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This review provides a focused summary of the implications of high-dimensional data spaces produced by gene expression
microarrays for building better models of cancer diagnosis, prognosis, and therapeutics. We identify the unique challenges posed by
high dimensionality to highlight methodological problems and discuss recent methods in predictive classification, unsupervised
subclass discovery, and marker identification.
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Gene expression microarrays provide a wealth of information on
gene expression patterns and cancer pathways with potential for
(1) cancer diagnosis, prognosis, and prediction of therapeutic
responsiveness (Ramaswamy et al, 2001; Dupuy and Simon, 2007);
(2) discovering new cancer subtypes (Golub et al, 1999; Lange et al,
2004); and (3) identifying cancer-associated (signalling) molecular
markers and their complex interactions (Shedden et al, 2003;
Ransohoff, 2004). However, achieving these biological/clinical
objectives requires comprehensive analysis of microarray gene
expression profiles that exist in high-dimensional data spaces, and
relies critically on the functional capabilities and accuracy of the
relevant analytical techniques (Allison et al, 2006). Cancer
diagnosis/prognosis and therapeutic responsiveness prediction
are all supervised classification/prediction problems (Duda et al,
2001). Analysing gene expression patterns representing patients
that manifest heterogeneous clinical outcomes to discover cancer
subgroups amounts to an unsupervised clustering problem (Duda
et al, 2001). Identification of cancer-associated markers can be cast
either as supervised feature/gene selection or as multiple testing,
with thousands of candidate markers and a small subset of true
ones (Ransohoff, 2004).

Although these analytical tasks fall neatly within statistical
learning and pattern recognition (Jain et al, 2000), there is nothing
conventional about these tasks for microarray data analysis.
Unlike conventional pattern recognition that involves moderately
dimensioned data, usually less than 100 features per sample and
hundreds to thousands of samples, microarrays often involve over
10 000 features/genes per sample (n) with typically at most several
hundred clinical samples. A rule of thumb is to have at least 10
training samples per feature dimension (Jain et al, 2000), whereas
in microarrays this ratio is often closer to 0.01 samples per

dimension (Allison et al, 2006). High feature dimensionality and
paucity of microarray samples pose unique challenges for, and
inspire novel developments in, predictive classification, cluster
discovery, and marker identification methodologies.

A common subtask is feature selection. For predictive classifica-
tion, only a subset of discriminatory genes is used to avoid
overfitting, where a classifier is known ‘too well’ to fit even
irreproducible ‘noisy’ training patterns and, thus, to achieve
predictive accuracy that generalises well to unseen/test data. In
unsupervised clustering in high dimensions, feature selection is
likewise essential for discerning the underlying grouping tendency
that may be ‘buried’ in a much lower-dimensional subspace – with
many structurally irrelevant features and only a small sample size,
clustering algorithms are likely to identify false group structure.
Lastly, a separate objective is to identify cancer-associated genes
and their joint effects, rather than to simply build a predictive
model for the disease.

Although feature selection is integral to each of these analytical
tasks, an exhaustive search of all 2n�1 possible feature subsets is
prohibitive for large n. Thus, practical feature selection techniques
are of necessity heuristic, with an inherent accuracy/complexity
tradeoff. Moreover, while multivariate analysis methods based on
complex criterion functions may reveal subtle joint marker effects,
they are also prone to overfitting (Lai et al, 2006). Additionally,
high dimensionality compromises the ability to validate marker
discovery, which requires accurately measuring true and false
discovery rates (Ransohoff, 2005). These issues have prompted the
development of a variety of novel statistical methods for estimating
(or controlling for) false discoveries (Storey, 2003).

