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Nucleosome-remodelling factors containing the ATPase

ISWI, such as ACF, render DNA in chromatin accessible

by promoting the sliding of histone octamers. Although

the ATP-dependent repositioning of mononucleosomes is

readily observable in vitro, it is unclear to which extent

nucleosomes can be moved in physiological chromatin,

where neighbouring nucleosomes, linker histones and

the folding of the nucleosomal array restrict mobility.

We assembled arrays consisting of 12 nucleosomes or 12

chromatosomes (nucleosomes plus linker histone) from

defined components and subjected them to remodelling by

ACF or the ATPase CHD1. Both factors increased the access

to DNA in nucleosome arrays. ACF, but not CHD1, cata-

lysed profound movements of nucleosomes throughout

the array, suggesting different remodelling mechanisms.

Linker histones inhibited remodelling by CHD1.

Surprisingly, ACF catalysed significant repositioning of

entire chromatosomes in chromatin containing saturating

levels of linker histone H1. H1 inhibited the ATP-depen-

dent generation of DNA accessibility by only about 50%.

This first demonstration of catalysed chromatosome move-

ments suggests that the bulk of interphase euchromatin

may be rendered dynamic by dedicated nucleosome-remo-

delling factors.
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Introduction

The discovery of ATP-dependent nucleosome-remodelling

factors provided a solution to the old problem of how

eukaryotic genomes can be utilized despite of their tight

packing with histones in the form of chromatin (Becker and

Horz, 2002). Typically, nucleosome-remodelling factors are

multiprotein complexes that contain dedicated ATPases of the

SNF2 family (Flaus and Owen-Hughes, 2004). These ATPases

resemble specialized DNA translocases. Enzymes of this kind

experience series of conformational changes triggered by

cycles of nucleotide binding, hydrolysis and dissociation

that control the binding and release of DNA, thereby effec-

tively moving a segment of DNA relative to the enzyme.

However, unlike ‘classical’ translocases, nucleosome-remo-

delling factors not only contact DNA but also the histone

moiety of nucleosomes. Translocating DNA then leads to

disruption of histone–DNA contacts and hence to ‘remodel-

ling’ of canonical nucleosome structure. As a result, nucleo-

somes can be disassembled and reassembled (Lusser and

Kadonaga, 2003; Varga-Weisz and Becker, 2006; Li et al,

2007) or moved to a neighbouring segment of DNA through

a process termed ‘nucleosome sliding’ (Becker, 2002).

Nucleosome remodelling thus enables dynamic transitions

of chromatin structure, and by this means endows chromatin

with the flexibility required to access the information stored

in DNA.

Much about the function of nucleosome-remodelling

enzymes has been learned from studies using mono- or

dinucleosome substrates. However, these simple model sub-

strates bear little resemblance to physiological chromatin.

The long oligonucleosomal fibres characterizing native chro-

matin are no mere linear arrays of nucleosomes, but fold into

compact 30-nm fibres. The exact geometry of these fibres is

still controversial (Robinson and Rhodes, 2006; Tremethick,

2007), but it seems clear that the association of the linker

histone H1 stabilizes the folding of the nucleosomal array

considerably (Carruthers et al, 1998; Carruthers and Hansen,

2000). In Drosophila embryonic development, the appearance

of linker histones correlates with chromatin compaction (Ner

and Travers, 1994). In agreement, their depletion results in a

less compact chromatin structure in a number of species

(Shen et al, 1995; Fan et al, 2005; Maresca et al, 2005).

Despite their severe impact on chromatin structure and their

high abundance in the nucleus—approximately one H1 per

nucleosome in typical eukaryotic nuclei (Woodcock et al,

2006)—their effect on chromatin remodelling has only been

addressed in a handful of studies and remains controversial.

With their globular domain, linker histones bind to DNA at

the nucleosomal dyad and where it enters the nucleosome,

forming ‘chromatosomes’ (Brown et al, 2006; Robinson and

Rhodes, 2006; Sheng et al, 2006). The long and highly basic

C-terminus of linker histones presumably interacts with

linker DNA and contributes to the stability of binding

(Hendzel et al, 2004). Electron microscopy shows that H1

modulates the trajectory of the two DNA segments that

emerge from the nucleosome ‘core’ by organizing it into a

‘stem’ structure (Bednar et al, 1998). Many structural studies

of linker histone interactions with nucleosomes have made

use of the variant H5, a specialized linker histone found in

avian erythrocytes (Sun et al, 1990; Zhou et al, 1998). The

interaction of H5 with chromatin appears to be more stable

than that of H1 (Thomas and Rees, 1983). Chromatin in the

presence of H5 is packed differently and is more repressive as

compared with H1-containing chromatin (Sun et al, 1990),
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which may be due to the presence of a third DNA-binding

surface in H5 (Ramakrishnan et al, 1993; Fan et al, 2005).

