
Neurobiological Processes in Adolescent Addictive Disorders

Ty S. Schepis, PhD1, Bryon Adinoff, MD2,3, and Uma Rao, MD2

1 Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut

2 Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas

3 VA North Texas Health Care System, Dallas, Texas

Abstract
The purpose of this review is to summarize the neurobiological factors involved in the etiology of
adolescent addiction and present evidence implicating various mechanisms in its development.
Adolescents are at heightened risk for experimentation with substances, and early experimentation
is associated with higher rates of SUD in adulthood. Both normative (e.g., immature frontal-limbic
connections, immature frontal lobe development) and non-normative (e.g., lowered serotonergic
function, abnormal hypothalamic-pituitary-adrenal axis function) neurobiological developmental
factors can predispose adolescents to a heightened risk for SUD. In addition, a normative imbalance
in the adolescent neurobiological motivational system may be caused by the relative
underdevelopment of suppressive mechanisms when compared to stimulatory systems. These
neurobiological liabilities may correspond to neurobehavioral impairments in decision-making,
affiliation with deviant peers and externalizing behavior; these and other cognitive and behavioral
traits converge with neurobiological factors to increase SUD risk. The progression to SUD acts as
an amplifying feedback loop, where the development of SUD results in reciprocal impairments in
neurobehavioral and neurobiological processes. A clearer understanding of adolescent neurobiology
is a necessary step in the development of prevention and treatment interventions for adolescent SUD.

INTRODUCTION
The consequences of substance use disorders (SUD) are well publicized and involve substantial
costs to society.1–3 Using data from the late 1990s, various government agencies have
estimated that the annual cost of alcohol, drug, and nicotine use disorders was nearly five
hundred billion dollars.4–6 In large part, the initiation of addictive substance use appears to
be an adolescent phenomenon: nearly 60% of individuals who initiate drug use do so at or
before 18 years of age,7 and the rates of initiation rise to roughly 80% for alcohol7 and
cigarettes.8 Furthermore, it appears that the early use of certain substances (e.g., cigarettes,
methamphetamine, inhalants, or marijuana) is associated with accelerated use of other
substances,9,10 greater progression to SUD,11–14 and psychiatric comorbidity.13,15 The
2003 Youth Risk Behavior Survey stated that the use of alcohol, tobacco and illicit drugs by
high school students markedly increased their likelihood of injury or death due to the four
major causes of fatalities.16

Adolescence is a time of great neurobiological change.17 Evidence increasingly indicates that
these changes impact the propensity of adolescents to experiment and experience persistent
alterations from psychoactive substance use;18 substance use (and the consequent sequelae)
in adolescence may correspond to accelerations in the development of SUDs in adulthood.
19–21 Thus, prevention or early treatment holds great promise for limiting the costs, morbidity,
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and mortality associated with addiction. In order to develop more effective treatment
interventions, it is essential to understand the pathophysiology of addiction in youth.

This review will present an integrated etiology of the development and entrenchment of
addiction in adolescents. A conceptual summary is provided in Figure 1. Research findings
have led some to posit that all adolescents have neurobiological risks stemming from immature
connectivity22 and/or imbalances in the expression of the motivational learning system.18
Thus, the changing neurobiology of adolescence (#1 in Figure 1) may underlie the increase in
high-risk behaviors and disinhibition (#3) associated with the development of SUD.23,24
Adolescents at high-risk (#5; e.g., children of probands with SUD) likely have neurobiological
liabilities in serotonergic (5-HT), hypothalamic-pituitary-adrenal (HPA) axis and/or
neurophysiological (e.g., P300) functioning above those of low-risk adolescents. These factors
in high-risk youth may correspond to greater levels of conflict with parents and the formation
of affiliative friendships with other high-risk youth (#2 and 4), both risk factors for SUD.
Finally, following the initiation of psychoactive substance use (#6), adolescents appear to be
more acutely and persistently affected than adults. One result appears to be a more rapid
progression to SUD. The acute differences and persistent alterations may reflect neuroplastic
changes that serve to entrench and accelerate use, resulting in greater neurobiological liability
(#3) and SUD (#7).

This review will focus on factors associated with or leading to levels of substance use that
would meet criteria for a diagnosis of abuse or dependence,25 rather than factors leading only
to experimental use. Many substance users remain experimenters,26 and experimentation may
be associated with outcomes that are no worse,27 or are even better,28 than outcomes in those
who abstain. While the first step to addiction is experimentation,29 infrequent use is
significantly different than heavy use. Factors common to all adolescents (and thus, present in
experimenters) will be examined only to create the foundation on which dysfunctional traits
accelerate levels of substance use. In addition, this review will focus on adolescents with a
familial history of SUD; such individuals have a significantly greater incidence of SUD than
individuals without a family history30,31 and are more likely to have dysfunctional
neurobiological and neurobehavioral traits.32 Given the concentration of risk factors, high-
risk adolescents are thought to be most likely to demonstrate pathways to SUD development.

THE DEVELOPMENTAL NEUROSCIENCE OF ADOLESCENCE: ANIMAL AND
HUMAN STUDIES

Adolescence is perhaps the greatest time of neural growth, change, and maturation since
infancy. The development of the executive functions (e.g., decision-making, self-monitoring,
impulse control, delay of gratification) continues from childhood through adolescence,33–38
with completion as late as early adulthood.39–42 These neurocognitive traits correlate with
prefrontal cortex (PFC) and anterior cingulate activity; the development of these traits appears
dependent upon the maturation of PFC and limbic system interconnectivity. (The limbic system
consists of diverse neural structures, including the cingulate, amygdala, and hippocampus, and
serves to regulate emotional experience, memory, and motivational learning). Furthermore,
the maturation of connections between the PFC, basal ganglia, and cerebellum also appear to
be crucial for the development of higher cognitive functions.43

PRUNING AND MYELINATION
In large part, these neurocognitive changes occur during adolescence and depend on large-
scale myelination and synaptic pruning (#1 in Figure 1). The deposition of white matter, or
myelin, increases the speed of neural transmission. White matter allows for quicker processing
and more concentrated circuits to respond to the rapid demands of the environment. Using
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magnetic resonance imaging (MRI), longitudinal studies of human brain development have
found that white matter increases linearly from ages 4 to 20.44,45 In a study of men ranging
in age from 19 to 76, Bartzokis et al.46 reported that frontal lobe myelination peaked in adult
males at 44 years of age.

