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ABSTRACT

Phylogenetic tree reconstruction requires construc-
tion of a multiple sequence alignment (MSA) from
sequences. Computationally, it is difficult to achieve
an optimal MSA for many sequences. Moreover,
even if an optimal MSA is obtained, it may not be the
true MSA that reflects the evolutionary history of the
underlying sequences. Therefore, errors can be
introduced during MSA construction which in turn
affects the subsequent phylogenetic tree construc-
tion. In order to circumvent this issue, we extend the
application of the k-tuple distance to phylogenetic
tree reconstruction. The k-tuple distance between
two sequences is the sum of the differences in
frequency, over all possible tuples of length k,
between the sequences and can be estimated
without MSAs. It has been traditionally used to
build a fast ‘guide tree’ to assist the construction of
MSAs. Using the 1470 simulated sets of sequences
generated under different evolutionary scenarios,
the neighbor-joining trees and BioNJ trees, we
compared the performance of the k-tuple distance
with four commonly used distance estimators
including Jukes–Cantor, Kimura, F84 and Tamura–
Nei. These four distance estimators fall into the
category of model-based distance estimators, as
each of them takes account of a specific substitu-
tion model in order to compute the distance
between a pair of already aligned sequences.
Results show that trees constructed from the
k-tuple distance are more accurate than those
from other distances most time; when the diver-
gence between underlying sequences is high,
the tree accuracy could be twice or higher using
the k-tuple distance than other estimators.

Furthermore, as the k-tuple distance voids the
need for constructing an MSA, it can save tremen-
dous amount of time for phylogenetic tree recon-
structions when the data include a large number of
sequences.

INTRODUCTION

A phylogenetic tree is a graphical representation of the
genetic closeness among different species or biological
entities. Despite other representation forms, such as
phylogenetic networks (1), trees are still the most popular
and standard representation of species’ evolutionary
relationships. Many different criteria can be used to
build a tree for a set of DNA sequences, such as maximum
parsimony, minimum evolution, neighbor-joining (NJ),
maximum likelihood and Bayesian inference. Among
these methods, NJ is the most frequently used due to its
high speed and comparable accuracy. Many modified
versions of NJ algorithms (2) have been introduced since
its introduction, such as bioNJ (3) and Weighbor (4).
The current paradigm in phylogenetic tree reconstruc-

tion is to start from a set of sequences, build multiple
sequence alignment (MSA), and then based on the MSA,
build a tree using one or several methods mentioned
earlier. Therefore, clearly, all methods of phylogenetic tree
reconstruction share the same starting point: computation
of an MSA from the given set of DNA sequences. MSA
refers to the arrangement of a set of sequences so that it
reflects the evolutionary history of these sequences.
Computationally, it is represented by a matrix, in which
a row of the matrix represents one of the sequences in the
set of sequences and a column represents specific positions
along all the sequences and reflects matches, mismatches
or gaps in all sequences. Therefore, once an MSA is
constructed, an evolutionary hypothesis is automatically
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generated and represented by the alignment. The quality
of an MSA thus directly affects the accuracy of subsequent
phylogenetic inference, and erroneous MSA can lead
to low-quality phylogenetic trees that give misleading
information and false inference of evolutionary histories.
Therefore MSA has been an extremely active research
topic. More than 50 multiple sequence alignment methods
and/or packages have been described over the past 10
years (5) and there were at least 20 new publications in
2005 alone (6). Among many MSA programs, ClustalW
(7) is one of the most popular and standard programs.
It made its way to daily usage by its friendly interface,
stability and accuracy. However, as a result of its high
consumption of time, it becomes impractical to use when
the number of sequences that need to be aligned becomes
large and/or the lengths of sequences reach a certain level.
Subsequently, other programs have been introduced such
as T-Coffee (8), MAFFT (9) and MUSCLE (10).
Comparatively, the relatively new MUSCLE has the
highest accuracy among existing programs and the short-
est running time, according to the original paper (10).
However, despite the essential role of MSA in the entire