Since linker histones constrain the path of the linker DNA,

they are expected to inhibit the dynamic detachment of DNA

segments from the nucleosome (Li et al, 2005). Consistent

with this idea, linker histones inhibit the spontaneous sliding

of histone octamers on DNA at elevated temperatures

(Pennings et al, 1994; Ura et al, 1995), a reaction that requires

transient unpeeling of DNA from the histone surface (Yager

and van Holde, 1984). Similarly, one would expect ATP-

dependent nucleosome repositioning to be difficult in the

presence of linker histones, as this is likely to involve pulling

linker DNA into the nucleosome (Flaus and Owen-Hughes,

2004; Saha et al, 2006). Moreover, remodelling factors of the

ISWI type and H1 may compete for the same binding site

(Langst and Becker, 2001; Zofall et al, 2004; Strohner et al,

2005). Consistent with these theoretical considerations, the

presence of the linker histone inhibited the ATP-dependent

ability of the SWI/SNF complex to generate access to mono-

nucleosomal DNA (Hill and Imbalzano, 2000). Likewise, on

dinucleosomes, ACF-dependent remodelling was impaired by

incorporation of H1 (Saeki et al, 2005). Others found that

addition of H1 to nucleosomes did not inhibit SWI/SNF-

dependent repositioning (Ramachandran et al, 2003).

Mononucleosomes provide a convenient assay for nucleo-

some remodelling, but remodelling enzymes are also able to

act on nucleosomes in extended arrays (Corona et al, 1999;

Boyer et al, 2000; Hassan et al, 2001). Considering the strong

effect of linker histones on chromatin folding, their impact on

chromatin remodelling can only be reliably investigated in

nucleosome arrays. Yet, only few studies attempted to mea-

sure ATP-dependent remodelling on oligonucleosomal sub-

strates. Horn et al (2002) found, monitoring the accessibility

of DNA in nucleosome arrays, that several remodelling

enzymes (human and yeast SWI/SNF, Mi-2 and Xenopus

ACF) were largely inhibited in presence of linker histone

H5. In contrast, Varga-Weisz et al (1995) observed striking

mobility of nucleosomes in complex chromatin fully loaded

with histone H1, assembled in preblastoderm Drosophila

embryo extracts. This early finding suggested that H1-con-

taining chromatin could be rendered dynamic, but due to the

crude nature of the system did not pinpoint the responsible

enzymes and cofactors.

Clarification of the extent to which ATP-dependent remo-

delling can work on H1-containing chromatin and defining

the limitations for nucleosome mobility is of fundamental

importance. After all, most of the eukaryotic genome is

supposedly organized in H1-containing 30-nm fibres

(Horowitz et al, 1994). Is the bulk of euchromatin character-

ized by nucleosome mobility, or only a small fraction from

which H1 has been stripped and the 30-nm fibre destabilized?

We therefore sought to re-investigate the effect of linker

histones on ATP-dependent nucleosome mobility in a fully

defined system of H1-containing chromatin. For this purpose,

we reconstituted chromatosome arrays from purified compo-

nents (Huynh et al, 2005) and subjected these arrays to ATP-

dependent remodelling by Drosophila ACF. ACF consists of

the ATPase ISWI and the associated subunit Acf1 (Ito et al,

1999; Strohner et al, 2005). In addition to assisting the

assembly of chromatin with regular nucleosome spacing

(Ito et al, 1997; Lusser et al, 2005), ACF can slide mono-

nucleosomes on short DNA fragments (Eberharter et al,

2001). To our surprise we found that ACF, but not CHD1,

was able to catalyse considerable ACF-dependent movements

of entire chromatosomes within fully loaded arrays.

Results

Reconstitution of chromatin with stoichiometric

amounts of linker histones

To investigate the effect of linker histones on chromatin

remodelling, it was crucial to work with chromatin arrays

containing one linker histone per histone octamer. Only then

we could be certain that any remodelling on these arrays

occurred on chromatosomes (nucleosomesþ linker histone)

