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Purpose: Mutations in the SOX2 and CHX10 genes have been reported in patients with anophthalmia and/or
microphthalmia. In this study, we evaluated 34 anophthalmic/microphthalmic patient DNA samples (two sets of siblings
included) for mutations and sequence variants in SOX2 and CHX10.
Methods: Conformational sensitive gel electrophoresis (CSGE) was used for the initial SOX2 and CHX10 screening of
34 affected individuals (two sets of siblings), five unaffected family members, and 80 healthy controls. Patient samples
containing heteroduplexes were selected for sequence analysis. Base pair changes in SOX2 and CHX10 were confirmed
by sequencing bidirectionally in patient samples.
Results: Two novel heterozygous mutations and two sequence variants (one known) in SOX2 were identified in this
cohort. Mutation c.310 G>T (p. Glu104X), found in one patient, was in the region encoding the high mobility group
(HMG) DNA-binding domain and resulted in a change from glutamic acid to a stop codon. The second mutation, noted
in two affected siblings, was a single nucleotide deletion c.549delC (p. Pro184ArgfsX19) in the region encoding the
activation domain, resulting in a frameshift and premature termination of the coding sequence. The shortened protein
products may result in the loss of function. In addition, a novel nucleotide substitution c.*557G>A was identified in the
3′-untranslated region in one patient. The relationship between the nucleotide change and the protein function is
indeterminate. A known single nucleotide polymorphism (c. *469 C>A, SNP rs11915160) was also detected in 2 of the
34 patients. Screening of CHX10 identified two synonymous sequence variants, c.471 C>T (p.Ser157Ser, rs35435463)
and c.579 G>A (p. Gln193Gln, novel SNP), and one non-synonymous sequence variant, c.871 G>A (p. Asp291Asn, novel
SNP). The non-synonymous polymorphism was also present in healthy controls, suggesting non-causality.
Conclusions: These results support the role of SOX2 in ocular development. Loss of SOX2 function results in severe eye
malformation. CHX10 was not implicated with microphthalmia/anophthalmia in our patient cohort.

Anophthalmia (an absence of eye structures) and/or
microphthalmia (an abnormally small eye) are rare disorders
with a prevalence of 0.2–0.4 per 10,000 births in developed
countries [1-3]. One or both eyes are affected in isolation or
as part of other birth defects [4-9]. The disease exhibits diverse
patterns of genetic inheritance, and the severity is variable due
to the genetic heterogeneity of the ocular malformation.

Mutations in several human genes are associated with
anophthalmia and microphthalmia. Among them, mutations
in SOX2 appear to account for most cases [4,10-14]. SOX2,
which is located at chromosome 3q26.3-q27, encodes 317
amino acids that belong to the high-mobility-group (HMG)
DNA-binding protein family. Expressed in embryonic stem
cells and a wide variety of tissues during early development,
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SOX2 plays an important role in cell differentiation and early
organogenesis [15,16]. In ocular tissues, the inhibition of
SOX2 expression in the developing Xenopus retina has been
shown to reduce cell proliferation and allows cells to develop
into non-neuronal cell types [17]. Working in concert with
PAX6, SOX2 regulates downstream target genes such as the
crystalline genes to guide early lens development [18].

Mutations in SOX2 account for approximately 10% of
anophthalmia and microphthalmia cases [4,10,19]. Previously
reported cases of anophthalmia and microphthalmia were
associated with SOX2 whole-gene deletions or coding
sequence mutations [4,10-13,19,20]. In this study, a cohort of
34 anophthalmia/microphthalmia patients was screened for
mutations in SOX2. Two novel heterozygous mutations and
two sequence variants (one novel, one known SNP) were
identified in 6 (two siblings) out of 34 patients. This confirms
the importance of SOX2 mutation screening in patients with
anophthalmia/microphthalmia. In screening unaffected
family members, we also found an individual with a
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pathogenic allele suggesting the novel finding that autosomal
dominant SOX2 mutations can be non-penetrant.

