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ABSTRACT Recent single molecule experiments have determined the probability of loop formation in DNA as a function of
the DNA contour length for different types of looping proteins. The optimal contour length for loop formation as well as the
probability density functions have been found to be strongly dependent on the type of looping protein used. We show, using
Monte Carlo simulations and analytical calculations, that these observations can be replicated using the wormlike-chain model
for double-stranded DNA if we account for the nonzero size of the looping protein. The simulations have been performed in two
dimensions so that bending is the only mode of deformation available to the DNA while the geometry of the looping protein
enters through a single variable which is representative of its size. We observe two important effects that seem to directly
depend on the size of the enzyme: 1), the overall propensity of loop formation at any given value of the DNA contour length
increases with the size of the enzyme; and 2), the contour length corresponding to the first peak as well as the first well in the
probability density functions increases with the size of the enzyme. Additionally, the eigenmodes of the fluctuating shape of
the looped DNA calculated from simulations and theory are in excellent agreement, and reveal that most of the fluctuations in
the DNA occur in regions of low curvature.

INTRODUCTION

Since its discovery in the 1980s, enzyme-mediated DNA

looping has been implicated as the key to many important

biological processes. For example, the activity of the lac, gal,
and l-operons in E. coli is known to be regulated by the

formation of DNA loops mediated by their respective re-

pressor proteins (1). Similarly, the functioning of many re-

striction enzymes is known to be controlled by the formation

of loops in DNA (2). A subclass of these enzymes called

two-site restriction endonucleases efficiently cleave double-

stranded DNA only if they interact with the DNA at two

distant sites. In fact, a majority of reactions on DNA that

include transcription, replication and repair, site-specific

recombination etc., are mediated by multimeric proteins that

interact with DNA at multiple sites (2). As a result, the bio-

chemistry and biophysics of these reactions have been the

subject of many experimental, computational, and theoretical

investigations. A key question in this context is, ‘‘What mo-

lecular machinery or mechanism governs the rate at which

two distant sites on the DNA are brought close to each other?’’

The quest to address this question has produced several

studies (3), through which a reasonably clear picture has

emerged for the related process of DNA cyclization in which

two sticky ends (short regions of single-stranded DNA with

complementary basepairs) of a piece of linear double-

stranded DNA are juxtaposed to produce a circular DNA

loop in the absence of any mediating protein. The equilibrium

constant for the cyclization reaction is governed by the length

of the DNA involved (4). For DNA lengths longer than 300

basepairs (bp), this has been proved by the remarkable

agreement of bulk biochemical experiments (5), Monte Carlo

(MC) simulations (6), and theories based on the wormlike-

chain (WLC) models of DNA (4,7). There is still some debate

(5,6) about the cyclization propensity of short (;100 bp)

DNA fragments—the data from some bulk biochemical ex-

periments have been explained on the basis of nonlinear

models that require the formation of flexible hinges (or kinks)

in the DNA (7,8) while those from another set of bulk ex-

periments seem to agree quite well with the traditional WLC

model of DNA, without any need for nonlinearities such as

kinks or hinges (6).

On the other hand, enzyme-mediated DNA loops have

been studied primarily by single molecule techniques that

burst onto the scene approximately two decades ago. The

majority of experiments involving DNA looping are carried

out using the tethered particle assay in which one end of the

DNA is immobilized by attaching it to a coverslip or to an

optically trapped bead while the Brownian motion of the

other end, also attached to a bead, reports on the formation/

breakage of enzyme-mediated loops (9). The bead at the

other end can be trapped optically or magnetically (10), al-

lowing for the possibility of exerting forces and moments

on the DNA that can attenuate the rate of the looping reac-

tion. This technique has been used to study the kinetics of

formation/breakage of loops formed by the lac, gal, and

l-repressors (9–11) as well those by the restriction enzymes

NaeI and NarI (12). The constant formation/breakage of the

loops (over timescales of ;10 s for NaeI (12), for instance) in

these experiments, which typically span several minutes or
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hours, ensures that this process is well described by equi-

librium binding statistics. Once again, an important question

that arises in this context concerns the effect of the length of

the DNA loop on the rates of the forward/backward reaction

or equivalently, on the equilibrium constant of looping. This

question of length dependence was addressed in a recent

single molecule experiment in which the probability of loop

formation was measured as a function of DNA length for

several two-site restriction enzymes (13). The key results of

this experiment were that, 1), the probability of forming short

DNA loops (;100 bp or less) is much higher than predicted

by a theory based on the WLC theory of DNA mechanics

alone; 2), the data agree better with theories of DNA with

kinks and hinges; and 3), the probability density as well as

the optimal loop length is highly dependent on the looping

protein. In this set of experiments, large forces were required

to accelerate the rate of the loop breaking reaction for some

proteins, implying that the results report on the probability of

loop formation alone and not on the equilibrium constant of

the loop formation/breakage reaction.

