obesity,
cachexia and cardiovascular, inflammatory, and other diseases.
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CONCLUDING REMARKS
POMC is clearly a primordial gene whose presence is found in virtually all multicellular
animals that have a central nervous system. From this perspective it perhaps is not surprising
that the processed ligands from this gene and their target G-protein coupled receptor are
involved in most aspects of human behavior, endocrine and central nervous system function.
Though α-MSH, ACTH and some of the other processed peptides of POMC, especially from
the pituitary gland, were among the first peptide hormones/neurotransmitters whose biological
functions were evaluated in considerable detail at least with respect to melanopigmentary and
adrenal function, it was the cloning of the receptors for these functions [i.e. MC1R and MC2R)
and the additional three receptors (i.e. MC3R, MC4R, MC5R) that led to recognition of the
central role of this system of ligands and receptors in numerous endocrine and CNS functions
in normal health and disease. Though much of this research has focused on the MC4R and
feeding behavior it has become increasingly clear that the MC3R is often as crucial as the
MC4R in a variety of biological functions, and it seems clear that future research will have to
evaluate the MC3R receptor system in much more detail, especially its relationships in various
physiological and pharmacological situations where they and other neurotransmitter and
hormonal systems are involved in health and disease. Clearly highly potent and selective
ligands, both agonists and antagonists, will be needed to sort out the complex biology involved.
Though we have developed some reasonably selective hMC3R ligands, there is clearly a great
need for further development, and we plan to pursue this vigorously into the future.
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Fig. (1).
Key analogues of 1, Peptide 7 synthesized by introducing an o-phthalic acid in the cyclization
linker of 1; Peptide 9 synthesized by replacing D-Phe7 with D-Nal(2′)7, and by replacing the
cyclization linker of 1 by a glutaric acid linker [60].
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Fig. (2).
Structure of the potent monocyclic peptide Ac-Nle-c[Asp-Pro-D-Nal(2′)-Arg-Trp-Lys]NH2,
referred to as PG-901, and the conformationally constrained amino acids [61].
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Fig. (3).
Design of the γ-MSH-derived cyclic lactam scaffold [69].
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Fig. (4).
Design of the MT-II-derived Aba analogues [71].

Hruby et al. Page 20

Curr Top Med Chem. Author manuscript; available in PMC 2008 March 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. (5).
Development of highly selective ‘tripeptide-pharmacophore’ analogues via modulation of the
linker arm [70,72].
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Fig. (6).
Most MC3R-selective (1) and potent (2) ligands from ref. [73].
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Fig. (7).
Selected Arylpiperazines from refs. [74–76].
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Fig. (8).
N-Methylation changes functional activity [77].
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Fig. (9).
N-Methylation changes functional activity [78].
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Fig. (10).
Removing functional groups eliminates MC3R binding of rationally designed molecules
[80].
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Fig. (11).
Stereochemistry crucial for MC3R activity in rationally designed molecules [81].
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Fig. (12).
Ligand optimized from screening hit [82].
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Fig. (13).
Two-dimensional representation of the hMC3R sequence and secondary strucmre [90].
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Fig. (14).
Two-dimensional representation of a proposed three-dimensional model illustrating the
synthetic melanocortin NDP-α-MSH docked inside the hMC3R. Two receptor binding pockets
are hypothesized, the first being a predominantly ionic pocket formed by D154 and D158, and
the second is a hydrophobic pocket formed by aromatic residues in TM6 [90].
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