As part of our large scale screening campaign, mutation
analysis of CHX10 was also performed. The homeodomain
protein CHX10 has been shown to be essential for ocular
development [21], and autosomal recessive mutations of the
gene have been implicated in microphthalmia in both humans
and mice [22-24]. Screening of the same cohort of
anophthalmia/microphthalmia patients identified two
synonymous sequence variants in exon 3 and one non-
synonymous sequence variant in exon 5. This non-
synonymous polymorphism was also present in normal
controls. We did not find sequence variants in other exons of
CHX10, suggesting that CHX10 mutations are less frequent in
patients with anophthalmia.

METHODS
Subjects: To identify existing and potentially novel mutations
of SOX2 and CHX10 in a cohort of anophthalmia and
microphthalmia patients, we undertook a candidate gene
screening approach. We screened 34 affected individuals (two
sets of siblings), five unaffected family members, and 80
healthy controls. Patient demographics are summarized in
Appendix 1. The study was approved by the Institutional
Review Board for Human Subject Research at the Children’s
Hospital of Philadelphia and at the Albert Einstein Medical
Center. The study also conformed to the tenets of the
Declaration of Helsinki. Informed consent was obtained from
all subjects whose blood and DNA samples were used in the
analysis. Peripheral blood samples (10–20 ml) were collected,
and genomic DNA was extracted using the Puregene DNA
isolation kit (Gentra Systems, Minneapolis, MN).
Conformation-sensitive-gel-electrophoresis: Conformation-
sensitive-gel-electrophoresis (CSGE) was used for initial
SOX2 and CHX10 gene screenings. Standard polymerase
chain reaction (PCR) was performed on genomic DNA of
affected patients, unaffected relatives, and healthy controls to
amplify SOX2 and CHX10 exonic sequences (primer sets are
available upon request). An additional 120 base pairs of
intronic sequences at both the 5′-end and 3′-end were also
included. PCR amplification was performed in a reaction
volume of 25 μl containing 50 ng of genomic DNA, 200 μM
dNTP, 0.4 μM of each primer pair, 1.5 mM MgCl2, 1X PCR
buffer, 1X Q-solution, and 1.25 units of Taq polymerase
(Qiagen, Valencia, CA). A single annealing temperature of
55 °C was used for all primers. PCR products were separated
by electrophoresis in an 8% polyacrylamide gel for detection
of heteroduplexes and homoduplexes. Patient samples
containing heteroduplexes were selected for sequence
analysis. Base pair changes in SOX2 and CHX10 were
confirmed by sequencing bidirectionally in patient samples.

RESULTS
Of the 34 patients (32 independent probands) analyzed, three
(two siblings) showed novel mutations in coding sequence

and three had two sequence variants in the 3′-untranslated
region (UTR) of SOX2 (Figure 1 and Table 1). Mutation, c.
310 G>T (p. Glu104X), found in one patient, was in the region
encoding the HMG DNA-binding domain and resulted in a
change from glutamic acid to a stop codon. The second
mutation, noted in two affected siblings, was a single
nucleotide deletion c.549delC (p. Pro184ArgfsX19) in the
region encoding the activation domain, resulting in a
frameshift and premature termination of the coding sequence.
In addition, a novel nucleotide substitution, c.*557G>A, was
identified in the 3′-untranslated region in one patient, and a
known single nucleotide polymorphism (c. *469 C>A, SNP
rs11915160) was also detected in 2 out of 34 patients
(Appendix 1).

Patient 40A is an eight-year-old child with bilateral
anophthalmia. Clinical features included dilated ventricles
with ventriculo-peritoneal shunt placement for
hydrocephalus, microcephaly, atrophic optic nerves, chiasm,
posterior corpus callosum and splenium, and abnormal
electroencephalograms with no overt seizures. The patient has
short stature and delayed motor and mental development. He
has an unusual ataxic gait but is independently mobile with a
walker. He has begun to speak in three to four word sentences.