PREDICTIVE CLASSIFICATION

Performance of a predictive model depends on the interrelation-
ship between sample size, data dimensionality, and model
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complexity. The accuracy of learned models tends to deteriorate in
high dimensions, a phenomenon called the ‘curse of dimension-
ality’ (Duda et al, 2001). This phenomenon is illustrated for
classification by an example by Trunk (1979). Consider two equally
probable, normally distributed classes with common variance in
each dimension. For the feature indexed by n¼ 1,2,3y, class 1 has
mean 1/n1/2 and class 2 has mean �1/n1/2. Thus, each additional
feature has some class discrimination power, albeit diminishing as
n increases. Trunk evaluated error rates for the Bayes decision
rule, applied as a function of n, when the variance is assumed
known but the class means are estimated based on a finite data set.
Trunk found that (1) the best test error was achieved using a finite
number of features; (2) using an infinite number of features, test
error degrades to the accuracy of random guessing; and (3) the
optimal dimensionality increases with increasing sample size.
These observations are consistent with the ‘bias/variance dilemma’
(Jain et al, 2000). Simple models may be biased but will have low
variance. More complex models have greater representation power
(low bias) but overfit to the particular training set (high variance).
Thus, the large variance associated with using many features
(including those with modest discrimination power) defeats any
possible classification benefit derived from these features
(Figure 1). With severe limits on available samples in microarray
studies, complex models using high-feature dimensions will
severely overfit, greatly compromising classification performance.
Computational learning theory provides distribution-free bounds
on generalisation accuracy in terms of a classifier’s capacity,
related to model complexity (Vapnik, 1998). Relevance of these
bounds to the microarray domain is discussed e.g. by Aliferis et al
(2006).

There are some strategies for mitigating the aforementioned
problem. One is to fit the high-dimensional data, but using simple
models that restrict complexity such as naive Bayes models that
assume features are conditionally independent or even simpler
models that share some parameters across classes (Novovicova
et al, 1996). Another approach is to apply support vector machines
(SVMs), which attempt to avoid overfitting by finding a linear
discriminant function (or generalised linear discriminant) that
maximises the margin (the minimum distance of any sample point
to the decision boundary) (Vapnik, 1998). The number of free
parameters in SVMs is not a function of the dimensionality, but
instead is upper-bounded by the number of samples, which for

microarrays is much smaller (Ramaswamy et al, 2001). However,
whether using linear or nonlinear kernels, SVMs are not immune
to the curse of dimensionality. Finally, some methods aim to
reduce the amount of parameter learning to avoid overfitting,
achieved by regularisation techniques modifying the training
objective function or limiting the parameter learning cycles (Duda
et al, 2001).

Many microarray-based studies suggest that, irrespective of the
classification method, feature selection is vital for achieving good
generalisation performance (Statnikov et al, 2005). The vast
number of feature subsets necessitates applying heuristic search
techniques, with various accuracy/computation tradeoffs (Guyon
and Elisseeff, 2003). Filtering methods apply knowledge of the class
labels to evaluate the discrimination power either of individual
genes (univariate) or collections of genes (multivariate), based on
criteria such as signal-to-noise ratio, correlation measures, and
mutual information, before classifier training. A recent study
found that for small sample sizes, univariate methods faired
comparably to multivariate methods, whose performance may be
affected by overfitting (Lai et al, 2006).

Unlike filtering, wrapper-based approaches combine feature
selection and classifier training, with the classifier learning
algorithm repeatedly applied for different feature subsets and
with the best subset chosen based on a specified criterion (Jain
et al, 2000). These methods can improve predictive power by
capturing higher order (and complex, nonlinear) joint feature
effects. Perhaps the simplest example is the ‘noisy XOR problem’,
for which two individual features and their linear combinations
have no discrimination power, but a simple nonlinear combination
is perfectly discriminating (Duda et al, 2001; Guyon and Elisseeff,
2003; Figure 2).

Wrapper algorithms, specified by the subset search method and
the criterion for evaluating feature subsets, entail large computa-
tion in high dimensions, as the number of candidate spaces
evaluated grows with the dimension. These algorithms include
‘greedy’ forward selection, with ‘informative’ features added
starting from a null set. Other algorithms apply a backward
search, which starts from the full space and then eliminates
features. Floating (bidirectional) searches, which combine forward
and backward steps, and more complex simulated annealing and
genetic algorithms, can also be applied (Guyon and Elisseeff, 2003).
Finally, there are methods that integrate classifier training and
feature selection, such as decision trees, which essentially perform
forward feature selection while growing a tree and backward
elimination while pruning the tree (Duda et al, 2001). For
evaluation criteria, either predictive accuracy on held-out test
data (Statnikov et al, 2005), or criteria that can be evaluated solely
on training data such as classifier margin or Bayesian model
selection criteria (Guyon et al, 2002), can be used.