and not on a fraction of nucleosomes devoid of linker

histones. Following a protocol for the reconstitution of homo-

geneous, linker histone-containing chromatin arrays (Huynh

et al, 2005), we assembled 12-mer nucleosome and chroma-

tosome arrays on 12-mer repeats of the 601 nucleosome

positioning sequence (Lowary and Widom, 1998), using

histone octamers and H1 from Drosophila embryos or H5

from chicken erythrocytes. DNA fragments lacking position-

ing sequences—between 692 and 1113 bp, derived from the

pUC18 vector—were present during all reconstitutions. They

served as competitor DNA (crDNA) to bind excess histones

and were removed after the assembly (Figure 1C). In pilot

studies (not shown) we determined the amounts of histone

octamers required to assemble homogeneous 12-mer nucleo-

some arrays. Titrations of linker histones are shown in

Figure 1B. Addition of increasing amounts of H1 resulted in

a slower migration of the resulting array on native agarose

gels (best resolved on 0.7% agarose), whereas incorporation

of H5 led to faster migrating arrays (best resolved on 1.4%

agarose), in agreement with earlier studies (Huynh et al,

2005). The different mobility of H5- versus H1-containing

chromatin demonstrates the difference in packing brought

about by the H5 variant (Sun et al, 1990). Increased addition

of linker histones did not lead to a further change in the

mobility of the arrays; instead, excess linker histones bound

to the crDNA, as seen by gel mobility shifts (Figure 1B, lanes

6 and 7, and 14 and 15). To evaluate the degree of reconstitu-

tion, all arrays were purified from excess proteins, free and

nucleosomal crDNA by MgCl2 precipitation (Figure 1C;

Schwarz et al, 1996). We directly determined the histone

stoichiometry by gel electrophoretic analysis of the purified

reconstituted chromatin (Figure 1D). The amount of each

histone was calculated from the Coomassie blue stain in each

band as determined by densitometry on a Li-Cor Odyssey

machine. Stoichiometric, saturating levels of linker histones

were reached on adding linker histones at a nominal molar

ratio of 2.5 molecules of input linker histones per 601

sequence. Excess histones bound to the crDNA were removed

during the purification step.

As a further control for the occupancy of 601 sequences by

histone octamers, arrays were digested by AvaI that cuts

between those sequences (Figure 1A). Digestion of the nu-

cleosome arrays yielded mononucleosomes, but no free 200-

bp DNA fragments, which can be distinguished by native

agarose gel electrophoresis (Figure 1E, lane 1). Evidently, the

vast majority of 601 sequences were occupied by histone

octamers. A minor fraction of subnucleosomal particles gave

rise to a band migrating slightly faster than mononucleo-

somes. The digestion showed furthermore that nucleosomes
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did not occupy alternative positions to the ones dictated by

the 601 sequence, since they did not occlude the AvaI site.

AvaI digestion of H1-containing chromatin yielded mostly

chromatosomes and only a minor fraction of nucleosomes

(Figure 1E, lanes 2–4). The fraction of nucleosomes did not

decrease significantly upon adding more H1, showing that

saturation had been reached. Chromatosome arrays as-

sembled with H5 were more resistant to digestion by AvaI.

H5-containing chromatosomes migrated only slightly slower

than nucleosomes (Figure 1E, lanes 5–7) supporting the idea

that H5-containing chromatin is different from the one con-

taining the canonical linker histone.

We conclude that the reconstituted chromatin consist of

regular chromatosome arrays with stoichiometric levels of

linker histones. All arrays used for remodelling reactions

were quality-controlled by the methods described.

Linker histone-containing chromatin can be rendered

accessible by ACF

As a quantitative measure for chromatin remodelling we

monitored changes in the accessibility of nucleosomal DNA.

For this purpose we reconstituted end-labelled nucleosome or

chromatosome arrays, and incubated them with an excess of

the restriction endonuclease AluI, which cuts within the

nucleosome positioning sequence, 45 bp into the nucleo-

some. Without remodelling activity, about 70% of arrays

were resistant to cleavage (Figure 2B), demonstrating that

seven out of 10 arrays did not contain a single accessible

positioning sequence. On these uninterrupted arrays the

development of restriction site accessibility was now mon-

itored in the presence of ATP and Drosophila ACF expressed

from baculovirus vectors in insect cells. Arrays were incu-

bated with AluI and with or without ACF and ATP at 261C.

After 1 h, the reactions were quenched with excess unlabelled

DNA, total DNA was purified and analysed on agarose gels.

Comparing the percentages of uncut DNA confirmed that ACF

increased the accessibility of nucleosomal DNA in an ATP-

dependent manner (Figure 2A, lane 3). A total of 80% of the

resistant arrays were cleaved in the presence of ACF and ATP,

but not if one of these was omitted. In presence of H1, 48% of

otherwise resistant arrays could be cleaved when adding ACF

and ATP, so the ATP-dependent increase in accessibility was

significant, although the absolute extent of opening was

reduced (Figure 2A, lane 6). When probing arrays assembled

with a higher molar ratio of H1 per 601 sequence (Figure 2A,

lanes 7–9), the degree of inhibition remained the same,

showing that the ability to remodel was not due to sub-

saturating H1 levels. Remarkably, ACF was able to promote

the access of the endonuclease even to H5-containing chro-

matin. A total of 35–45% of resistant H5 chromatosome
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Figure 1 Reconstitution of chromatin arrays with stoichiometric amounts of linker histone H1 or H5. (A) Overview on chromatin
reconstitution and quality controls. 12-mer nucleosome arrays and chromatosome arrays containing linker histone H1 or H5 were assembled
on tandem repeats of the 601 nucleosome positioning sequence according to Huynh et al (2005). To bind excess histones, crDNA with no
positioning sequence was added to the assembly. (B) Arrays (6 pmol) assembled with increasing molar ratios of H1 or H5 (H1/nuc or H5/nuc)
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arrays were cut in the presence of both ACF and ATP