The amplified genomic fragments from the patient (40A)
showed faster and slower migrating products comparing to
that of the wild type observed in samples from the parents
(40B and 40C) and normal controls (C1 and C2) with CSGE
(Figure 2A). The heteroduplexes suggest a mutation in the
fragment. The genomic DNA from this patient was sequenced
bidirectionally. Two alleles were identified (Figure 2B), one
with a wild type allele and one with a nucleotide substitution
at c.310 G>T of the coding sequence, resulting in a nonsense
amino acid change (p. Glu104X). The predicted shorter
peptide is truncated at the end of the HMG domain, which
results in the deletion of the entire COOH-terminal activation

Figure 1. SOX2 gene structure and mutations in anophthalmia/
microphthalmia. The 5′- and 3′- untranslated regions are shown as
blank boxes, and the coding region is shown as a filled box. The start
(ATG) and the stop (TGA) codons are indicated. Mutations detected
in this study are indicated. The nuclear targeting sequence is
underlined. HMG=high mobility group, G=guanosine, T=thymidine,
C=cytidine, A=adenosine, Glu=glutamic acid, Pro=proline,
Arg=arginine, X=stop, FS=frameshift.
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domain (Figure 2C). The mutation, located in the HMG
domain, is not directly involved in DNA binding based on
NMR-spectroscopy structure from the Protein Data Bank
(PDB). Both parents were homozygous for the wild type
allele.

Patient 54A is a nine-year-old child with right
anophthalmia and left microphthalmia. Her clinical features
included a right middle fossa arachnoid cyst and partial
absence of the posterior aspect of the corpus callosum
including the splenium. She had mild hydrocephalus and
partial complex seizures. Other abnormalities were growth
and thyroid hormone deficiency, developmental delays, and a
wide-based ataxic gait. She also presented with facial

Figure 2. Mutation in the SOX2 HMG domain. Genomic DNA from
affected patients, unaffected relatives, and healthy controls are
amplified by PCR. PCR products are separated by electrophoresis in
an 8% polyacrylamide gel for detection of heteroduplexes and
homoduplexes. Genomic DNA samples are then sequenced for
detection of sequence variants. A: Heteroduplexes detected by CSGE
is shown. Lanes C1 and C2 represent the healthy controls; Lane 40A
represents the proband; Lane 40B represents the mother of the
proband; and Lane 40C is the father of the proband. Sample from
patient 40A shows heteroduplex comparing to homoduplex observed
in samples from the parents (40B and 40C) and normal controls (C1
and C2). B: Single nucleotide substitution at c.310 G>T of the coding
sequence is identified in patient 40A, but not in the parents (40B and
40C) and normal controls (C1 and C2). C: Mutation at c.310 G>T
results in a nonsense amino acid change at p. Glu104X as illustrated.
HMG=high mobility group.

asymmetry with a beaked nose, small widely-spaced teeth,
and diastasis recti. The parents were unaffected. CSGE
analysis showed three slower migrating product bands in
addition to the wild type, indicative of heterozygosity (Figure
3A). The affected sibling of the proband (54H), who was
diagnosed with bilateral anophthalmia by ultrasound in utero,
had two slower migrating bands and the wild type product. An
amniocentesis was performed, and a chromosome study was
that of a normal female with a 46XX karyotype. Her
birthweight of 8 lbs 15 ounces and length of 52 cm are
appropriate for a term infant. Her newborn hearing screening
test was normal. An orbital ultrasound shortly after birth
revealed the absence of globe structures bilaterally. A head
MRI at age of four months showed partial agenesis of the
corpus callosum and hypoplasia of the orbits. Minimal ocular
tissue was noted in the orbit with visualization of the
extraocular muscles and lacrimal glands. The optic nerves
were not visualized. The maxillae were hypoplastic.

At approximately nine months, she began treatment with
thyroid supplementation for hypothyroidism. She is of a low
growth percentile with normal growth hormone levels. She
had urticaria pigmentosa at 14 months of age. At the age of
16 months, she sat without support, rolled, and babbled with
consonants and vowels. She finger feeds and has no feeding
difficulties. Her development is delayed but is more advanced
than that of her sister, the proband, at the equivalent age. The
mother has normal vision and an unremarkable
ophthalmologic examination. She has normal motor abilities
and intellect. A head MRI scan of the mother was
unremarkable.

Sequence analysis detected two alleles in the proband, the
affected sibling, and the clinically normal mother (54B). One
allele was the wild type sequence and the other was a c.
549delC (p.Pro184ArgfsX19) in the coding sequence (Figure
3B). The deletion changes the reading frame and results in a
premature stop codon 19 amino acids downstream of the
deletion site. The mutation is predicted to delete part of the
COOH-terminal activation domain and to produce a truncated
peptide (Figure 3C). The father (54C) of the proband was
homozygous for the wild type allele.