process of phylogenetic tree reconstruction and multiple
efforts to improve MSA methods, there remain several
issues. First, finding the optimal MSA under a set of
scoring schemes for a large number of sequences is
computationally impossible. Most algorithms currently
available are heuristic, which leads to an approximate
solution. Even with heuristic methods, aligning a large
number of sequences can be time consuming. Second, the
quality of an MSA is extremely sensitive to the choices of
the scoring parameters used in producing the alignment,
such as penalty scores of gap opening and gap extension.
Different scoring schemes can produce drastically different
MSAs, which in turn can lead to different phylogenetic
trees. Unfortunately, in most cases, the true MSA that
reflects the evolutionary history of the underlying set of
sequences is unknown. Thus the users have to either
choose to trust the default scoring schemes or use their
own judgment in choosing a scoring scheme. Third, the
quality of an MSA is sensitive to sequence length
difference and the degree of sequence identity. A set of
sequences with dramatically different lengths can
adversely influence the quality of an MSA. Similarly, if
the sequences in the set are highly diverged from one
another, the quality of an MSA is most likely low.
Because the construction of an MSA can introduce

errors and adversely influence the accuracy of subsequent
phylogenetic inference and because it is time consuming to
construct an MSA for a large number of sequences, we
formally introduce the application of the k-tuple distance
(aka k-mer distance) in the phylogenetic tree reconstruc-
tion. The k-tuple distance refers to the total of the
differences, over all possible k-tuples, between the
sequences, for any given length k. The idea of using
the k-tuple distance to construct a tree is not new and the
procedure is in fact embedded in many MSA programs
such as ClustalW (7), Kalign (11) and MUSCLE (10).
To construct an MSA, these programs first compute a
pairwise k-tuple distance matrix for the sequences to be
aligned, use UPGMA or NJ methods to quickly build

a ‘guide tree’, and use the guide tree to determine the order
in which sequences or profiles are aligned. However,
despite the common use of k-tuple distance in generating
‘guide trees’, guide trees are rarely used by evolutionary
biologists as the final phylogenetic trees, and instead,
packages dedicated to tree building such as PHYLIP (12)
and PAUP (13) will be used to produce the final trees. To
our knowledge, the value of the k-tuple distance in
constructing a ‘real’ phylogenetic tree (instead of a
‘guide tree’ for sequence alignment) has not been formally
discussed before, nor has the accuracy of the resulting
phylogenetic tree. As the k-tuple distance can be
calculated without sequence alignment and its computa-
tion for even a large number of sequences takes only
seconds, k-tuple distance can be extremely useful when we
are faced with the overwhelming number of sequences that
require phylogenetic information and may essentially be
the only option in cases where there are sequences that are
too diverged to be reasonably aligned in the post-genomic
era. But an important prerequisite for the broad applica-
tion of k-tuple distance in phylogenetic tree reconstruction
is that the trees built from the k-tuple distance have
comparable accuracy to the trees built from traditional
alignment-based methods.

In order to address the issue, we compared the k-tuple
distance performance and accuracy in producing the
correct NJ and BioNJ trees with four other commonly
used distance estimators. The four distance estimators are
model-based, in other words, they are computed based on
certain substitution models for DNA sequence evolution.
Our results show that when k equals five, the k-tuple
distance outperformed other distance estimators most of
the time and it could be twice, or more, the accuracy of
other distance estimators. Moreover, compared to the
existing alignment-dependent distance estimators, the
k-tuple distance is fast and easy to compute and can
save the tremendous amount of running time that is
required for constructing MSAs. Taken together, our
results show that the application of k-tuple distance in
phylogenetic tree reconstruction is very promising.