UNSUPERVISED CLUSTERING

In microarray data analysis, unsupervised clustering must be
cautiously applied and may be unnecessary when samples come
with appropriate and reliable supervising labels (Ramaswamy et al,
2001; Clarke et al, 2008). However, unsupervised clustering
constitutes an important tool for discovering underlying cancer
subtypes or gene modules (Frey and Dueck, 2007; Miller et al,
2008). Such exploration may suggest possible refinement to
established cancer categories, where cancer subtypes manifest
radically different clinical behaviour and may correspond to
distinct biological pathways involving subtype-specific markers
(Shedden et al, 2003). For example, prostate cancer can be an
indolent cancer, remaining dormant throughout life, or an
aggressive cancer leading to death. Similar issues arise in drug-
resistance cases, where different cancer subtypes exhibit distinctive
therapeutic responses (Golub et al, 1999).
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Figure 1 A demonstration of the bias/variance dilemma in predictive
classification. Specifically, the error of model fitting can be decomposed into
two components, bias (approximation error) and variance (estimation
error). Added dimensions can degrade the prediction performance if the
sample size is small relative to the dimensionality. For a fixed sample size in
the high-dimensional data space, there is a tradeoff between the decreased
approximation error and the increased estimation error.
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Furthermore, when therapeutic responsiveness of patients is
assessed based on interim growth or shrinkage of a tumour rather
than the definitive clinical outcome, unsupervised clustering may
be used to validate this supervision information, either to support
it or to raise uncertainty about this ‘ground-truth’ if the correlation
between the cluster labels and assessed responsiveness is weak.
Moreover, trusted class labels on samples can be withheld during
unsupervised clustering and subsequently used to validate the
clustering methodology/assumptions. Strong correlation between
clustering outcomes and known class labels supports the applic-
ability of this clustering approach to other unlabelled microarray
data (Golub et al, 1999).

While warranted in microarray data exploration, unsupervised
clustering is extremely challenging in high dimensions with very
few samples. Standard methods such as K-means and hierarchical
clustering evaluate distances between data points using all (equally
weighted) features. Thus, many noisy/irrelevant features will
dominate the (much smaller set of) relevant features in determin-
ing how data points are partitioned, for example, many invariantly
expressed genes used for microarray normalisation are irrelevant
to classification or clustering. Rather than clustering samples using
all genes, a practical alternative is to embed gene selection within
unsupervised clustering – removal of noisy features improves
clustering accuracy, which, in turn, guides a more accurate round
of feature selection. Methods have been proposed along these lines
(Xing and Karp, 2001; Graham and Miller, 2006), together with
novel initialisation schemes (Frey and Dueck, 2007; Wang et al,
2007).

Another major challenge for clustering in high dimensions is
estimating the number of clusters. Standard methods choose
cluster number by best fitting the data while incurring least model

complexity. However, under the widely used Bayesian information
criterion (Duda et al, 2001), model complexity is linear in the
number of parameters and quickly grows with each added feature.
As many of these parameters model noisy/irrelevant features, their
data fitting benefit is grossly outweighed by their contribution to
model complexity, which leads to gross underestimation of the
number of clusters. In a study by Graham and Miller (2006), a
‘parsimonious’ mixture model allows clusters to share distribu-
tions for noisy features, which enhances accuracy in estimating
both the cluster parameters and the cluster number in high
dimensions. Intrinsic to this modelling is identification of a
distinct relevant feature subset specific to each sample cluster, that
is, for the microarray domain, each subclass will have its own gene
set, as has been conjectured by Shedden et al (2003); Ein-Dor et al
(2005). Another strategy for identifying this cluster structure is
top-down divisive clustering that explores and generates hier-
archical mixtures in nested subspaces (Wang et al, 2007). By
projecting high-dimensional data of a current cluster to multiple
two-dimensional visualisation subspaces, the human gift for
pattern recognition can be exploited to assess the current solution
and assist further clustering refinement (Figure 3). Being more
data-adaptive and process-transparent, human interaction may
bring subjectivity, and thus must be carefully applied.