Synaptic pruning is the process by which excess connections (synapses) between neurons are
removed. Rakic and et al.47 and Lictman et al.48 theorize that pruning is determined by synapse
use: connections that are employed to respond to the environment are retained and
strengthened, while those that are used less often are eliminated. Synapse elimination is
believed to reduce the childhood pattern of processing, which requires greater metabolic
activity and the recruitment of a wider array of structures.49–51 In addition, pruning appears
to increase the efficiency of cognitive processing through the creation of dedicated neural
networks.52 For instance, synaptic overproduction followed by selective pruning allows for
maximum efficiency in associative memory functions.53,54

Rakic and colleagues47 have estimated that up to 30,000 synapses are pruned per second in
the non-human primate adolescent brain. Thus, nearly one-half of the cortical synapses present
before adolescence may be pruned during this period. Regional gray matter in humans tends
to peak and decline, at least partially due to pruning, beginning from 12 to 20 years of age.
44, 55–57 Using structural MRI, Sowell and colleagues58,59 found large-scale cortical and
subcortical brain changes in late adolescence and early adulthood. Numerous other studies
document that concomitant synaptic pruning and increased myelination occur in the human
frontal cortex during adolescence.45,60–62 Referring back to Figure 1 (#1), it appears that
normal adolescent neurobiology is characterized by lesser myelination, synaptic pruning, and
integration than is found in adults; overall, these processes do not appear to culminate until
early adulthood.63

DEVELOPMENT OF NEUROTRANSMITTER SYSTEMS DURING
ADOLESCENCE

In addition to connective and structural changes in the central nervous system (CNS),
adolescents undergo dramatic alterations in virtually all neurotransmitter systems (also within
#1 of Figure 1). Most relevant to the development of SUD are the changes experienced in
dopamine-related systems. Dopamine (DA) plays a central role in the mesolimbic neural
pathway. This circuit originates in the ventral tegmental area (VTA) and projects to the nucleus
accumbens (NAc) and various limbic structures.64,65 The mesostriatal release of DA occurs
in response to a wide variety of environmental reinforcers, including water,66 food,67 and
drugs of abuse.68–70 Increased striatal concentrations of DA are essential in assigning value
to these reinforcing stimuli.71

Both animal and human studies indicate that DA receptors reach a density peak early in
development and undergo elimination during adolescence.72–75 Synaptic pruning of DA
receptors occurs in both the human and rat NAc in adolescence,74,76,77 although some studies
report otherwise.78 In contrast, DA receptors in the PFC do not demonstrate significant pruning
until late adolescence.74,77,79 DA fiber density increases in the PFC of adolescent rats80,
81 and NAc of gerbils82 and DA inputs to the primate PFC peak in adolescence.83,84 Teicher
and colleagues85 found age-related striatal differences in synaptic DA levels in rats; these were
not seen in the NAc or medial PFC. Furthermore, increased DA synthesis has been observed
in the striatum, NAc and PFC in adolescent rats.86 Finally, striatal DA turnover is higher in
adolescent than adult rats, with smaller (non-significant) differences in the NAc and medial
PFC.85 This study also found age-related differences in DA metabolism in rats.85 Finally, DA
systems in the adolescent rat display significant regenerative plasticity following neurotoxin
administration.87,88 In toto, these studies may indicate a functional increase in mesostriatal
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DA activity during adolescence,18,89 though the region and time of these increases seem to
differ from species to species.

Adolescent developmental maturation is also seen in the cannabinoid, glutaminergic, gamma-
aminobutyric acid (or GA-BAergic) and serotonergic (5-HT) systems. Cannabinoid systems
regulate mesocortical90 and striatial DA systems,91–93 and reach functional maturity in rats
during adolescence.94–96 Changes in the cannabinoid system may influence motivational
learning, with preclinical studies highlighting the complex role of cannabinoid input on
mesolimbic DA.97–99 The behavioral effects of agonists for a specific glutamate receptor, the
N-methyl-D-aspartate (NMDA) receptor, appear to peak late in the pre-adolescent period in
rats.100,101 This coincides with greater NMDA agonist sensitivity.102 NMDA receptor
binding peaks differentially by subtype,103 and glutaminergic inputs to the PFC decrease
slightly during adolescence.83,84

The nature of GABA and 5-HT alterations during adolescence are not as well established.
GABA inhibits NAc activity and opposes the modulating excitatory effects of glutamate.104
GABA receptors achieve maturity in adolescence,105 with increased responsiveness of
GABAergic systems linked to stress in animal models.106,107 GABAergic input to the PFC
appears to decrease strongly through adolescence in humans,83,84 and, following a pre-
adolescent peak, rat GABAergic neurons in the PFC decrease in size during adolescence.108
5-HT inhibits and opposes DA activity, particularly as DA relates to aggressive and impulsive
behaviors.109–117 Thus, DA is thought to promote motivated behaviors, whereas 5-HT is
conceptualized as a break upon mesostriatal promotion of appetitive behavior. NAc 5-HT
turnover is up to four times lower in adolescent rats than in younger or older rats,118 and 5-
HT1A receptor binding appears to decrease most dramatically in human males during
adolescence.119 DA input to the PFC is up to three times greater than 5-HT input,120 and PFC
concentrations of a DA precursor are much greater than those of a 5-HT precursor in pubertal
rhesus monkeys.121 Finally, there is evidence that early adolescent rats undergo significant 5-
HT synaptic pruning in the basal forebrain.122