MATERIALS AND METHODS

Simulation of five sequence datasets

We used DAWG (14) to simulate sequences. DAWG is a
program that simulates the evolution of sequences based
on a given phylogenetic tree, incorporating both nucleo-
tide substitutions and insertions and deletions. It can
simulate nucleotide substitutions with different substitu-
tion models and indel formation with a power law
distribution of indel sizes. Therefore, it seems a rather
good approximation of real sequence evolution. We
simulated five different datasets of sequences using the
HKY substitution model (15), as summarized in Table 1,
in order to accommodate the different situations that we
might encounter in real-world phylogenetic tree recon-
struction. The first dataset is generated to consider the
situation of alignment of regulatory regions or short
intronic sequences and reconstruction of phylogenetic
trees based on the alignment. Compared with coding
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sequences, regulatory regions and introns have much
higher mutation rates and thus tend to be more diverse in
both sequence composition and sequence length for a
given set of genes. Therefore, aligning these sequences can
be problematic, and the quality of the MSA is question-
able and can be very low. In order to address this issue, we
generated sequences with lengths ranging from 30 to
200 bp and insertion and deletion rates of 0.1, respectively.
We generated random trees and used them as model trees
to generate sequences. For these sets of sequences, we
tested the performance of the k-tuple distance in dealing
with short and divergent sequences. The second and third
datasets consisted of sequences of different lengths (500–
1500 bp), which accommodate the common situation of
phylogenetic tree reconstruction. The only difference
between these two sets was the source of model trees for
simulations. Dataset 2 used real trees downloaded from
the TreeFam database (16) as model trees while dataset 3
used randomly generated trees for sequence simulation.
For dataset 2, we randomly selected 210 real trees from
the TreeFam website. We chose 200 trees with the number
of sequences within the interval of 50–250 and 10 trees
with the number of sequences larger than 250. For
example, trees 1–10 have 50–60 sequences, trees 11–20
have 61–70 sequences, trees 21–30 have 71–80 sequences
and so on. For dataset 3, we generated random trees using
the bioperl module RandomFactory. The difference
between real trees and random trees lies in the branch
lengths, which will in turn affect multiple sequence
alignment. Datasets 4 and 5 consisted of simulated
sequences with the same length, thus accommodating the
situation of highly similar sequences in the real world. It is
an ideal situation, but we used it as a boundary situation.
Dataset 4 used real trees as model trees, and dataset 5 used
random trees as model trees.

Computation of five distance matrices

The k-tuple distance is calculated as the difference in the
frequencies of all possible tuples of length k. We calculate
the k-tuple distance by moving a sliding window of length
k over the sequence with 1 bp overlapping step size and
counting the number of occurrences of tuples of length k.
For example, when tuple size k is 3, we need to count the
number of occurrences of 64 possible tuples in a DNA
sequence. Therefore, each sequence can be represented by
a vector containing 4k (k is the tuple size, k� 1) numbers,
each of which represents the frequency of the correspond-
ing tuple in the sequence. For any two sequences X and Y,

the k-tuple distance is calculated using the formula:
SðX,YÞ ¼

P4k
i¼1 Xi � Yij j2, where Xi and Yi correspond to

the tuple i’s frequencies (=counts/n�k+1) in sequences
X and Y, respectively; n is the sequence length of either
sequence X or Y; k is the tuple length. Therefore, the
k-tuple distance takes into account the sequence length
difference. We compared tuples of different sizes and
found that tuple size 5 combines both performance speed
and accuracy; tuples of shorter lengths contain less
information and include more randomness; tuples of
longer lengths contain more information and less random-
ness, but the vector size expands exponentially and gets
too large and computationally inefficient. We observed
combined optimum when the length is 5. There was a
slight performance drop when the length was raised to 6
(data not shown here) [though we suggest no particular
interpretation in terms of biological process or structure of
5-tuples versus other k-tuples, it would seem that 5-tuples
constitute more precise genomic signatures than dinucleo-
tides as studied, e.g. in (17,18)].
Because the k-tuple distance plays the same role as other

distance estimators in phylogenetic tree reconstruction,
the procedure of producing trees using the k-tuple distance
is the same as for other distance estimators, that is, first
build a pairwise k-tuple distance matrix for a set of
sequences, and then construct a phylogenetic tree based on
the distance matrix using a distance-base tree-building
method. As we chose tuple length 5, we obtained a vector
of 1024 numbers representing the frequencies of all 1024
possible tuples for a specific sequence. We constructed the
k-tuple distance by adopting Euclidean distance to
measure distances between two sequences. As the dis-
tances in the matrix are computed on percentages and thus
small, we amplified it by 1000, which has no effect on
subsequent analyses.
We compared the performance of the k-tuple distance

with four other distance estimators including F84 (19),
Jukes–Cantor (20), Kimura (21) and Tamura–Nei (22).
We used MUSCLE to compute MSAs for all the
simulated sets of sequences. We calculated the F84,
Jukes–Cantor and Kimura distance matrices through the
dnadist program in PHYLIP (12) and the Tamura–Nei
distance matrix through PAUP (13).