(Figure 2A, lanes 12 and 15). These results are consistent

with earlier observations from the Peterson laboratory (Horn

et al, 2002) who found that xACF was able to decrease the

fraction of nuclease resistant H5-containing chromatosome

arrays from about 85% to 60% in an ATP-dependent reaction.

We were surprised by the efficiency of chromatosome

remodelling by ACF, and wondered whether ACF was speci-

fically suited for dealing with linker histones. ACF is able to

assist the formation of H1-containing chromatin, whereas the

nucleosome-remodelling ATPase CHD1 can only promote

nucleosome assembly, but is unable to incorporate also the

linker histone (Lusser et al, 2005). To explore whether the

remodelling activities correlated with the assembly properties

of the enzymes, we compared the activities of ACF and CHD1

in our system. To assure that the parallel reactions contained

equivalent nucleosome-remodelling activity, we first standar-

dized the enzyme inputs according to their nucleosome-

stimulated ATPase activity. Similar to ACF, CHD1 enhanced

the accessibility towards AluI in an ATP-dependent manner

(Figure 2A, lanes 16 and 17; Figure 2B). However, in the

presence of linker histones H1 or H5, no remodelling activity

could be observed (Figure 2A, lanes 18–25; Figure 2B). We

also directly compared enzyme amounts that are equally

active on nucleosome arrays for their activity on chromato-

some arrays. Similar results were obtained (Supplementary

Figure 1). This indicates that the remodelling of chromato-

some arrays by ACF is not the result of incomplete recon-

stitution. It also shows that ACF is better suited than CHD1 to

remodel linker histone-containing chromatin. To investigate

whether this quality of ACF is intrinsic to its ATPase subunit

or relies on its associated subunit Acf1, we repeated the assay

with ISWI alone. The remodelling activity of ISWI in the

presence of linker histones H1 and H5 was similar to that of

ACF, whereas CHD1 was inactive (Supplementary Figure 1).

We, therefore, speculate that the ability to deal with chroma-

tosome arrays may be a characteristic of all ISWI-containing

remodelling complexes. In support of this notion, recent

observations by Tamkun and co-workers suggest that an

ISWI-containing complex, possibly the remodelling factor

NURF, may affect the H1 association with chromosomes

(Corona et al, 2007).

ACF repositions nucleosomes in the presence of linker

histones

Accessibility of nucleosomal DNA provides a quantitative

measure of chromatin remodelling. It does not, however,

provide information about the nature of remodelling.

Access to DNA may result from nucleosome repositioning

as well as disruption of histone–DNA contacts (Fan et al,

2003). ACF can ‘slide’ mononucleosomes along DNA

(Eberharter et al, 2001), but it is not clear whether the

presence of linker histones modulates the outcome of nucleo-

some remodelling within the array. To visualize potential

nucleosome movements within the chromatosome arrays,

we subjected reconstituted, end-labelled chromatin to remo-

delling by ACF or CHD1 and then probed nucleosome posi-

tions by partial digestion with micrococcal nuclease (MNase).

MNase digestion in the absence of remodelling yielded

a highly regular ladder of DNA fragments (Figure 3A, lanes

2–7), but this pattern was dramatically altered when arrays

had been incubated with both ACF and ATP (Figure 3A, lanes

8–10). The cleavage profile resembled the one obtained from

digesting free DNA (Figure 3A, lane 1), suggesting that

nucleosome positions had been randomized throughout the

entire array by ATP-dependent remodelling. These ATP-

dependent changes were clearly visualized by comparing

densitometry profiles of corresponding lanes (Figure 3C).

Digestion of chromatosome arrays with MNase also

yielded a regular cleavage pattern; however, additional

bands appeared below the primary band already seen in

nucleosome arrays (Figure 3A). These bands are particularly

strong on H5-containing chromatin and are presumably due

to structural changes in linker DNA upon interaction of linker

histones. The pattern derived from H1-containing chromatin

clearly changed upon prior remodelling by ACF, again ap-

proaching the one characteristic of free DNA (Figure 3A,

lanes 18–20). The effects are particularly evident in the

lower part of the gel, which raises the possibility that

remodelling is enhanced at the ends. The H5-containing

arrays were more resistant to nucleosome repositioning,

albeit some additional bands, particularly in the more di-

gested fraction, point to a low level of nucleosome reposition-

ing (Figure 3A, lanes 28–30). CHD1 affected the MNase

digestion pattern neither in the absence nor in the presence

of linker histones (Figure 3B, lanes 1–20). Densitometry
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profiles of corresponding lanes from reactions conducted