In summary, many neurotransmitter systems demonstrate notable maturation during
adolescence. This is captured in box 1 of Figure 1. DA systems display extensive pruning and
plasticity with concurrent maturation of the cannabinoid, glutaminergic, and GABAergic
systems during adolescence. The latter three systems all exert modulatory effects on
mesolimbic DA, and it is probable that changes in these systems have consequences for the
development of mesolimbic DA circuitry. Finally, 5-HT input may be underdeveloped when
compared to DA NAc input during adolescence. The relevance of the adolescent DA to 5-HT
ratio for behavior is explored in the next section.

IMPLICATIONS OF NEUROBIOLOGICAL CHANGES ON STIMULATORY AND
SUPPRESSIVE PROCESSES

In examining the motivational learning system, the relevant circuits and neurotransmitters can
be divided into stimulatory and suppressing aspects. The stimulatory substrates of this system
encode for appetitive behaviors (e.g., drug-seeking), whereas the suppressive substrates encode
for both regulatory and harm-avoidance behaviors (e.g., avoidance of drug use environment).
This system is primarily composed of a neural network that loops from the PFC to the striatum
and NAc (through the thalamus) and back to the PFC.123,124 This system receives affect-
related input from limbic structures as well as information concerning biologically motivated
drives (e.g., thirst) from the hypothalamus.71,125 In the motivational learning system, DA and
glutamate are stimulatory neurotransmitters, 5-HT and GABA are suppressive, and the PFC
functions as a regulatory and/or suppressive influence. As noted in box 1 of Figure 1, greater
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expression of the stimulatory over the suppressive aspects appears to be present during normal
adolescent development.18

Chambers and colleagues18 posited that the release of NAc DA “is a principle
neuromodulatory event implicated in the translation of encoded motivated drives into action,
operating like a general ‘go’ signal” (p. 1045). The exact action of DA on motivational learning
is unclear,71 although it appears to be related to novel stimuli and reward valence.126 In an
animal model, Hoglund et al.113 found that the administration of a DA precursor increased
aggression, an aspect of stimulatory expression. DA release modulates NAc firing in response
to glutaminergic input from the PFC, limbic regions, and the hippocampus.127,128 DA also
induces neuroplastic modifications in the NAc129,130 and has been associated with learning.
131–133 Glutamatergic projections from the PFC and basolateral amygdala to the NAc core
also appear to promote motivational learning.134

Conversely, 5-HT appears to play a primary suppressive role in the motivational system. 5-HT
projections involved originate in the raphe nucleus in the midbrain and project to the PFC,
NAc, hippocampus, and limbic regions.64 Taylor and Jentsch135 found that following five
days of 3,4-Methylenedioxy-methamphetamine (MDMA) administration, which is toxic for
5-HT axonal projections,136,137 reward-related learning was impaired in rats. Unlike control
rats, MDMA-administered rats performed conditioned behaviors for more than a week in the
absence of cue for action.135 Other studies have correlated impulsive or aggressive behaviors
with lowered levels of 5-HT turnover,109,112,115 and increases in 5-HT activity correlate
with attenuated aggression and impulsivity in both humans and animals.109,138,139

The PFC appears to be crucial for the regulation of motivationally driven behaviors140–145
through a glutaminergic feedback loop with the NAc.146–148 PFC damage has been associated
with impulsiveness, dysfunctional affect,149–152 and a higher risk for SUD.153–155
Dysfunctional PFC input to the NAc could disrupt the motivational loop by reducing
suppressive options; persistent dysfunction could impair the neuroplastic shaping of the
motivational circuit, entrenching maladaptive stimulatory responses.156 GABA also likely
regulates motivationally driven responses through projections from the central amygdala to
the VTA and through connections from the NAc core and ventral pallidum.134

The activation of the motivational circuit appears to differ between adolescent and adult
humans. In a task in which participants could either win or avoid losing money, Bjork et al.
157 found reduced activation in striatal and amygdalar structures during the anticipation of a
gain in adolescents, relative to young adults. This implies differences in the ability of
adolescents to use information to regulate motivational behavior. Ernst and collaborators158
compared the neural responses of adolescents and adults on a gambling task. Adolescents had
stronger NAc responses (likely stimulatory) to outcomes than adults. This study also found
attenuated amygdalar responses (likely suppressive), implying that adolescents process
stimulatory feedback better than inhibitory feedback.158 Thus, both studies suggest that
adolescents have impaired suppressive and enhanced stimulatory systems when compared to
adults.

IMPLICATIONS FOR EXPERIMENTATION WITH ADDICTIVE SUBSTANCES
AND DEVELOPMENT OF SUD

Given the evidence that DA, unlike 5-HT, may be close to a functional maximum,89,118,
159 adolescence appears to be marked by greater influence for activating substrates.
Experimentation with addictive substances is certainly the product of many influences, one of
which is likely to be this motivational imbalance. Furthermore, DA release in the NAc could
interact synergistically with adolescent plasticity to promote the reinforcement-related learning
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of drug cues and hence continued drug use.160 Glutamate-mediated learning also appears to
influence behavioral adaptations to repeated drug use; for example, mice with mutated NMDA
receptors did not develop conditioned place preference (CPP) or locomotor sensitization to
cocaine administration.161 Greater NMDA agonist sensitivity in adolescence may indicate
that motivated learning is altered, especially in relation to psychoactive substance use.