Patient 49A is a 17-year-old female with bilateral
anophthalmia. Her clinical features include a ventricular-
septal defect, which resolved without surgical intervention,
and fusion of two primary teeth of the left lower jaw. She is
developmentally normal and is currently applying to four-year
colleges. The parents were unaffected. A heterozygous
sequence variant was identified in this individual in the 3′-
UTR by CSGE (Figure 4A). Sequence analysis detected two
alleles, one with a wild type sequence and one with a
nucleotide substitution, c.*557G>A (Figure 4B). The
sequence alteration does not predictably change the SOX2
protein and is not a previously described SNP (dbSNP Build
128). A review of transcription factor databases did not
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uncover known regulatory elements associated with the
nucleotide substitution. DNA was unavailable from additional
unaffected family members of the proband.

Figure 3. Mutation in the SOX2 activation domain. Genomic DNA
from affected patients, unaffected relatives, and healthy controls are
amplified by PCR. PCR products are separated by electrophoresis in
an 8% polyacrylamide gel for detection of heteroduplexes and
homoduplexes. Genomic DNA samples are then sequenced for
detection of sequence variants. A: Heteroduplexes detected by CSGE
is shown. Lanes C1 and C2 represent the healthy controls; Lane 54A
represents the proband; Lane 54B represents the mother of the
proband; Lane 54C represents the father of the proband; and Lane
54H represents the affected sibling of the proband. The additional
slower band in patient 54A may represent a conformational
intermediate formed during gel electrophoresis, resulting in a
different mobility compared to homoduplexes and the triplet. B:
Sequence analysis shows two alleles in the proband 54A, the affected
sibling 54H, and the clinically normal mother 54B. One allele is the
wild type sequence and the other one is single nucleotide deletion at
c.549delC. The father 54C is homozygous for the wild type allele.
C: The single nucleotide deletion at c.549delC results in a frame shift
mutation and premature termination at 19 amino acids downstream
of the deletion site (p.Pro184ArgfsX19). The mutation is predicted
to delete part of the C-terminal activation domain and to produce a
truncated peptide.

To determine that the above sequence alterations detected
in anophthalmia and microphthalmia patients were not single
nucleotide polymorphisms (SNPs), 80 healthy control
individuals were examined by direct sequencing analysis.
None of the above sequence alterations were found in the
normal control subjects. During this screening, we also
detected SNP c.*469 C>A in 2 out of 34 patients. The SNP is
a known variant and located at 3′ UTR (SNP rs11915160).

To evaluate sequence variations in CHX10, the same
cohort of patients were screened by CSGE and direct
sequencing. The majority of sequence variations were
detected in exon 3 (Table 2), and the mutations were all
synonymous, c.471 C>T (p.Ser157Ser, rs35435463) and c.
579 G>A (p. Gln193Gln, novel SNP). Another sequence
variation was found in exon 5, c.871 G>A (p. Asp291Asn,
novel SNP), in one affected individual resulting in a non-
synonymous polymorphism. Using healthy controls, the same
sequence variant was found, suggesting non-causality.

DISCUSSION
The present study identified two novel mutations and two
sequence variants (one novel, one known SNP) in SOX2 in 6
(two siblings) out of 34 anophthalmia/microphthalmia/
coloboma patients. The frequency of mutations in SOX2 in
anophthalmia and microphthalmia patients is estimated at

Figure 4. SOX2 mutation in the 3′- untranslated region (3′-UTR).
Genomic DNA from the affected patient and healthy controls are
amplified by PCR. PCR products are separated by electrophoresis in
an 8% polyacrylamide gel for detection of heteroduplexes and
homoduplexes. Genomic DNA samples are then sequenced for
detection of sequence variants. A: Heteroduplexes detected by CSGE
is shown. Lanes C1 and C2 represent the healthy controls and Lane
49A represents the proband. Sample from patient 49A shows
heteroduplex comparing to homoduplex observed in samples from
normal controls (C1 and C2). B: A nucleotide substitution at
c.*557G>A of the 3′-UTR is identified in patient 49A, but not in
normal controls (C). The sequence variant does not predictably
change the SOX2 protein and is not a previously described SNP.
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10% for this study, which is consistent with previous reports
[4,14,19]. A mutational analysis of CHX10 of the same cohort
of anophthalmia/microphthalmia patients identified two
synonymous sequence variants in exon 3 and one non-
synonymous sequence variant in exon 5. The non-
synonymous polymorphism was also present in normal
controls, suggesting it is not causative. Further sequence
analysis of other genes associated with anophthalmia and
microphthalmia such as PAX6 [7,25], BCOR [26], OTX2