with or without ATP were largely overlapping (Figure 3C)

showing that CHD1 slides nucleosomes much less efficiently

than ACF. This conclusion was confirmed by the observation

that even the fivefold amount of CHD1 did not induce any

significant ATP-dependent changes in the MNase digestion

pattern (Figure 3B, lanes 21–27). The result, taken together

with the one in Figure 2, shows that access to oligonucleo-

somal DNA can be generated by two distinct strategies:

nucleosome sliding (by ACF) and nucleosome remodelling

without overt changes in histone octamer positions (by

CHD1).

To elucidate whether the presence of histone modifications

in our arrays influenced the outcome of these experiments,

arrays were also assembled using recombinant Drosophila

histones expressed in Escherichia coli (Supplementary Figure 2),

which in contrast to those purified from Drosophila embryos

did not carry any modifications. The reconstitution of linker

histone-containing chromatin and the ability of ACF, ISWI

and CHD1 to remodel the resulting chromatin was essentially

the same as with native histones (Supplementary Figures 3

and 4).

ACF catalyses the movement of chromatosomes

Since ACF can assist the assembly of H1-containing chroma-

tin (Lusser et al, 2005), it might also be able to catalyse the

opposite reaction, that is, the eviction of H1. Therefore, it is

possible that nucleosome repositioning by ACF relies on prior
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agarose gel electrophoresis. Nucleosomes (from nucleosome arrays) and chromatosomes (from chromatosome arrays) were excised from 1.1%
native agarose gel and the DNA was extracted. To map the positions of nucleosomes/chromatosomes, primer extension was performed with the
primers depicted in panel B. (B) Annealing positions of the primers used for primer extension reactions (13fw, 13rv, 76fw, 76rv). Arrows
indicate the primers, the black line the DNA and the oval the position of the nucleosome before the remodelling reaction. (C) Primer extension
reactions with primers 13fw and 13rv performed on isolated nucleosomes/chromatosomes were analysed on 7% polyacrylamide 20% urea
gels. For reactions conducted with 13rv, nucleosome positions corresponding to the indicated bands are represented by drawings at the right
side of the gel. (D) Same as panel C, but with primers 76fw and 76rv.
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stripping of the linker histone. In an attempt to detect H1

presumably released from chromatin upon remodelling, we

included radiolabelled mononucleosomes into the reaction,

which may function as acceptors for H1. The decreased

mobility of these labelled nucleosomes on native gels upon

association of H1 should provide a sensitive assay for linker

histone release. However, we were unable to detect any H1

transfer with this assay (not shown).

Next, we attempted to detect the movement of H1 along

with nucleosomes (Figure 4A). To this end we remodelled

nucleosome or chromatosome arrays with ACF as before

(controls did not contain ATP or enzyme) and then digested

the chromatin with MNase. The endonuclease and exonu-

cleolytic ‘trimming’ activity of MNase defines the borders of

the nucleosome or chromatosome, because histones protect

the DNA they organize from digestion. The resulting nucleo-

somes and chromatosomes were separated on a native agar-

ose gel (Figure 4A). In agreement with the literature

(Nightingale et al, 1996), MNase treatment led to displace-

ment of a fraction of H1 from the chromatosomes, so that a

mixture of nucleosomes and chromatosomes was obtained

from the digestion of chromatosome arrays independent of

whether they had been remodelled. To map the positions

of nucleosomes upon remodelling, we excised the bands

corresponding to nucleosomes and chromatosomes before

and after remodelling, purified the associated DNA and

determined nucleosome/chromatosome positions by primer

extension. Two different positions, 13 and 76 bp into the

positioning sequence, were selected and radiolabelled oligo-

nucleotides were annealed. Forward and reverse primers

named 13fw, 13rv, 76fw and 76rv (Figure 4B) were extended

in separate reactions until the fragments’ ends were reached.

The positions of particles can be deduced from the length of

the obtained DNA fragments and the primer-annealing site.

Probing nucleosomal DNA from arrays in the absence of

remodelling, all four primers yielded a ladder of bands, which

are most likely due to single-stranded nicks generated by

MNase (Cockell et al, 1983). However, the longest, most

prominent band in each reaction confirmed the nucleosome

position defined by the 601 sequence (asterisks in Figure 4C

and D). For example, annealing and extension of the 13rv

primer resulted in the expected 33-bp band (Figure 4C, lanes

8 and 9). The DNA fragments derived from chromatosomes

were 20 bp longer than nucleosomal ones at the 50 end

(detected by the reverse primers 13rv and 76rv; triangles in

Figure 4C and D). This is in line with the known fact that H1

protects 20 bp of linker DNA from nuclease digestion

(Simpson, 1978), and confirms the asymmetric interaction

of the linker histone (Zhou et al, 1998).