As mentioned previously, 5-HT systems appear to be functioning at a lesser level than DA
systems during adolescence. Furthermore, GABA may attenuate drug-seeking,162 but the
effects of GABA appear to decrease through adolescence. This may indicate attenuated GABA-
related regulation of appetitive drives. Finally, Bjork et al.157 and Ernst et al.158 provide
neuroimaging evidence that adolescents process stimulatory information more strongly than
inhibitory or regulatory information. As the integration of diverse neural structures is crucial
for the regulation of motivated drives,22 adolescents are likely not equipped to exert maximal
control over their appetitive urges. Thus, it appears that a heightened ratio of the stimulatory
relative to the suppressive aspects of motivation may be normal for the adolescent phase of
development. This imbalance may have explanatory power for the impulsivity (#2) and
experimentation with addictive substances (#6) seen across adolescents.

BEHAVIORAL FACTORS RELATING TO SUBSTANCE ABUSE IN
ADOLESCENTS

Neurobiological changes during adolescence contribute to three behavioral factors that relate
to the development of SUD: increases in peer affiliation, decreased parental monitoring, and
risk-taking (#2–4 in Figure 1).163 These occur across all adolescents and appear to be
conserved across species.164–166 The transition to adulthood necessitates a shift from
dependence on parents and family to peer networks for support. The transition to greater
dependence on peers co-occurs with increased levels of parent-adolescent conflict,167,168
which also involves decreases in reported closeness and time that adolescents and parents spend
together.169 Changes in the parent-child relationship appear to be increasingly influenced by
age in youngsters, potentially due to gene-environment interactions.170 These changes may
adversely impact parental monitoring. For even well-adjusted adolescents, this transition can
be a time of heightened stress, as self-identity changes within the context of these shifting
relationships. Finally, animal166 and human adolescents171,172 engage in a higher level of
risk-taking behavior than during any other developmental period. Steinberg24 posits that risk-
taking in adolescents is a normal developmental consequence of the need for greater stimulation
due to decreased reward sensitivity.

The processes mentioned in the preceding paragraph are seen across adolescents; other
processes involved in SUD development are present in adolescents at high-risk (#2 in Figure
1). These include impulsivity, labile emotions, questionable decision-making, and other
dysfunctional neurobehavioral processes thought to be regulated by the frontal lobes. While
some combination of these is a hallmark of adolescence, those at high-risk appear to have
amplified versions of these traits. Internalizing psychopathology,173 externalizing behavior,
172 and even alcohol use174 are present in children and pre-adolescents; furthermore, such
childhood phenomena can predict the development of SUD.175,176 Thus, many of the risk
factors for the development of SUD are present before the transition to adolescence occurs.
177,178

DECISION-MAKING, DIFFICULT TEMPERAMENT, AND INTERNALIZING
PSYCHOPATHOLOGY

The evidence for decision-making as a risk factor for SUD has been mixed. Executive
functioning (EF), which subsumes decision-making, is a minor risk for SUD and is mediated
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by aggressive behavior179,180 and/or difficult temperament.179,181 Overman and
associates182 found that heavy alcohol and substance use decreased performance on a
gambling task among adolescents; greater polysubstance use led to increasing decrements in
performance. Given the design, it is unknown whether these decision-making liabilities
predated or were sequelae of substance use. In a prominent comment, Steinberg24 noted that
many laboratory-based investigations of decision-making in adolescents may not be
ecologically valid. Specifically, Gardner and Steinberg183 have found that adolescents make
riskier decisions than adults on a computer driving simulation task, but only when participants
were with peers and emotionally aroused. These are common situational variables when
adolescents use addictive substances.24,183 Thus, the lack of compelling findings may be the
result of measurement and design, and not the result of a weak relationship between EF and
SUD.

Difficult temperament is defined as a set of traits that include negative affect, irritability, and
problems with attention, persistence, and coping.181 While difficult temperament predicts
SUD,184 the relationship is mediated by aggression and deviant-peer-association.179
Giancola and Parker185 posited that difficult temperament was often a step on the path to SUD,
but not a necessary step. Internalizing psychopathology (e.g., depressive or anxiety disorders)
may also serve as a risk factor for the development of SUD, as studies in adolescents
consistently find that depression and substance use co-occur.186–189 While much of the
evidence indicates that SUD precedes depressive diagnosis,190,191 there does appear to be a
subgroup for whom depressive symptoms come first.192,193 Furthermore, Lopez and
colleagues194 found that post-traumatic stress disorder appeared to predict SUD. Despite some
negative results,195 it appears that a relationship between SUD and internalizing
psychopathology exists. Aspects of this relationship, such as direction and strength of
influence, however, cannot be stated given the current literature.196

EXTERNALIZING BEHAVIOR
Externalizing behavioral syndromes (e.g., conduct disorder) appear to be an unmediated causal
risk for the development of SUD in adolescents. Genetic research has found a pathway for
SUD development beginning with parental antisocial personality disorder (ASPD) and
progressing through aggressive behavior and conduct disorder (CD) in the child, resulting in
SUD.197,198 In an experiment that began with three-year-old children, a subset was classified
as undercontrolled based on the presence of difficult temperament, impulsivity, hyperactivity,
and aggressive, uncontrolled behavior. Under-controlled children were 2.9 times more likely
to be diagnosed with ASPD, and undercontrolled males were 2.7 times more likely to have
alcohol dependence at 21 years of age.199 In all, Robins200 concluded that extensive but
insufficient evidence exists to justify the idea that CD and SUD have a reciprocal causal
relationship. That said, externalizing behavior may be a non-specific risk for SUD: initiation
of problem behavior before the age of 15 was a risk factor for diagnosis of SUD and/or ASPD
at the age of 20.201