Performance comparison of five distance estimators
using symmetric distance

Since the focus of our study is to compare the
performance of the k-tuple distance with existing distance

Table 1. Summary of the 1470 simulated sets of sequences

Datasets No. of Trees Types Indel rate No. of Taxa Length (bps)

1 210 Random 0.2 50–260 30–200
2 210 Real 0.1 50–250 and 10 trees with taxa >250 50–1500
3 210 Random 0.1 50–260 500–1500
4 210 Real 0 50–250 and 10 tree with taxa >250 500–1500
5 210 Random 0 50–260 500–1500
6 210 Real 1 50–250 and 10 trees with taxa >250 500–1500
7 210 Real 10 50–250 and 10 trees with taxa >250 500–1500

The length of a simulated sequence is a random number within the range specified below.
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estimators in phylogenetic tree reconstruction, we used
only two very popular methods to perform tree recon-
struction, the standard NJ program in PHYLIP (12) and
BioNJ (3). BioNJ has been shown to be the best NJ
method (23). In total, we have 10 different combinations
of tree reconstruction algorithms and distance metrics.
We measured the accuracy of underlying distance

estimators by comparing each NJ tree with the original
model tree used by DAWG to generate sequences. Strictly
speaking, the accuracy for the four distance estimators
also includes the accuracy of the MSA. We used the
symmetric difference (SD) (24) for this purpose. SD is
bounded from zero to 2(t� 3), meaning identical to totally
different respectively, where t is the number of taxa in the
trees. It is a commonly used and standardized measure-
ment of ‘topological closeness’ between different trees.
Mathematically speaking, the symmetric difference of two
sets was the number of the sets of elements that are in one
but not the other set. For example, when comparing two
trees built from 10 taxa, a score between 0 and 14 will be
returned, with 0 meaning identical or isomorphic and 14
meaning completely different. The result was transformed
into accuracy in percentage by the following formula.

�i ¼ 1�
Si

Smax
1

Where Si is the SD score of a particular entry and Smax is
the largest score possible for that particular comparison.
All trees are taken as unrooted trees in our study.

RESULTS

We simulated 1050 sets of sequences with the number of
sequences ranging from 50 to 250 or more and with
different settings for indel rates and sequence lengths
(Table 1). We constructed both NJ and BioNJ trees for
each set of sequences and found that they gave qualita-
tively the same results in terms of the comparison between
the k-tuple distance and the other four distance estima-
tors. For brevity, we show only the results of NJ. The
results of BioNJ are summarized in Table 2.
Alignments for short sequences such as upstream

regulatory regions can be extremely difficult due to the

lack of knowledge on their mutation patterns. Low
alignment quality can lead to erroneous inference of
phylogenetic trees for these regions. Because using the
k-tuple distance matrix to build phylogenetic trees
bypasses the construction of an MSA, the k-tuple distance
has great potential in addressing the need of tree
construction for these regions. To evaluate the k-tuple
distance performance in short sequences, we simulated 210
sets of sequences with the number of taxa in the sets
ranging from 50 to 260 and sequence lengths from 30 to
120 bp. Figure 1 shows the result of the accuracy of trees
reconstructed by the NJ method for the five distance
estimators on dataset 1. It shows that the k-tuple distance
outperformed other distance estimators by a considerable
amount. The Tamura–Nei distance performed second
with an average accuracy of 0.11246, less than half of that
of the k-tuple distance 0.26110. The other three performed
similarly, with average accuracy of 0.00126 for F84,
0.00043 for Jukes–Cantor and 0.00103 for Kimura.