MARKER IDENTIFICATION

Marker identification aims to discover those genes and their
complex interaction effects that have statistically significant
correlations with cancer phenotypes. As it is currently largely
unclear how molecular variants and their interactions determine
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Figure 2 An example of XOR/chessboard-like joint effects. Although the classes consist of disjoint clusters, each variable has completely overlapping class
conditional densities, that is, no marginal effect. In contrast, working together, the two variables provide good class separability.
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cancer pathogenesis and propensity, marker identification is
valuable for improving understanding of the molecular mechanisms
of cancers and for suggesting novel drug targets. Discovered
markers may also define a subset of networked causal genes that
regulate disease phenotype. A review of the current state of this
effort is discussed by Aliferis et al (2006).

The objectives of feature selection for predictive classification
and marker identification bear close resemblance. Although it is
tempting to view these two problems as ‘one and the same’, this is
often inappropriate. Inclusion of some true cancer markers in a
feature set for cancer classification may provide negligible
improvement in classification accuracy even though these markers
are significantly associated with the cancer outcome of interest. A
trivial example is where two markers are perfectly correlated, in
which case only one of the two needs to be included in a predictive
feature subset. A more interesting example is the one in which,

even though two markers are only partially correlated, a
classification model will not perceive any benefit from using both
markers. This is illustrated below:

Let A and B take on one of four possible discrete values and
suppose the ground-truth statistics on class label C are Prob
[C¼ ‘cancer’|A¼ 1]¼ 1.0; Prob[C¼ ‘cancer’|A¼ i]¼ 0.5, i¼ 2,3,4;
Prob[C¼ ‘cancer’|B¼ 3]¼ 1.0; and Prob[C¼ ‘cancer’|B¼ j]¼ 0.5,
j¼ 1,2,4. Suppose Prob[A¼ 1]¼ 0.1; Prob[B¼ 3]¼ 0.7; and
Prob[B¼ 3|A¼ 1]¼ 0.5. Thus, A and B are both informative about
the disease (for one value), and these variables are only partially
correlated. However, in a small training set, it is quite possible that
each time A¼ 1, B¼ 3 also occurs, even though Prob[B¼ 3|A¼ 1]
is much less than one. In this case, while association-based marker
discovery might include both A and B, classification-based marker
discovery would only include B, because the training set suggests
no predictive benefit from including A.

MO 2 3 4
DL 6450.88 5879.45 5885.38

MO 1 2 3

DL 1453.64 1463.74 1474.66

MO 2 3 4

DL 4412.85 4301.11 4313.36

MO 1 2 3
DL 1766.28 1772.77 1780.30

MO 1 2 3 MO 1 2 3
DL DL 2706.98 2717.33 2727.13 1289.81 1291.95 1304.50

PCA PCA-PPM HC-KMC-SFNM-DCA

Figure 3 An example of coarse-to-fine top-down divisive unsupervised clustering using VISDA. (A) Multiple complementary visualisation subspaces
derived from different data structure preserving projection principles. (B) Tree of phenotype with embedded model selection function, where MO refers to
the model order (number of clusters) and DL refers to the description length (model complexity as a function of cluster number).

Analysis of high-dimensional microarray data

Y Wang et al

1026

British Journal of Cancer (2008) 98(6), 1023 – 1028 & 2008 Cancer Research UK



More generally, whether predictive gene selection will include a
gene that possesses some predictive benefit will depend on the
sensitivity of the criterion function used. For example, a predictive
model may achieve the same estimated classification error rate
using several different feature subsets, even if there is a unique true
marker subset, with greatest class discrimination power. Another
limitation of predictive gene selection is that most classification
models lack interpretability, that is, they do not allow easy
discernment of the underlying interactions between the identified
markers. The sole focus of most predictive feature selection
techniques is on defeating the curse of dimensionality. Exceptions
to this include decision trees (if not too large) and Bayesian
networks (Duda et al, 2001).