It is important to note that anxiety,202,203 depressive,145,202,204 and externalizing
behavioral disorders205 share neurological circuits and neurobiological processes with SUD,
which may speak to a common developmental mechanism. Fronto-limbic, HPA axis, DA, 5-
HT, NE and/or GABA dysfunction are believed to play an important role in the development
of internalizing, externalizing, and addictive disorders.18,202,203,205 While further
examination of the comorbidity and common mechanisms of these disorders is beyond the
scope of this review, it is crucial for the practicing clinician to be aware of issues in the
combined assessment and treatment of other psychiatric disorders and SUD in adolescents).
206 Treatment of the SUD and the comorbid psychiatric disorder(s) appears necessary to
achieve the greatest reductions in SUD symptoms and to prevent relapse to substance use;
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207 furthermore, emerging evidence indicates that treatment of psychiatric disorders prior to
the emergence of substance problems can prevent the development of SUD.208,209

ASSOCIATION WITH DEVIANT PEERS
As mentioned previously, adolescence is a time of social transition: while affiliation with
healthy peers is important for development, increased interaction with deviant peers is a risk
factor for SUD development (#3 in Figure 1). Adolescents tend to befriend peers with similar
identities and interests,210 as demonstrated by a tendency for aggressive boys to affiliate with
other aggressive boys.211 Friendships with deviant peers predict development of SUD among
adolescents;212 these results have been replicated in adolescents without a familial SUD
history213 and across gender and ethnicity.214–216 Ary and collaborators217,218 proposed
that increasing family conflict in adolescence discouraged parental monitoring, which led to
SUD through increased affiliation with deviant peers. Indeed, affiliation with deviant peers
was a more powerful predictor of SUD than conduct problems in the index subject, particularly
in females.215 The best evidence indicates that adolescent deviance and association with
deviant peers amplify each other as risk factors.219,220

Researchers at the University of Pittsburgh have investigated a construct termed
neurobehavioral disinhibition, which combines measures of externalizing behavior, EF, and
affect into a single factor.221,222 It has been used to predict SUD at age 19222,223 and
marijuana use at age 16,223 and it is believed to be highly heritable.224 Although the concept
does not account for peer affiliation and needs further investigation, neurobehavioral
disinhibition is a good example of the push to aggregate neurobehavioral risk factors that can
inform primary prevention. Overall, it appears that the combination of deviant peer associations
and externalizing behavior problems poses the greatest risk for the development of SUD, with
difficult temperament and decision-making serving as less important risk factors. This is
demonstrated by McGue and Iacono,201 though, it may be that these traits serve as non-specific
risks for later diagnoses in the disinhibited spectrum rather than as specific risks for SUD.

TREATMENT IMPLICATIONS
As stated previously, best practice appears to be treatment of both the SUD and any co-
occurring psychiatric disorders. It appears that selective serotonin reuptake inhibitors have
efficacy in ameliorating both depressive and SUD symptoms.225–227 For those with
externalizing disorders and SUD, various medications, including divalproate,228 fluoxetine,
227 and bupropion,229 have shown efficacy in reducing SUD symptoms. The effects were
weaker on externalizing symptoms. All of these studies were of a pilot nature, so larger-scale
randomized controlled trials are needed to fully evaluate the effects of these medications in
adolescents with SUD.207

For behavioral treatment, there is evidence that cognitive-behavioral interventions (both in
group or individual settings),230 motivational enhancement,231 and family therapy232 have
efficacy in adolescents with SUD. The evidence for cognitive-behavioral intervention in a
group setting is notable, given earlier evidence that group interventions with adolescents may
increase high-risk behaviors, including substance use.233 It is also notable that improvements
in familial interaction appear to co-occur with a reduction in adolescent substance use for those
in family therapy.232 Given the unique developmental transitions adolescents are undergoing,
many of which specifically relate to familial relationships, family therapy could be an important
component of any treatment regimen. Biglan and colleagues234 have written an informative
book reviewing treatments for adolescents with multiple high-risk behaviors, including
substance use; they note that many adolescents with SUD often have other externalizing
problems and that such a multi-problem presentation requires multi-faceted treatment.234
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Clinicians should assess patients with substance use problems for other high-risk behaviors
(e.g., sexual risk behaviors) and act to treat the entire set of problem behaviors. Such treatment
will likely necessitate both pharmacological and behavioral interventions.

THE NEUROBIOLOGY OF RISK FOR SUD IN HUMAN ADOLESCENTS
Neuroimaging: ERP, EEG, and fMRI

One of the best examined neurobiological risk markers (noted in #5 in Figure 1) for the
development of SUDs is the P300 event-related potential (ERP). ERPs are EEG voltage
changes that are temporally related to sensory, motor, or cognitive events. These electrical
potentials represent the activity of large numbers of synchronous neuronal elements during
information processing. There is considerable evidence that GABA and glutamate modulate,
or perhaps directly cause, the expression of the P300 signal.235 The P300 ERP appears to
correlate with the attention one devotes to a stimulus, and latency in attending to a stimulus.
235–237

Begleiter and collaborators238 initiated interest in P300 ERPs as a marker for SUD risk by
demonstrating that the P300 response was blunted in male children of alcoholics. The P300
signal appeared to be a useful predictor of later alcohol-related disorders239 and was found to
be moderately heritable.240–242 A study of monozygotic twins also indicated that reduced
P300 amplitudes predated SUD development, and persisted in twins both with and without
SUD.243 The association of P300 abnormalities with SUD, however, may be a function of the
relationship between P300 amplitude and non-specific disinhibition.244 Bauer and
Hesselbrock245 found that P300 dysfunction might be better explained by comorbid CD,
especially given the correlation between P300 signals and CD.246 Habeych and
colleagues247 found that SUD was predicted both by P300 attenuations and trait disinhibition,
with disinhibition mediating P300 signal and SUD. This is not to say that P300 decrements are
without utility; instead, the P300 may serve as an endophenotype (or “downstream traits”
between genes and the disorder248) to guide investigations into more specific risk factors for
SUD. Furthermore, P300 signals have been used to predict treatment response in ADHD,249
so they could serve a similar function for SUD. Also, investigations that evaluated changes in
P300 signals following treatment could lend insight into the mechanisms of interventions.