[27], SIX6 [28,29], and CHD7 [30,31] is ongoing in this study
cohort to determine mutation associations.

Two mutations, a nonsense mutation and a frameshift
mutation, were located in the coding region of SOX2, and both
resulted in truncation of the SOX2 protein. The shortened
protein product may result in loss of function. In animal
studies, homozygous mice for SOX2 null allele are embryonic
lethal [16] and heterozygous mice with one null allele are
normal compared to that of the wild type [32]. Further

TABLE 2. SEQUENCE VARIATIONS IN CHX10.

Person ID Exon 3 Sequence results Exon 5 Sequence results
012A homoduplex homoduplex
013A homoduplex homoduplex
018A heteroduplex c.471 C>T (p.S157S) homoduplex
023A homoduplex homoduplex
023I homoduplex homoduplex
025A heteroduplex c.471 C>T (p.S157S) homoduplex
027A heteroduplex c.471 C>T (p.S157S) homoduplex
029A heteroduplex c.471 C>T (p.S157S) homoduplex
030A heteroduplex c.471 C>T (p.S157S) homoduplex
031A heteroduplex c.471 C>T (p.S157S) homoduplex
033A homoduplex homoduplex
034A homoduplex homoduplex
035A heteroduplex c.471 C>T (p.S157S) homoduplex
037A homoduplex homoduplex
038A homoduplex homoduplex
040A homoduplex homoduplex
041A homoduplex homoduplex
042A heteroduplex c.471 C>T (p.S157S) homoduplex
043A heteroduplex c.471 C>T (p.S157S) homoduplex
044A homoduplex homoduplex
045A homoduplex homoduplex
046A homoduplex homoduplex
047A homoduplex homoduplex
048A homoduplex homoduplex
049A heteroduplex c.579 G>A (Q193Q) homoduplex
050A homoduplex homoduplex
051A homoduplex homoduplex
052A homoduplex homoduplex
053A heteroduplex c.471 C>T (p.S157S) homoduplex
054A homoduplex homoduplex
054H heteroduplex c.471 C>T (p.S157S) homoduplex
055A homoduplex heteroduplex c.871 G>A (p.D291N)*
056A homoduplex homoduplex
058A homoduplex homoduplex
059A heteroduplex c.471 C>T (p.S157S) homoduplex
061A homoduplex homoduplex

All sequence variations detected in CHX10 were in exons 3 and 5. Homoduplex indicates two identical alleles. Heteroduplex
indicates different alleles. One allele is the wild type sequence and the other one is a sequence variant differing from the wild
type one. The single nucleotide substitution at c.471 C>T is a known SNP (rs35435463) and results in a synonymous change
in the protein sequence (p.Ser157Ser). The single nucleotide substitution at c.579 G>A is a novel SNP and results in a
synonymous change in the protein sequence (p. Gln193Gln). Another novel sequence variation, c.871 G>A, is identified in exon
5 in one affected individual and results in a non-synonymous change in the protein sequence (p. Asp291Asn). This sequence
variation is also identified in healthy controls. G=guanosine, T=thymidine, C=cytidine, A=adenosine, S=Ser=serine,
Q=Gln=glutamine, D=Asp=aspartic Acid, N=Asn=asparagine. The asterisk indicates that the heteroduplex is detected in 4 of
50 healthy control samples.
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reduction of the level of SOX2 expression by deleting a neural
cell-specific enhancer on a heterozygous background resulted
in reduced viability and neurodegeneration [32]. These
observations suggest that the abnormal phenotype may
become apparent when SOX2 expression falls below a certain
threshold, or loss of function in one allele reduces SOX2
expression below that level. One of the mutations detected in
this study was at the 3′ UTR. Although the relationship
between the mutation at the 3′-UTR and anophthalmia/
microphthalmia is indeterminate, one possibility is that the
nucleotide substitution at c.*557G>A affects SOX2
expression. This is supported by the observation that the
3′UTR of SOX2 contains regulatory elements that enhance its
transcriptional activity in embryonic stem cells [33].