Although association-based approaches may ultimately be found
superior for identifying cancer markers and their interactions,
these methods also have limitations. First, identifying marker
interactions, particularly those involving markers with insignif-
icant marginal effect, requires an exhaustive search over the full
gene expression space. It is only practical to examine very low-
order interactions, for example, ‘10 000 choose 2 or 30 possible
interactions (Jain et al, 2000). Thus, higher-order interactions may
get missed. One possible strategy is to first apply classification-
based gene selection to significantly reduce the search space,
followed by (exhaustive search) association-based marker identi-
fication. Second, it is difficult to evaluate and/or control inference
accuracy for such testing, which involves numerous hypotheses.
There is an inherent trade off between statistical power (true
positive) and Type 1 error (false positive). Multiple testing for
thousands of interacting genes at typical confidence levels leads to
unacceptably large false positives. Family-wise error rate techni-
ques can compensate, but conservatively toward minimising false
positives and may have insufficient power. Other strategies
improve inference accuracy through variance shrinkage that
accounts for statistical dependencies between genes via computa-
tionally intensive permutation testing to accurately specify the null
distribution.

To assess the true statistical significance of the implicated gene
subset in multiple testing, one recent method is the randomisa-
tion–permutation test (Efron and Tibshirani, 2007). This method
addresses the concern that a randomly selected gene subset may
appear to possess significant association with the phenotype if only
subjected to subject permutation testing. To assure that false
discoveries do not occur, a selected gene subset must, additionally,
be subjected to a gene randomisation test, where the subject
permutation test is to assess whether the implicated gene subset
indeed has significant prediction power rather than ‘by-chance’
and the gene randomisation test assesses whether the implicated
gene subset has significant prediction power as compared with that
of any randomly selected gene subset of the same size.

An additional concern in marker identification is the impact of
confounding variables (Ransohoff, 2005). A given data set may
represent a biased sample with respect to factors such as patient
age, gender, life style or with respect to sample handling, and
expression levels for a putative marker may be more strongly
associated with these confounding effects than with disease
presence (Clarke et al, 2008). Although some confounding effects
can be mitigated by careful study design or by explicitly
accounting for these factors when performing marker identifica-
tion, further research is needed to devise more effective
methodologies for this purpose. Nevertheless, risk factors are not
confounding effects to be discounted – there may be cancer-related
gene–environment interactions that need to be identified. Finally,
there are latent confounding sources due to biological multi-
modality. For complex phenotypes such as cancers, the presence of
multiple, interrelated biological processes may obscure the true
relationships between a gene subset and a specific outcome,
creating spurious associations that appear statistically correct and
yet may be false.

OUTCOME VALIDATION

In assessing the performance for any of the three fundamental tasks
discussed here, a validation procedure must be carefully designed,
recognising limits on the accuracy of estimated performance, in
particular for small sample size. In the study by Dupuy and Simon
(2007), it was shown that, in more than 50% of a representative
sample of past studies, inadequate statistical validation was
performed. Clearly, classification accuracy must be assessed on
labelled samples ‘unseen’ during training. However, single batch
held-out test data are often precluded in microarray studies, as there
will be insufficient samples for both accurate classifier training and
accurate validation. The alternative is a sound cross-validation
procedure, wherein all the data are used for both training and
testing, but with held-out samples in a testing fold not used for any
phase of classifier training, including feature selection and classifier
design. Furthermore, performance (for either predictive classifica-
tion or marker identification) depends on the threshold used to
discriminate between categories. Most reported prediction accuracy
rates are based on user-defined thresholds for a single operating
point. A more meaningful estimate is the receiver operating
characteristic curve obtained by using sensitivity (true positive
rate) and specificity (true negative rate) acquired at a set of
threshold values. The area under the curve gives a comprehensive
figure-of-merit for prediction accuracy and can be shown to be a
consistent but more sensitive measure than error rate for comparing
classifiers, identifying performance differences between classifiers in
cases where, evaluated solely by error rate, two classifiers would be
deemed equivalent (Swets, 1988; Wang et al, 2006).