It is our goal in this article to explore a possible explanation

for these observations by accounting for the geometry of the

looping protein. We do not invoke nonlinear theories of DNA

involving kinks or hinges. We also assume that the protein

acts as a coupler and has no elasticity of its own. The cal-

culations presented here have been carried out in two di-

mensions so that the only mode of deformation available

to the DNA is bending in a plane. As a result, other sources of

nonlinearities such as coupling between twisting and bending

modes (14,15) are not considered in this model. In contrast to

the work of Merlitz et al. (16), we also do not account for

the electrostatic interaction and the stretching energy of the

DNA. These calculations are a precursor to more compre-

hensive three-dimensional calculations where the DNA can

bend and twist (15). An advantage of two-dimensional cal-

culations is that the analytical theory remains tractable while

not sacrificing the important concept of the competition be-

tween elasticity and entropy that governs the physics of DNA

cyclization and looping reactions at equilibrium. For exam-

ple, the peak in the Jacobson-Stockmayer factor (17) for

DNA cyclization can be seen both in two- as well as three-

dimensional MC simulations although it is shifted to longer

DNA lengths in the two-dimensional setting since entropic

forces are relatively weaker in this case (18). We show in this

article that the mere introduction of the span of the protein

complex (denoted by the length scale a throughout this ar-

ticle) together with the competition of elastic and entropic

forces results in probability density functions (probability of

loop formation as function of length) that can vary signifi-

cantly with protein geometry. A battery of MC methods have

been employed to arrive at the probability density functions

presented in this article. The details are explained in Simu-

lation Methods. In some cases, we have also verified our

MC calculations by comparison with analytical calculations

based on the treatment of DNA as a fluctuating elastic rod.

We observe two important effects that seem to directly

depend on the size of the protein complex: 1), the overall

propensity of loop formation at any given value of the DNA

contour length increases with the size of the protein complex;

and 2), the contour length corresponding to the first peak

as well as the first well in the probability density functions

increases with the size of the protein complex. Another

interesting outcome of the MC simulations of DNA loops

presented in this article is the visualization of the fluctuating

shape. For loop lengths which are small multiples of the

DNA persistence length, we find that the shape fluctuates

close to an equilibrium shape that can be calculated from the

Kirchhoff theory of rods. The fluctuations around the equi-

librium shape contribute to the configurational entropy. If the

fluctuations are small enough, we can expand the elastic

energy functional up to quadratic order in the fluctuations

around equilibrium and obtain a fluctuation operator. The

eigenmodes of this operator show us the collective motions

of the DNA molecule. We have analytically calculated the

slowest eigenmode of this fluctuation operator and compared

our expressions with the results of a numerical eigenfunction

analysis of the MC data. Remarkably, we find good agree-

ment between the two methods. To our knowledge, this is the

first time the shape fluctuations have been computed using

analytical techniques for this problem. We note that a similar

computation of eigenfunctions for boundary conditions involv-

ing a given force and zero moments at the ends was performed

by Kulic et al. (19). Such shape fluctuations in macromolecules

are now known to play a key role in determining the free energy

change associated with binding two species (20).

THEORY

Mechanics of the DNA loop

In this article, we model the DNA as an inextensible, ho-

mogeneous, isotropic rod with bending stiffness Kb. The

value Kb can be determined from the persistence length jp

through the relation jp ¼ ðKb=kBTÞwhere kB is the Boltzmann

constant and T is the absolute temperature. In this article, we

take jp ¼ 50 nm (21) for double-stranded DNA and kBT ¼
4.1 pN nm, which corresponds to value at room temperature.

The protein complex is modeled as a coupler of size a. For

example, a dimer of the restriction enzyme BfiI has size of 10

nm (PDB ID: 2C1L). More precisely, a is the spatial distance

between the points at which the protein binds to the DNA.

The protein is usually a dimer, tetramer, etc., and is often

symmetric. We therefore expect the DNA loop to be sym-

metric as well and choose the y axis as the axis of symmetry

(Fig. 1). The protein exerts a force F on the DNA which, by

symmetry, has to lie along the x axis in our model. With no

other forces being exerted on the DNA in the looped region,

we know that equilibrium demands that

Kbu$ 1 Fsinu ¼ 0; (1)
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where u (s) is the angle made by the tangent at any point s to

the positive x axis and the prime (9) denotes differentiation

with respect to the arc-length s. Recalling that Kbu 9(s)¼M(s)

is the bending moment we can see that Eq. 1 is a second-order

nonlinear differential equation in u (s), which expresses a

balance of moments at every point on the DNA. The solution

of Eq. 1 requires that we specify two boundary conditions.