EEG studies have shown that right frontal activity during a gambling task, similar to the task
mentioned above,182,250 corresponds with risky decision-making.251 Poor performance on
these tasks may represent deficits in the participant’s ability to tie emotional state to the
predicted outcome of a decision. Functional MRI (fMRI) studies of emotional regulation and
processing, which are dysfunctional in individuals with negative affect, implicate bilateral
activations of the PFC, the orbitofrontal cortex, and the right anterior cingulate in adolescents.
252 Adults activated a different pattern of structures.253,254 Finally, on a go/no-go task (a
measure of inhibition), substance-näive high-risk young adolescents had attenuated left frontal
middle gyrus activity on fMRI when compared to low-risk adolescents. There was a trend
toward less overall frontal activity in high-risk individuals.255

5-HT and DA Receptor Systems
Neurobiological measures of risk have focused on 5-HT functioning, prompted partially by
the research mentioned earlier on the association of 5-HT function with appetitive behaviors.
115,117 Often, these studies have used peripheral markers, including platelet 5-HT, whole
blood 5-HT concentrations, and/or platelet MAO activity, as proxies for central 5-HT function.
In an examination of children with an alcoholic parent, the level of the child’s externalizing
behavior was inversely correlated with that child’s level of whole blood 5-HT.256,257
Askenazy et al.258 found that platelet 5-HT concentrations were higher in those with greater
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impulsivity, and Mezzich and colleagues259 reported that for adolescents with SUD, platelet
MAO activity corresponded to difficult temperament. In addition, certain 5-HT transporter
polymorphisms260 and 5-HT transporter gene combinations261 appear to increase the risk for
SUD, especially alcohol-related problems.

However, studies exploring the relationship of 5-HT to the development of SUD often contain
methodological issues.262 Results in animals indicate that 5-HT depletion is associated with
motoric impulsivity, whereas the development of SUD in human adolescents may be associated
instead with impulse choice or delayed discounting.250,263,264 These terms denote the
selection of smaller, immediate rewards over larger, delayed rewards. In all, 5-HT dysfunction
may be a non-specific marker for disinhibition and negative affect rather than a specific risk
factor for the development of addiction. Indeed, Oreland hypothesized that platelet MAO (as
a peripheral marker of central 5-HT) may serve as a non-specific marker for CNS dysfunction
corresponding to disinhibited behavior.265,266 Nonetheless, disinhibition and negative affect
are both risk factors for SUD, so 5-HT dysfunction remains relevant as a risk factor for SUD.
The salience of the association between 5-HT and SUD is strengthened by data (mentioned
previously) that treatment with fluoxetine can improve adolescent substance-related outcomes,
with stronger effects on depressive symptoms.225–227 It is likely that some of the
improvements seen are due to the normalization of 5-HT function. That said, selective serotonin
reuptake inhibitors have mixed results in treating SUD alone in adults;267 the efficacy of these
medications is seen primarily in comorbid presentations, which may indicate that reductions
in depressive symptoms aid abstinence efforts.

DA-related genotypes also appear to influence the development of SUD. In examining high-
risk adolescents, the presence of A1 allele for the D2 receptor (DRD2) was related to greater
use of alcohol, tobacco, and illicit drugs.268 The A1 allele has been linked to reduced binding
to D2 receptors and lowered D2 receptor availability.269–271 That said, measures of
psychoticism and negative affect were also related to drug use outcomes in adolescents with
the A1 allele, and no analyses were performed to assess mediation effects. Currently, it is
unclear whether the DRD2 polymorphism serves as a specific risk factor for SUD development
or whether, like 5-HT, it may be a non-specific risk factor of disinhibition and/or negative
affect.

HPA Axis
Another major neurobiological measure corresponding to SUD is HPA axis function. The HPA
axis is a neuroendocrine system that plays a significant role in the stress response, particularly
through the downstream release of cortisol. Cortisol appears to have a permissive effect on the
mesostriatal release of DA, much like drugs of abuse.272–274 Moss et al.275 found that male
offspring of individuals with SUD had a blunted cortisol response to a stressor. These high-
risk males also had higher levels of impulsivity and externalizing behavior. Pajer et al.276
replicated these results. Dawes and collaborators277 found that the correlation of blunted
cortisol response and disinhibition was greater in adolescent females than in males, with
cortisol response accounting for 24% of the variance in disinhibition. Findings from our
laboratory indicate that HPA activity and SUD are related, as increased HPA activity was
associated with development of SUD during the follow-up period. This was particularly true
when individuals had comorbid depressive and/or anxiety disorders.193,278

These studies suggest that either HPA hyperactivity or hypoactivity can serve as a risk marker
for SUD development. HPA dysfunction might mark either physiological under-reaction to a
stressor, as in externalizing disorders, or overreaction to a stressor, often observed in
adolescents with internalizing disorders. There is clear evidence that externalizing behavioral
syndromes pose a risk for SUD development.175,279 Internalizing symptoms pose a risk for
SUD as well,280 possibly through HPA hyperactivity.281 Thus, there may be two pathways
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to SUD involving HPA dysfunction: internalizing symptoms in tandem with HPA
hyperactivity, or externalizing symptoms and HPA hypoactivity. While these may be
etiological mechanisms, the limited results and speculative nature of this hypothesis highlight
the need for further investigation. Concomitantly, investigations of medications with
modulatory effects on the HPA system may be warranted in adolescents with SUD. Some
antidepressants appear to regulate HPA expression,282,283 and their use could be efficacious
in the prevention or treatment of SUD and in the treatment of important co-occurring disorders,
including major depression.284 Also, the opioid antagonists naltrexone and nalmefene appear
to increase hypothalamic tone,71,285 indicating potential utility in those with HPA
hypoactivity and externalizing disorders.