To see the performance of the k-tuple distance on real
data, we obtained trees from the TreeFAM database.
We used 210 trees together with their branch lengths as

Table 2. The average accuracy (A) and standard deviation (S) of all possible combination between tree building methods and distance estimators

Name Type NJ BioNJ

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

k-tuple distance A 0.26110 0.51568 0.30889 0.52836 0.33298 0.40770 0.16618 0.26090 0.51966 0.30846 0.53144 0.33285
S 0.04463 0.09604 0.04278 0.10363 0.04744 0.09988 0.07410 0.04407 0.09773 0.04266 0.10316 0.04766

Tamura-Nei A 0.11246 0.35853 0.16092 0.58316 0.25570 0.14186 0.04860 0.10977 0.38250 0.16134 0.60882 0.25466
S 0.03687 0.19900 0.03402 0.20987 0.04321 0.08386 0.02595 0.03662 0.19207 0.03489 0.19781 0.04212

F84 A 0.00126 0.42550 0.04410 0.50200 0.07833 0.15035 0.02973 0.00144 0.43291 0.04274 0.51339 0.07830
S 0.00471 0.18174 0.08308 0.17209 0.12747 0.14348 0.04503 0.00496 0.18516 0.08145 0.17759 0.12823

Jukes-Cantor A 0.00043 0.43574 0.03222 0.64871 0.06525 0.14376 0.02238 0.00092 0.43934 0.03231 0.65129 0.06470
S 0.00189 0.20702 0.07173 0.18384 0.12097 0.15540 0.04173 0.00380 0.21054 0.07228 0.18542 0.11992

Kimura A 0.00103 0.42759 0.04484 0.50406 0.08002 0.15236 0.03014 0.00144 0.43457 0.04414 0.51556 0.07978
S 0.00448 0.18031 0.08374 0.17061 0.12899 0.14257 0.04510 0.00486 0.18345 0.08259 0.17731 0.12914

Figure 1. The accuracy of all five metrics on dataset 1 with the NJ
method.
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model trees to simulate dataset 2. Figure 2 shows the
accuracies of all five distance estimators with the NJ
method on dataset 2. Although the advantage of the
k-tuple distance matrix is not as obvious as in dataset 1,
we can see that k-tuple distance accuracy is above the
other distance matrices most of the time. In fact, the
k-tuple distance has the best performance for 127 of the
210 trees. Another very important advantage that is not
very clearly shown in the figure is the stability of the
k-tuple distance. It has a leading average accuracy of
0.51568 with the lowest standard deviation of 0.09604.
Jukes–Cantor ranked second in terms of average accuracy
(=0.43574) but has the highest standard deviation
(=0.20702) among the five estimators. Kimura and F84
scored almost the same with an average accuracy of
0.42759 and 0.42550, respectively, and a standard devia-
tion of 0.01831 and 0.18175, respectively. Tamura–Nei has
the lowest average accuracy (0.35853) with a standard
deviation of 0.19900. It is clear that, in additional to its
high accuracy, the k-tuple distance also produced a much
smaller standard deviation, which is an equally important
factor in judging the performance of a metric. BioNJ trees
gave a slightly better accuracy for all five estimators but
the difference was very subtle (Table 2).

Figure 3 shows the performance comparison of five
estimators on dataset 3 generated by random trees with
sequence lengths from 500 to 1500 bp. It is interesting to
note that as the number of taxa increases in the trees (the
trees are arranged along the x-axis according to the
ascending order of the number of taxa that trees contain),
the accuracy of F84, Kimura and Juke–Cantor signifi-
cantly dropped. Tamura–Nei and k-tuple distance main-
tained their accuracy regardless of the change of the
number of taxa. As shown in Figure 3, after the 100th tree
sample, which contained 150 taxa, F84, Jukes–Cantor and
Kimura basically had the same performance as random
clustering. The k-tuple distance achieved the highest
average accuracy of 0.30889 with a standard deviation
of 0.04278. Tamura–Nei had the second highest average

accuracy of 0.16092 with a standard deviation of 0.03402.
Kimura and F84 matrices performed similarly, with an
average accuracy of 0.04410 and 0.04484, respectively, and
a standard deviation of 0.08308 and 0.08374, respectively.
Jukes–Cantor matrix ranked last with the lowest average
accuracy of 0.03222 and a standard deviation of 0.07173.
Figure 4 shows the comparison of accuracies of the

metrics with the NJ method for dataset 4. Compared to
results from other datasets, the accuracy difference
decreased considerably, with the highest average accuracy
of 0.64871 for Jukes–Cantor and the lowest 0.50200 for
the F84 matrix. Tamura–Nei, k-tuple distance and
Kimura ranked second, third and fourth with an average
accuracy of 0.58316, 0.52836 and 0.50406, respectively.
Despite the loss of advantage in accuracy, the k-tuple
distance still maintained its leading position in terms of
performance stability with the lowest standard deviation