Upon remodelling by ACF, additional bands were obtained

from nucleosomal DNA with all primers, indicating reposi-

tioning of nucleosomes. The most dramatic effects could be

observed in the case of the 13rv primer. Without remodelling,

the 33-bp fragment indicative of 601-directed positioning was

most prominent (Figure 4C, lanes 8 and 9). When both ACF

and ATP had been added before, bands of different sizes up to

about 150 bp were obtained (Figure 4C, lane 10), demonstrat-

ing repositioning of nucleosomes along the entire length of

the DNA repeat. Prominent bands considerably longer than

150 bp are not expected, because the nucleosome protects

only 147 bp from nuclease digestion. Remarkably, extensive

nucleosome repositioning was also seen in DNA purified

from chromatosomes, again pointing to movements of nu-

cleosomes throughout the length of the 601 repeat (Figure 4C,

lanes 7 and 13; Figure 4D, lanes 7 and 13). Not surprisingly,

the largest bands observed were slightly longer (up to about

180 bp) due to H1 binding. Since the DNA had been derived

from gel-purified chromatosomes after a remodelling reac-

tion, we conclude that ACF can move entire chromatosomes

on DNA in an ATP-dependent manner.

Discussion

Due to the abundance of linker histones in interphase chro-

matin, H1-containing nucleosome arrays are probably the

most common and physiological substrate for ATP-dependent

chromatin remodelling factors. It is therefore important to

understand whether and how these complexes can deal with

the linker histone. So far, the literature mostly suggested that

linker histones hinder chromatin remodelling (Horn et al,

2002). Residual remodelling activity has largely been attrib-

uted to incomplete loading of the substrate with linker

histones. We tried to rule out this experimental shortcoming

by tightly controlling the stoichiometric incorporation of

linker histones into chromatin arrays. Yet, ACF was able to

induce the movement of entire chromatosome units through-

out extended arrays. Importantly, the inability of CHD1 to

remodel H1-containing chromatin confirms the inhibitory

nature of the chromatosome array. Our data are in accor-

dance with previous findings in a crude, undefined system

that nucleosome movements can occur within H1-containing

chromatin (Varga-Weisz et al, 1995), but they present, to our

knowledge, the first direct demonstration of ATP-dependent

chromatosome mobility in a defined chromatin array.

Our results are surprising in light of the documented

impediments of linker histones on nucleosome remodelling.

First, H1 binding limits the amount of free linker DNA, which

is known to determine the efficiency of ACF-dependent

remodelling (Yang et al, 2006; Gangaraju and Bartholomew,

2007). Second, H1 is likely to compete with ISWI-type

remodellers for nucleosomal binding sites (Kagalwala et al,

2004; Yang et al, 2006; Gangaraju and Bartholomew, 2007). In

addition, H1 is believed to constrain the path of DNA entering

and exiting the nucleosome (Sheng et al, 2006) and may

therefore hinder DNA translocation. Finally, the increased

compaction promoted by linker histones might restrict the

access of remodelling factors towards the chromatin fibre.

According to both currently favoured models for the structure

of the 30-nm fibre, the linker DNA and hence all points of

access for remodelling enzymes are located inside the chro-

matin fibre (Robinson and Rhodes, 2006). The cation con-

centrations in our experiments (50 mM KCl, 1.5 mM MgCl2)

will promote the compaction of the nucleosomal array

(Carruthers et al, 1998; Robinson et al, 2006).

In spite of these possible constraints, we observed a

considerable ACF- and ATP-dependent repositioning of chro-

matosomes. We considered that H1 purified from Drosophila

embryos might carry modifications, decreasing its affinity for

chromatin. For example, the extensive phosphorylation of

linker histone C-termini interferes with DNA binding and

relieves its inhibitory impact on SWI/SNF-dependent

chromatin remodelling (Hill et al, 1991; Horn et al, 2002).

However, mass spectrometrical analysis of histone H1 pur-

ified from Drosophila embryos did not reveal extensive
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phosphorylation (AVillar and A Imhof, personal communica-

tion). We therefore consider it unlikely that phosphorylation

impacted the outcome of our experiments.

The inhibitory effect of histone H1 on nucleosome remo-

delling was apparent when CHD1 was used as a remodelling

enzyme. Notably, CHD1’s activity on nucleosome arrays was

equal to that of ACF, ruling out a defective activity of CHD1.