THE CONSEQUENCES OF SUD ON THE ADOLESCENT BRAIN: ANIMAL
FINDINGS

While an examination of the sequelae of substance use in adults is outside the scope of this
review, the burgeoning literature concerning the neurobiology of substance use in adolescent
animals is instructive. Alcohol, nicotine, and cocaine all appear to affect the adolescent brain
in a distinct manner relative to their effect in adults (#6 in Figure 1). Less substantial literature
supports a similar developmentally specific effect of cannabinoids,286–288 morphine,289 and
MDMA.290 Many of these unique effects predispose adolescents to greater substance use than
adults, and a subset persist into adulthood, implying permanent alterations in structure and/or
function.

Alcohol
After alcohol administration, adolescent rats experience less disruption of motor
function291,292 and less sedation293 than adults. Adolescent rats also experience attenuated
acute alcohol withdrawal symptoms, including reductions in anxiety,294,295 hyperthermia,
296 and social isolation.294 These manifestations may be a result of less GABA-mediated
inhibition in response to alcohol.297,298 Linking human and animal findings, Schuckit and
colleagues299 found that a lower self-reported response to alcohol in younger adolescents
related to six-month drinking frequency and number of experienced alcohol problems.
Compared to adult rats, adolescent rats display higher seizure thresholds and hypoactivity
during withdrawal300–302 and appear to develop tolerance to alcohol more quickly.21 In
addition, rats administered high doses of alcohol both during adolescence and adulthood
demonstrate more severe impairments in working memory303 and greater self-administration
following uncontrollable stress304 during adulthood than rats given heavy doses only in
adulthood.

The effects of alcohol on the hippocampus305–311 in rats and humans, and on the
cingulate312,313 in rats, are greater in adolescents than adults. These effects may be mediated
by the NMDA receptor. Pyapali et al.307 found that NMDA-mediated long-term potentiation,
which is associated with synapse formation,314 is more strongly inhibited in adolescent rats
dosed with alcohol. Such functional suppression may result in impaired cortical restructuring.
315–317 Furthermore, adolescent rats administered alcohol in a binge fashion evidenced
alterations in 5-HT binding not found in rats that only binge as adults.318 Adolescent mice
that are chronically administered alcohol have greater in vitro increases in VTA DA neuron
firing in response to alcohol dosing and attenuated blunting of VTA DA firing following GABA
administration.319

Nicotine
Young adolescent rats exposed to nicotine are more likely to self-administer as adults than
nicotine-näive adult rats and they exhibit CPP for nicotine320,321 and self-administer nicotine
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more readily322 than do older rats.19 In addition, late adolescent rats develop tolerance to the
inhibitory effects of low-dose nicotine on locomotion more strongly and more quickly than
adult rats.321 Slawecki, Ehlers, and collaborators323–325 found altered ERP and EEG outputs
following five days of nicotine dosing in adolescent rats; these persisted into adulthood. Most
strikingly, Trauth et al.326,327 found increased expression of a set of genes (activated
following cellular damage) in brain areas following nicotine administration in adolescent rats;
the increased gene expression was most notable in the hippocampus.327 Nicotine dosing in
adolescents produces immediate alterations in nicotinic, DA, and 5-HT transporter densities
unlike those seen in adult rats.328 Finally, alterations from nicotine administration in
adolescent rats that persist into adulthood have been seen in nicotinic,19,329 DA,330,331 and
5-HT systems.332,333

Cocaine and Other Stimulants
Many,334–336 but not all,337 studies have found that adolescent rats exhibit locomotor
sensitization in response to cocaine dosing. Ehrlich and collaborators338 found that
adolescents demonstrated greater increases in NAc levels of ΔFosB expression (implicated in
neural plasticity) than adults following chronic cocaine dosing. Furthermore, Kosofsky and
colleagues339 found that unique groups of genes were activated in the striatum following
cocaine administration at different developmental periods. The genes involved have been
implicated in regulation of the cell cycle and cell death,340,341 neural plasticity,342,343 and
addiction.344,345

Research on other psychostimulants found that young adolescent rats did not develop
sensitization to methylphenidate, unlike adults.336 Dosing with d-amphetamine did not
produce CPP in adolescent mice, unlike adult mice,346 but adolescent dosing does increase
sensitization in adulthood.347 Bolanos et al.348 administered methylphenidate to young
adolescent rats and found disruptions in preference for reinforcers and in stress sensitivity in
adulthood. Adriani and Laviola346 found that adolescent mice responded more often during
the non-reinforced portion of a reinforcement schedule than did adults following d-
amphetamine administration. Adolescent rats given methylphenidate did not differentiate well
between a novel and familiar object,349 and late adolescent rats displayed learning deficits
following methamphetamine administration.350 Finally, chronic administration of d-
amphetamine in adolescent rats increased ΔFosB expression in the NAc and striatum, a result
not seen in adult or pre-adolescent rats.338

Thus, the literature on the neurobiology of substance abuse in adolescent animals indicates that
adolescents differ from adults in response to nearly all drugs of abuse; perhaps more
importantly, adult animals evidence alterations in function following the administration of
alcohol, nicotine, or stimulants during adolescence (all #6 in Figure 1). Furthermore, there is
evidence that the use of nicotine351–353 or methylphenidate20 in adolescent animals alters
adult responses to cocaine and other psychostimulants. Taken together, especially in light of
the evidence for greater neural plasticity of adolescents (#1 in Figure 1), these results raise
questions about the ability of psychoactive substances to alter development and increase
substance use.