Figure 2. The accuracy of all five metrics on dataset 2 with the NJ
method.

Figure 3. The accuracies of the five metrics on dataset 3 with the NJ
method.

Figure 4. The accuracies of the five metrics on dataset 4 with the NJ
method.
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of 0.10363. The standard deviation for the Tamura–Nei,
F84, Jukes–Cantor and Kimura matrices were 0.20987,
0.17209, 0.18384 and 0.17061, respectively. With BioNJ,
we observed a better accuracy score for all five metrics,
but the difference is trivial, <4% (Table 2).
Figure 5 compares the accuracy of different distance

matrices with the NJ method for dataset 5. With the
increase of the number of taxa in the trees, the accuracy of
F84, Jukes–Cantor and Kimura decreased greatly, similar
to the observation in dataset 1 where sequences were
simulated with indels using random trees. The k-tuple
distance has the best performance followed by Tamura–
Nei. In this dataset, BioNJ performed at almost the same
level as traditional NJ (Table 2).
Table 2 shows a summary of the average accuracy (A)

and standard deviation (S) of the 50 combinations of the
five distance estimators, five datasets and two tree-
building methods. k-tuple distance outperformed other
distance metrics in most cases. Its performance is very
stable, as indicated by the low standard deviation. Only
Tamura–Nei achieved a slightly lower standard deviation
with the NJ method on dataset 5, which might be because
the HKY model used to simulate sequence evolution is a
special case of the Tamura–Nei model.
In order to examine the reason for the difference in

accuracies of the k-tuple distance in the above datasets, we
calculated the average pairwise sequence identity for each
simulated sample. The distribution in each dataset is
shown in Figure 6. The average pairwise sequence identity
ranges from 8.53 to 79.43 in dataset 1, from 27.52 to 73.14
in dataset 2, from 26.07 to 31.15 in dataset 3, from 27.44
to 79.43 in dataset 4 and from 26.35 to 32.77 in dataset 5.
Therefore, in general, the 210 sets of sequences in datasets
2 and 4 (generated from real trees) tend to have a higher
average pairwise sequence identity than that of those in
datasets 3 and 5 (generated from random trees).

DISCUSSION

In most cases, the performance of distance matrices is
largely related to the size of the tree (i.e. the number of
taxa in the tree), the length difference and the divergence
of the sequences. Most distance matrices would produce
good results with a small number of sequences of low
divergence. However, as the number of sequences
increases and sequence divergence increases, the accuracy
measured by the symmetric difference will drop greatly for
the alignment-dependent distance estimators.
The most significant difference between the accuracy of

the k-tuple distance and the other distance estimators was
found in dataset 1, which contains short sequences with
high diversity. This dataset was generated to take account
of upstream regulatory regions and short intronic
sequences. Our results show that with the increase of
sequence diversity and the number of taxa, the accuracy of
all other matrices except the k-tuple distance has dropped
tremendously (Figure 1). The decrease of accuracy is most
likely due to decreased quality of MSAs. A recent study
(5) on MSA algorithm performance has shown that all
MSA programs return alignments of low accuracy when

highly diverged sequences are used. This fact may explain
the existence of the performance gap between the k-tuple
distance, which does not rely on multiple sequence
alignment to determine sequence distance, and the other
distance estimators.