Rather, ACF appears particularly suited for coping with linker

histones. This is supported by the observation that ACF can

assist the assembly of H1-containing chromatin arrays,

whereas CHD1 can only promote assembly of H1-free chro-

matin (Lusser et al, 2005). Recently, the ISWI-containing

remodelling factor NURF has been suggested to be involved

in modulating the association of H1 with chromosomes

in vivo (Corona et al, 2007). The ability to slide chromato-

somes may thus be a more widespread property of remodel-

ling enzymes.

How might ACF achieve chromatosome repositioning? ACF

may directly catalyse the eviction of H1 before nucleosome

sliding, and a number of reports indicate that nucleosome-

remodelling factors can, in principle, disrupt the DNA inter-

actions of other proteins than core histones (Kikyo et al,

2000; Nagaich et al, 2004; Sprouse et al, 2006). Although we

were unable to detect free linker histones during remodelling,

our analysis does not exclude that a fraction of H1 is

transiently dislocated to secondary sites on the nucleosome

array or an acceptor site on ACF. In vivo, linker histone

displacement may be facilitated by cooperating histone cha-

perones. ACF and the histone chaperone NAP1 can act in

concert towards the assembly of H1-containing chromatin

(Lusser et al, 2005), and it is thus conceivable that in cells

ACF may cooperate with chaperones to catalyse the reverse

reaction, which is the eviction of linker histones. However,

since we did not include a chaperone in our experiment,

alternative mechanisms have to be considered.

Chromatosome movements might already be facilitated if

only the linker histone’s globular domain was transiently

detached from the nucleosome, while the C-terminal tail

remained associated with the linker DNA. Such a scenario

is reminiscent of documented changes on H1 interaction due

to transcription, where selective crosslinking in Drosophila

showed that the globular domain but not the C-terminal tail

of linker histones was reversibly displaced from chromatin

(Nacheva et al, 1989). In line with these considerations, the

C-terminal tail contributes to H1 binding to DNA and deter-

mines its residence time on chromatin in living cells (Bharath

et al, 2002; Hendzel et al, 2004; Catez et al, 2006).

The analysis of chromatosome positions by primer exten-

sion revealed that in our arrays H1 protects DNA from

nuclease digestion only on one side of the nucleosome,

suggesting an asymmetrical binding of H1 in agreement

with earlier observations (Zhou et al, 1998; Brown et al,

2006). This asymmetrical interaction, combined with the

repetitive nature of the 601 array, endows the entire array

with directionality. Although the precise topography of the

ACF–nucleosome complex is not known at present,

Bartholomew and co-workers suggested on the basis of site-

directed DNA affinity labelling that the related ISW2 complex

interacts with linker DNA only on one side of the nucleosome

(Kagalwala et al, 2004; Dang et al, 2006). We thus speculate

that ACF may interact with nucleosomal linker on the side

that is not contacted by the globular domain of H1, in order to

initiate the remodelling reaction. Propagation of a ‘looped

segment’ of DNA around the histone octamer would then

lead to movement of the histone octamer and concomitant

displacement of the globular domain. The domain would

then have to relocate and bind to the new nucleosome dyad

and DNA entry point. A testable prediction of this hypothesis

is that nucleosome sliding in presence of H1 would be

unidirectional.

We do not know at this point whether ACF distributively

targets individual nucleosomes within a nucleosome array or

rather remodels neighbouring nucleosomes processively. In

the latter case the fibre ends may provide points of entry.

However, our restriction enzyme accessibility assays did not

reveal a gradient of increased accessibility towards the ends

of the array, as might be expected from such a scenario.

On the other hand ACF is known to remain bound to its

initial substrate during chromatin assembly (Fyodorov and

Kadonaga, 2002), and we observed earlier that nucleosomes

within extended arrays were repositioned by Drosophila

embryonic extract in apparent synchrony (Varga-Weisz et al,

1995). Further experiments are required to clarify this issue.

Our study provides the first evidence that ATP-dependent

nucleosome-remodelling factors can mobilize entire chroma-

tosomes, even if they reside in extensive arrays. Hence, the

majority of euchromatin might be characterized by mobile

nucleosomes and chromatosomes.

Materials and methods

Reconstitution of nucleosome and chromatosome arrays
Nucleosome and chromatosome arrays were assembled by con-
tinuous salt dialysis as described (Huynh et al, 2005). Arrays were
purified by precipitation with 5 mM MgCl2 (Schwarz et al, 1996).
Native Drosophila histone octamers were purified from 0–12 h ael
embryos (Simon and Felsenfeld, 1979). Recombinant Drosophila
histones were expressed in E. coli and purified according to Morales
et al (2004). Histone H1 was obtained from 0–12 h ael Drosophila
embryos (Croston et al, 1991). Chicken histone H5 and the
construct containing 12 200-bp repeats of the 601 nucleosome
positioning sequence were provided by the Rhodes lab. To obtain
linear 601 arrays, the insert was cut out with EcoRI and HindIII.
Plasmid DNA was digested by DraI to 19, 692, 811 and 1113-bp
fragments serving as competitor DNA. For radioactively labelled
arrays, 20% of the 12-mer 601 repeats were labelled. For this
purpose, repeats were purified from low melting agarose (Biozym)
by phenol extraction. The HindIII end was labelled with a[32P]dCTP
and Klenow polymerase (NEB), and excess nucleotides were
removed with Roche Quick Spin Columns Sephadex G-50 according
to the manufacturers’ instructions.