SUMMARY
Adolescence is a time of several transitions, particularly involving maturational changes in the
CNS; foremost among these are synaptic pruning, myelination, and neurotransmitter system
modifications. Overall, the CNS structural and functional evidence indicates that adolescents
have greater neurobiologically based tendencies for risk-taking with attenuated suppressive
and regulatory controls on behavior (as depicted in #1 in Figure 1). Adolescent transitions often
feature strong affect and stress, and adolescents may be more adversely affected than adults
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by stressful and/or affect-laden situations due to functional neurobiological immaturity.
Decreases in parental monitoring during adolescence (#2 in the figure) can allow for
experimentation with substances and affiliative relationships between disinhibited peers. These
friendships appear to create an amplifying feedback cycle that increases both SUD risk and
disinhibition levels (#3). Disinhibiton and other less robust risk factors (e.g., EF liabilities and
difficult temperament) are likely to be the expression of both normative (#1) and non-normative
neurobiological changes in those at high-risk for SUD (#5).

The abnormal neurobiological markers of those at risk for SUD development seem to
correspond most clearly to disinhibition and/or negative affect. While the evidence for an
unmediated pathway from these traits to SUD is limited, these neurobiological markers can
serve as useful endophenotypes associated with SUD. Once adolescents begin substance use
(#5 and #6 in the figure), the evidence indicates that they are more vulnerable to the effects of
many substances of abuse. Most likely, this vulnerability is mediated by the heightened
neuroplasticity of adolescents and the effects of stress. Substance-induced neurobiological
alterations likely strengthen drug-use behaviors. Neuroplasticity-mediated increases in drug
use accelerate neurobehavioral dysfunction, which accelerates substance use, eventually
resulting in SUD and continued maladaptive neurobiological alteration.

FUTURE DIRECTIONS
While there are concerns about the methods used to estimate the heritability of various types
of SUD,354 these do not obscure the fact that genetic factors play a prominent role in their
development.355,356 Stallings et al.357 found six genomic markers with high correspondence
to SUD, which can be linked to various proteins and (eventually) functions for these products.
Other research has highlighted DA261,358 and 5-HT268 gene-related polymorphisms linked
to externalizing behavior and SUD; it seems that the identification of specific genes or
polymorphisms could be useful to narrow the potential neurobiological targets for intervention.

Further investigation of the contributions of 5-HT, the HPA axis, and the frontal-striatal-
thalamic neural circuit is also needed. While the results on 5-HT have been somewhat
problematic, it appears to be one of the primary suppressive neurotransmitters. Given its role
in behavioral inhibition and other psychiatric disorders (e.g., depressive disorders), there is
evidence that it plays a role in drug use. Further investigation into the developmental course
and effects of 5-HT (along with the glutaminergic, GABAergic, and cannabinoid) systems are
required as well. Such research could result in targets for pharmacological intervention in a
fashion similar to 5-HT in depressive disorders. Research into the interaction of the HPA axis
and psychopathology is also very promising, not least because of the ability of researchers to
quantify HPA reactivity in stress paradigms. There is some thought that medications with
regulatory effects on HPA function (e.g., mifepristone) may help stress-sensitive adults with
SUD; if true, attempts should be made to extend the concept to adolescents. Finally,
neuroimaging findings that implicate frontal-striatal-thalamic dysfunction are useful in linking
neurobehavioral findings to specific brain areas. Further clarification is needed on the
contribution of the hippocampus, striatum and limbic structures to SUD.

In addition to 5-HT and the HPA axis, other pharmacological targets could include the
glutaminergic (especially NMDA-related aspects), GABAergic or cannabinoid system.
Neuromodulators such as enkephalin or dynorphin could also serve as targets, pending
clarification of their roles in addiction. Despite a lack of efficacy for DA agents in adults,71
the significant developmental differences between adolescents and adults may indicate that
DA agents could have differential efficacy in adolescents. In addition to pharmacological
intervention, behavioral interventions need to be further studied and utilized. While there are
many SUD-specific interventions, interventions targeting disinhibition may be most effective
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in combating both SUD and risky behavior. Such an intervention could improve the
neurobehavioral skills of individuals at high-risk for substance use. There is some evidence
that interventions can reduce disinhibited behavior,359,360 which calls for further
investigation of programs aimed at risky behavior across domains.234

The concept of intervening on disinhibition is based on indications that there are few, if any,
necessary or sufficient risk factors for the development of SUD. It appears that both
multifinality and equifinality are at work in the development of SUD, clouding the causal
picture: many different, separate paths seem to lead to SUD (equifinality) and the traits or paths
involved lead to other disinhibited outcomes (multifinality) as well. It is essential that
investigators continue to seek risk factors with greater specificity for the development of SUD.
While current risk markers (e.g., P300, 5-HT, HPA dysfunction) are useful as warning signs
of disinhibitory liabilities, the specific factors that lead to SUD are unknown. While such
specific factors may not exist (or, more likely, may not be currently detectable), negative results
are useful to rule out potential risk factors for the development of SUD.

The clearest area of investigative need is translational research, which bridges the findings
concerning normal development, animal models of SUD, and disinhibition. While each area
of research is compelling, the capability of investigators to link findings together remains
problematic. Without translational research, the development of pharmacological and
psychosocial interventions will be haphazard. The benefits of integrative research are
compelling: targeted combinations of medication and psychosocial interventions that
maximize the benefits to individual patients based on unique traits and risk patterns.
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FIGURE 1.
Etiology of SUD Development in Adolescents
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