The most common scenario in phylogenetic tree
reconstruction is to construct a tree from a group of
sequences with different lengths from different species.
Datasets 2 and 3 were generated to take account of this
aspect. Difference in sequence lengths is introduced
through indel rate setting in the sequence generation
program and branch length in the model trees. The
difference between real trees and randomly generated trees
lies mostly on the branch lengths (i.e. the degree of
sequence divergence). Specifically, real trees in TreeFAM
are built mostly because sequence alignments are of high
quality, which essentially limits the real trees to datasets
containing only sequences that can be aligned by
alignment programs. Due to this limitation, some remote

Figure 6. The distribution of average pairwise sequence identity in all
the datasets.

Figure 5. The accuracies of the five metrics on dataset 5 with the NJ
method.
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gene family members might have been discarded from
final alignments and therefore not considered in the trees.
Random trees with long branch lengths can be used to
compensate for this limitation.

When a set of sequences is highly diverged, the accuracy
of the constructed phylogenetic trees is in general low
regardless of the type of distance estimators used. Even
though the k-tuple distance has the best performance in
these cases, it is only about 30–40% accurate on average
(e.g. Figures 1 and 3). F84, Jukes–Cantor and Kimura
distances basically show performance similar to random
clustering, especially when simulated samples contain
>180 sequences (after sample #130 in Figures 1 and 3).
The low performance of these distance estimators could be
partially explained by the low accuracy of the MSAs.
However, the fact that Tamura–Nei distances show a
stronger accuracy and stability under such circumstances
indicates that the simpler distance estimators, as com-
pared to Tamura–Nei, is not a good fit to the underlying
sequences, which were generated under the HKY model,
a special case of the Tamura–Nei model (25). The
observation is consistent with previous studies showing
that choosing the right nucleotide substitution models are
essential for correct phylogenetic analyses (26,27). In fact,
when using the distance-based phylogenetic tree recon-
struction, it has been suggested that statistical tests should
be performed in order to choose the right substitution
model for the underlying sequence alignments to calculate
the distance matrix (28).

We also considered the evolution of DNA sequences
without indels. As both insertion and deletion occur in
DNA sequences, DNA sequences generated without indels
are likely unrealistic, and this scenario may happen only to
sequences that diverged from each other recently or to
sequences that are under intensive purifying selection
against indels. Due to the absence of indels in the
sequences, under a suitable scoring scheme, an MSA can
be constructed with few errors and little deviation from
the true evolution of the sequences. An accurate MSA
gives the most advantage to the alignment-dependent
distance estimators. Therefore, this scenario can provide
us the lower bound of the advantage of the k-tuple
distance over other distance estimators. Our result shows
that with similar sequences, the difference between
different methods diminishes and the difference of the
stability for the underlying metrics also decreases,
although the k-tuple distance still shows 50% more
stability than the others (Figure 4).

Clearly, alignment-based distances will have advantage
over k-tuple distances in terms of tree accuracy in cases
where k-tuple distances cannot reflect the degree of
sequence divergence faithfully while alignment methods
can. One of the extreme cases is when a set of sequences
are almost identical, in which case, the k-tuple distance
may have lower resolution than the more refined model-
based distances, because, for example, it cannot differ-
entiate transitions from transversions. However, a large
number of highly identical sequences happens mostly in
the studies of population genetics, in the majority of other
cases, the large number of sequences that require
phylogenetic tree reconstruction might have a wide

range of sequence divergence, similar to what we observe
in the dataset 2. Another extreme case is when rates of
insertions and deletions are high and rates of point
mutations are low. Conceivably, k-tuple distance could
perform worse than alignment distance here. To formally
investigate this, we simulated two more datasets using real
trees and a different indel/substitution rate ratio scheme:
the first dataset has a ratio of indel rates versus
substitution rates of 1 and the second dataset has a ratio
of indel rates versus substitution rates of 10 (Table 1).
Previous studies show that the ratio of indel versus
substitution rates is about 0.1 (29,30), and therefore, both
the ratios of 1 and 10 are biologically unrealistic.
Nevertheless, it is useful to see in these extreme cases the
performance of the k-tuple distance as compared to that of
other model-based distances. Results show that high rate
ratios of indels versus substitutions harm the alignment-
based methods more than k-tuple distance. While the
average accuracy of the latter drops to from 0.53
(Figure 4) to 0.52 (Figure 2) to 0.41 and 0.17 (Figures 7
and 8) as the ratio increases from 0, 0.1, 1, to 10,
respectively, the alignment based methods uniformly
suffer a more catastrophic loss of performance. This
result is a clear manifestation of the greater disruption by
indels of alignment scores than of k-tuple distances.
To understand the impact of GC bias on the