Gel mobility-shift assays
Native agarose gels contained Seakem GTG Agarose (Biozym) gels
in 0.2�TB (18 mM Tris, 18 mM boric acid). H1 binding to
chromatin arrays was analysed on 0.7% agarose gels, H5 binding
to chromatin arrays on 1.4% agarose gels. Arrays were visualized
by EtBr staining. To monitor occupancy of positioning sequences,
6-pmol arrays were digested by 15 U AvaI in RB50 (10 mM HEPES–
KOH, pH 7.6, 50 mM KCl, 1.5 mM MgCl2, 0.5 mM EGTA) for 1 h at
261C, run on 1.1% agarose gels and stained by SYBRs gold
(Invitrogen).

Determination of histone stoichiometry
Arrays (60 pmol) were analysed on 15% polyacrylamide gels.
Proteins were stained with Coomassie blue, intensities of bands
were measured using the Odysseys Infra Red Imaging System
(Li-Cor).
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Purification of ACF and CHD1 from Sf9 cells
Flag-ACF and flag-CHD1 were expressed in Sf9 cells using
baculovirus constructs and purified as described previously
(Eberharter et al, 2004). For flag-ACF, flag-Acf1 and ISWI were
coexpressed, the baculoviruses containing both constructs were a
gift from Dr J Kadonaga. The flag-CHD1 baculovirus was kindly
provided by Dr A Lusser.

Chromatin remodelling reactions
All remodelling reactions were carried out for 1 h at 261C. For
probing nucleosomal DNA accessibility, 0.6 pmol 12-mer nucleo-
some or chromatosome arrays were incubated in 10 ml RB50 with or
without 20 mM ATP. Reactions were started by adding 5 U AluI
(NEB) along with 2.4 pmol ACF (0.3 ACF per nucleosome/
chromatosome) or corresponding amounts of CHD1 (judged by
ATPase activity) and stopped by adding 200 ng free DNA. Proteins
were removed by Proteinase K (1 h, 371C), DNA was precipitated
with ethanol and applied on 1.3% agarose in 50 mM Tris, 384 mM
glycine. Gels were dried and exposed to phosphoimager screens.
The percentage of uncut DNA was determined with AIDA image
analyser software. For MNase read-out reactions, 1.8 pmol arrays
were incubated in 30 ml RB50, 20mM ATP. Reactions were started by
the addition of 7.2 pmol ACF or CHD1 (equal remodelling activity),
stopped by 600 ng free DNA and digested by adding 4�10�3 U of
MNase (Sigma) and CaCl2 to 3 mM for 1, 3 and 5 min (if reactions
contained ACF) or for 0.5, 1 and 3 min (if reactions contained CHD1
or no remodeller). Digests were terminated by adding EDTA to
10 mM. As a marker, 0.6 pmol nucleosome arrays were digested for
1 h at 261C with 5 U AluI. Free 12-mer 601 repeats (0.6 pmol labelled
repeatsþ 200 ng unlabelled DNA) were digested for 1 min at 261C
with 10�4 U of MNase. DNA was processed and visualized as above.
1D-evaluation of selected lanes was performed using AIDA image
analyser software. If remodelling reactions were followed by primer
extension, 3 pmol arrays were incubated in 15 ml RB50, 20mM
ATP with 12 pmol ACF. After 1 h, arrays were digested with 10�3 U
MNase at 261C for 20 min in the presence of 1 mM CaCl2.

Nucleosomes and chromatosomes were resolved on 1.1% native
agarose gels, stained with SYBR gold, excised and extracted using
the Qiagen gel extraction kit. A total of 10% of the recovered DNA
served as template for primer extension reactions (5mM primers
13fw 50-ATCTGACACGTGCCTGGA-30, 13rv 50-TCCAGGCACGTGTCA
GAT-30; 76fw 50-CGTACGTGCGTTTAAGC-30 or 76rv 50-GCTTAAACG
CACGTACG-30 labelled radioactively by polynucleotide kinase
(NEB), 3 U Taq polymerase (NEB), 601C annealing temperature,
12 cycles), which were analysed on 7% polyacrylamide 20% urea
gels in TBE.

ATPase assays
ATPase assays were performed as described (Eberharter et al, 2004)
with 200 ng free or oligonucleosomal DNA and 15–25 pmol
remodeller.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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