Of interest is the transmission of a SOX2 mutation from
an unaffected mother to her two daughters in the example of
sibling patients 54A and 54H. Gonosomal mosaicism,
evidenced by the presence of a mutation in buccal cells but
not in white cell-derived DNA, has been reported for SOX2 in
an unaffected parent [34]. We were able to identify this
mutation in genomic DNA derived from white blood cells in
the unaffected mother. This suggests that this mother may not
be mosaic in this circumstance. We propose that the
anophthalmia phenotype appears to be non-penetrant. Non-
penetrant mutations have been reported previously in sonic
hedgehog (SHH) [34] and in fibroblast growth factor receptor
1 (FGFR) [35]. This example underscores the importance of
testing seemingly unaffected parents once a mutation is
discovered in their offspring regardless of their phenotype and
points out that some individuals with a SOX2 mutation may
be non-penetrant.

Our patients with coding region mutations had SOX2
phenotypes consistent with previous studies [4,10-12]. All
patients with mutations had bilateral anophthalmia and
unilateral severe microphthalmia (40A, 49A, 54H) with the
exception of patient 54A who had unilateral anophthalmia
instead of bilateral anophthalmia. This suggests that SOX2
mutations cause a more severe disruption of normal eye
development and that microphthalmia/anophthalmia are of a
spectrum of the same disease. The patients with coding
sequence mutations (40A, 54A, and 54H) had significant
brain abnormalities. Patient 40A showed dilated ventricles
and microcephaly. Patient 54A was diagnosed with a right
middle fossa arachnoid cyst and partial absence of posterior
aspect of corpus callosum including the splenium. Patient
54H, the sibling of patient 54A, had partial agenesis of the
corpus callosum. Brain structure changes are also consistent
with other studies and are supported by murine models of
SOX2 deficiency with neurodegeneration and impaired brain
neurogenesis [32]. Hormonal deficiencies and growth
retardation are also important phenotypic associations with
SOX2 coding sequence changes (patients 40A, 54A, and 54H).
Ragge et al. [10] have reported a case of anophthalmia/
microphthalmia caused by a frameshift mutation in SOX2

(case 9, c.628delA, p.Met210fs211X). The genetic location of
that mutation is similar to the proband 54A and her sibling
54H (c.549delC, p.Pro184ArgfsX19) in this study. The
neurological phenotypes in this study, including brain
malformations and seizure activity, were also present in their
case [10]. Patient 49A with a 3′-UTR mutation had a cardiac
ventricular-septal defect with dental anomalies. Different
forms of craniofacial and dental defects were also noted in
some patients with coding region mutations of SOX2 gene.
Patient 54A (Appendix 1) had facial asymmetry and small,
widely spaced teeth. One of the patients (case #1) reported by
Ragge et al. [10] also showed craniofacial dysmorphisms and
widely spaced teeth. The SOX2 UTR mutations appear to be
associated with severe eye development but are perhaps less
likely to manifest with neurological manifestations.

In conclusion, this study confirms that heterozygous loss
of function mutations in SOX2 cause anophthalmia and
microphthalmia and represent approximately 10% of patients
ascertained for anophthalmia and microphthalmia but may
also be non-penetrant. Mutations in CHX10 are less frequently
found. Genetic screening of other candidate genes and the
identification of genetic factors influencing SOX2 expression
may help to determine the susceptibility of various disease
alleles in the occurrence of this severe form of eye
malformation and also help to identify factors that may
influence SOX2 expression. Further characterization of
genetic interactions among causative genes may also help to
further our understanding of the formation of the eye.
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Appendix 1. Patient demographics and mutations and sequence variants in
SOX2 and CHX10 genes.

To access the data, click or select the words “Appendix
1”. This will initiate the download of a compressed (.zip)
archive that contains the file. This file should be

uncompressed with an appropriate program (the particular
program will depend on your operating system).
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