Unlike predictive classification assessment using labelled samples,
validating unsupervised clustering requires alternative avenues
when labels are not available. Synthetic data with constructed
ground-truth may be used to assess the accuracy of a clustering or
cluster number estimation algorithm. However, this approach will
not validate that particular statistical assumptions are suitable for
fitting molecular profiles from a given population. Alternatively,
some form of cross-validation may be used to assess the ‘stability’ of
clustering solutions (Lange et al, 2004). Stability analysis has been
applied to clustering microarrays by Yeung et al (2001). Even when
class labels are known, Dupuy and Simon (2007) suggest not to use
them to select the gene space, as this will bias the clustering results.

It is even less likely to have ground-truth for validating marker
identification. Synthetic data constructed from real microarray
data can be used to assess a marker identification methodology,
with class labels, markers, and interaction models handpicked and
treated as ground truth. Importantly, ‘reproducibility’ of marker
identification outcomes over multiple/bootstrap data sets may
provide reasonable confidence (uncertainty assessment) on the
discovered markers (Ransohoff, 2004).

Ultimately, discovered cancer markers or subtypes must be
validated against definitive biomedical ground-truth. However, the
cost of such validation demands a high degree of confidence in the
knowledge extracted from microarray data by marker identification
and clustering algorithms. Specifically, such knowledge extraction
should not strongly depend on the particular random sample of data
used or on variable aspects of the algorithms. Many clustering
algorithms find only locally optimal solutions whose quality depends
on the pseudorandomly chosen initial cluster parameter values (Frey
and Dueck, 2007). Also, greedy sequential feature selection techniques
are often ‘unstable’, giving results that may be highly dependent upon
the particular training data used. There are two implications. First,
whether synthetic data or real microarray data are used, extracted
knowledge should be validated by assessing its reproducibility over
multiple independently acquired data sets. Independent data sets are
easily produced in the synthetic case, but at high cost in the case of
real data. The second implication is that algorithms should be made
as stable as possible to maximise the generalisation of their results.
For marker discovery, one such strategy is to perform marker ranking
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multiple times, using bootstrap samples and/or k-fold cross-
validation from the same data set, with the final, selected markers
the ones with highest average ranking (and perhaps low variance/
uncertainty). Nevertheless, the cost of increased stability in such
approaches is an increase in computation.

ACKNOWLEDGEMENTS

This work was supported in part by the US National Institutes of
Health under Grants CA109872, CA096483 and EB000830, and the
US Department of Defense award BC030280.

REFERENCES

Aliferis CF, Statnikov A, Tsamardinos I (2006) Challenges in the analysis of
mass-throughput data: a technical commentary from the statistical
machine learning perspective. Cancer Inform 2: 133 – 162

Allison DB, Cui X, Page GP, Sabripour M (2006) Microarray data analysis:
from disarray to consolidation and consensus. Nat Rev Genet 7: 55 – 65

Clarke R, Ressom HW, Wang A, Xuan J, Liu MC, Gehan EA, Wang Y (2008)
The properties of high dimensional data spaces: implications for
exploring gene and protein expression data. Nat Rev Cancer 8: 37 – 49

Duda RO, Hart PE, Stork DG (2001) Pattern Classification, 2nd edn, New
York: Wiley

Dupuy A, Simon RM (2007) Critical review of published microarray studies
for cancer outcome and guidelines on statistical analysis and reporting.
J Nat Cancer Inst 99: 147 – 157

Efron B, Tibshirani R (2007) On testing the significance of sets of genes.
Ann Appl Stat 1: 107 – 129

Ein-Dor L, Kela I, Getz G, Givol G, Domany E (2005) Outcome signature
genes in breast cancer: is there a unique set? Bioinformatics 21: 171 – 178

Frey BJ, Dueck D (2007) Clustering by passing messages between data
points. Science 315: 972 – 976

Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP,
Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES
(1999) Molecular classification of cancer: class discovery and class
prediction by gene expression monitoring. Science 286: 531 – 537

Graham MW, Miller DJ (2006) Unsupervised learning of parsimonious
mixtures on large spaces with integrated feature and component
selection. IEEE Trans on Signal Process 54: 1289 – 1303

Guyon I, Elisseeff A (2003) An introduction to variable and feature
selection. J Mach Learn Res 3: 1157 – 1182

Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer
classification using support vector machines. Mach Learn 46: 389 – 422

Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review.
IEEE Trans Pattern Anal Mach Intell 22: 4 – 37

Lai C, Reinders MJT, van’t Veer LJ, Wessels LFA (2006) A comparison of
univariate and multivariate gene selection techniques for classification of
cancer datasets. BMC Bioinformatics 7: 235 – 244

Lange T, Roth V, Braun ML, Buhmann JM (2004) Stability-based validation
of clustering solutions. Neural Comput 16: 1299 – 1323

Miller D, Wang Y, Kesidis G (2008) Emergent unsupervised clustering
paradigms with potential application to bioinformatics. Front Biosci 13:
677 – 690

Novovicova J, Pudil P, Kittler J (1996) Divergence-based feature selection
for multimodal class densities. IEEE Trans Pattern Anal Mach Intell 18:
218 – 223

Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang C-H, Angelo M,
Ladd C, Reich M, Latulippe E, Mesirov JP, Poggio T, Gerald W, Loda M,
Lander ES, Golub TR (2001) Multiclass cancer diagnosis using tumor
gene expression signatures. Proc Natl Acad Sci USA 98: 15149 – 15154

Ransohoff DF (2004) Rules of evidence for cancer molecular biomarker
discovery and validation. Nat Rev Cancer 4: 309 – 314

Ransohoff DF (2005) Bias as a threat to the validity of cancer molecular-
marker research. Nat Rev Cancer 5: 142 – 149

Shedden KA, Taylor JM, Giordano TJ, Kuick R, Misek DE, Rennert G,
Schwartz DR, Gruber SB, Logsdon C, Simeone D, Kardia SL, Greenson
JK, Cho KR, Beer DG, Fearon ER, Hanash S (2003) Accurate molecular
classification of human cancers based on gene expression using a simple
classifier with a pathological tree-based framework. Am J Pathol 163:
1985 – 1995

Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S (2005) A
comprehensive evaluation of multicategory classification methods for
microarray gene expression cancer diagnosis. Bioinformatics 21: 631 – 643

Storey JD (2003) The positive false discovery rate: a Bayesian interpretation
and the q-value. Ann Stat 31: 2013 – 2035

Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:
1285 – 1293

Trunk GV (1979) A problem of dimensionality: a simple example. IEEE
Trans on Pattern Anal Mach Intell 1: 306 – 307

Vapnik VN (1998) The Nature of Statistical Learning Theory, Corrected 2nd
printing edn, New York: Springer

Wang J, Li H, Zhu Y, Yousef M, Nebozhyn M, Showe M, Showe L,
Xuan J, Clarke R, Wang Y (2007) VISDA: an open-source caBIGt
analytical tool for data clustering and beyond. Bioinformatics 23:
2024 – 2027

Wang Z, Wang Y, Xuan J, Dong Y, Bakay M, Feng Y, Clarke R, Hoffman EP
(2006) Optimized multilayer perceptrons for molecular classification and
diagnosis using genomic data. Bioinformatics 22: 755 – 761

Xing EP, Karp RM (2001) CLIFF: clustering of high-dimensional
microarray data via iterative feature filtering using normalized cuts.
Bioinformatics 17: S306 – S315

Yeung KY, Haynor DR, Ruzzo WL (2001) Validating clustering for gene
expression data. Bioinformatics 17: 309 – 318

Analysis of high-dimensional microarray data

Y Wang et al

1028

British Journal of Cancer (2008) 98(6), 1023 – 1028 & 2008 Cancer Research UK


	Approaches to working in high-dimensional data spaces: gene expression microarrays
	PREDICTIVE CLASSIFICATION
	UNSUPERVISED CLUSTERING
	MARKER IDENTIFICATION
	OUTCOME VALIDATION
	Figure 1 A demonstration of the biassolvariance dilemma in predictive classification.
	Figure 2 An example of XORsolchessboard-like joint effects.
	Figure 3 An example of coarse-to-fine top-down divisive unsupervised clustering using VISDA.
	ACKNOWLEDGEMENTS
	REFERENCES