performance of k-tuple distance, we used real trees from
TreeFam and indel/substitution rates of 0.1 and generated
150 sets of sequences that have different degrees of GC
bias: 50 sets of sequences with strong GC bias (i.e. average
GC content=70%), 50 sets with little GC bias (i.e.
average GC content=50%) and 50 sets of AT rich (i.e.
average GC content=30%). Comparison of k-tuple trees
with the model trees shows that the average accuracy of
k-tuple trees is 53.84% (standard deviation=0.11) in the
no-GC-bias sequence sets, 48.76% (standard devia-
tion=0.09) in the strong-GC-bias sets and 48.65%
(standard deviation=0.09) in the AT-rich sets. This
result suggests that base composition can affect the

Figure 7. Accuracy comparison for dataset 6 with indel versus
substitution rate ratio of 1.
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performance of k-tuple distance, although the impact
seems small.
As simulation cannot capture all the complexities of real

sequence evolution, it will be useful to perform some
analyses on real data. However, real sequences with ‘real’
trees are not usually available. But it is still useful to
examine how consistent k-tuple distance performs in
building phylogenetic trees with the alignment-based
distances and also how robust the k-tuple distance is as
compared to the bootstrapped alignment-based trees.
Bootstrapping is a common way to determine the quality
and confidence of a reconstructed phylogenetic tree. It is
usually done by re-sampling the sequences with replace-
ment, repeating the tree-reconstruction processes for a
certain number of times, and obtaining bootstrap values
as the percentage times that certain bifurcation is
supported by the reconstructed trees. Thus, bootstrapping
gives confidence estimate of certain groupings in a
phylogenetic tree. One would expect that highly supported
phylogenetic groupings (i.e. having high bootstrap values)
can be recovered by the trees produced by the k-tuple
distance. To address these issues, we manually picked 10
genes from the TreeFam database to study whether the
k-tuple distance can produce trees that agree with the
alignment-based methods and whether the k-tuple trees
can recover the highly supported phylogenetic groupings
in the bootstrapped trees. We visually inspected all the
k-tuple trees and alignment-based trees, and found that
about 76% of the bifurcations that have bootstrapping
values higher than 75% were recovered also by the k-tuple
trees, whereas only 25% of the bifurcations that have
bootstrap values lower than 30% were recovered. This
indicates that the k-tuple trees have little difficulty in
recovering the phylogenetic groupings that have high
bootstrap confidence in the alignment-based trees, but for
the phylogenetic groupings with low confidence in the
alignment-based trees, k-tuple methods may also produce
ambiguous grouping, similar to what happens to the
alignment-based methods.

Broadly, the k-tuple distance falls into the category of
alignment-free sequence comparison metrics. Except the
k-tuple distance used in this study, there are other more
elaborated ones that are also based on tuple frequencies,
such as the Mahalanobis distance and Weighted Enclidean
distance (31). Some of these alignment-free distance
measurements have been previously explored in the
application of searching DNA and protein databases.
Though there is no evidence yet that any of these are
preferable to simple k-tuple distance, this is a likely
question for further research.

Compared to the most popular ClustalW program,
MUSCLE gives accurate alignments faster. ClustalW
becomes impractical when the lengths and number of
sequences increase to certain extent. However, even
though MUSCLE is faster than ClustalW, it on average
still takes 30–40min to align 250 sequences of around
1300 bp. In contrast, it takes only seconds to calculate
the k-tuple distance matrix. Therefore, the advantage of
the k-tuple distance over existing distance estimators in
distance-based phylogenetic tree reconstruction is not only
its accuracy, but also its computational speed: it is at least
hundreds of times, if not thousands, faster than any other
distance estimators that require an MSA to calculate
distances between sequences. It can be very useful in
constructing phylogenetic trees for a large number of
sequences, for example, in the case of building the ‘tree of
life’ (32,33).
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