We will consider several possibilities here. If the protein is a

rigid jig, then we will require

uð0Þ ¼ 0; u
L

2

� �
¼ p 1 ua: (2)

The first of these conditions is required by the assumption of

symmetry while the second one will be dictated by the

constraint posed by the protein-DNA interaction. We assume

that the angle ua can be reasonably determined from the co-

crystal structure of the protein bound to the DNA and that the

protein is rigid enough to exert a moment on the DNA to

ensure that the boundary condition is obeyed. If, on the other

hand, the protein is flexible (for example, lac-repressor

(22,23) and AraC (24)), then the appropriate boundary

conditions would be that the protein does not exert any

moments on the DNA. In such a scenario the boundary

conditions would be

uð0Þ ¼ 0; u9
L

2

� �
¼ 0: (3)

Finally, the constant F is determined by enforcing the con-

straint on the end-to-end distance

Z L
2

�L
2

cosuds ¼ a: (4)

The boundary value problem consisting of the differential

equation (Eq. 1) together with boundary conditions given by

Eqs. 2 and 4 (as well as its three-dimensional version) has

been solved analytically by Purohit and Nelson (14). For

solving the problem with boundary conditions (Eq. 3), it is

useful to recall that the solution to Eq. 1 can be written in

terms of elliptic functions to obtain

u9ðsÞ ¼ 2k

l
cn

s

l
jk

� �
;

cosuðsÞ ¼ 1� 2k
2
sn

2 s

l
jk

� �
;

sinuðsÞ ¼ 2ksn
s

l
jk

� �
dn

s

l
jk

� �
; (5)

where l ¼
ffiffiffiffiffiffiffiffiffiffiffi
Kb=F

p
and k are constants. Clearly, u9ðL=2Þ ¼ 0

requires cnððL=2lÞjkÞ ¼ 0;which is possible only if ðL=2lÞ ¼
KðkÞ where K(k) is the complete elliptic integral of the first

kind. This constraint together with the following can be

solved to determine l and k for given values of L and a,

2EðkÞ � KðkÞ ¼ 2a

L
KðkÞ; (6)

where E(k) is the complete elliptic integral of the second kind.

Equation 6 above results from the constraint
R L=2

�L=2
cosuds ¼

a: It is clear that the angle ua at the ends of the loop is then

determined through

ua ¼ p � cos
�1ð1� 2k2Þ: (7)

Viewed differently, k (with 0 # k # 1) parameterizes the

dependence of the angle ua on L=a through Eqs. 6 and 7.

(This dependence has been plotted later in Fig. 4.)

The equilibrium shapes of the loop obtained above do not

account for the role of fluctuations. In general, this is a dif-

ficult exercise, but in the limit of small fluctuations around

the equilibrium configuration, we can make considerable

progress by expanding the energy up to quadratic order in

the fluctuations. In the case of the DNA loop, we expand the

energy up to quadratic order in the fluctuations du (s) of the

angle u (s) made by the tangent to the x axis. In other words,

we write

E½uðsÞ1 duðsÞ� ¼ E½ueqðsÞ�1
duðsÞTðsÞduðsÞ

2
; (8)

where the stiffness T (also called the fluctuation operator)

contains information about fluctuations, and E[ueq(s)] is the

elastic energy corresponding to the equilibrium shape of

the loop. Note that there is no first-order term in du, since

equilibrium implies that ðdE=duÞ ¼ 0: The eigenmodes of

the fluctuation operator ultimately contribute to the entropy.

In the Appendix, we explicitly compute the fluctuation

operator for a DNA loop and determine its lowest eigenmode.

We then compare the analytical expressions with our MC

simulations (and plot the results later in Fig. 5).

FIGURE 1 Schematic of protein-mediated two-dimensional DNA loop;

a is the size of the protein holding the loop.
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SIMULATION METHODS

Summary

We employ a battery of MC methods to quantify the behavior of the DNA

loop in two dimensions. We calculate the loop formation probability, P(L;a)

of a fragment of the DNA of length L and given end-to-end distance, a when

the opening angle is allowed to vary, using the method (described in P(L;a)

Calculation) proposed by Czapla et al. (15). A Metropolis-based Monte

Carlo method (described in Eigenmode Calculation) is used to quantify

fluctuations of the DNA loop while density-of-states Monte Carlo (DOSMC)

(see Validation of the Quasiharmonic Assumption) is used to validate

the quasiharmonic assumption employed in our theory. Our methods are

checked for consistency by comparing mean potential energy of an ensemble

of fluctuating configurations of a given DNA loop by all three methods. In the

above simulation protocols, we discretize the double-stranded DNA of fixed

L and a into N rigid links, each of length Ds. Unless specified, the link length

is taken to be 1 nm, i.e., jp/50. Following Klenin (25), we also calculate the

correction to the persistence length due to discretization of DNA. This cor-

rection is small since the chosen link length is small compared to the DNA

persistence length, and hence, it is neglected. To treat the angles at the

boundaries, we use the boundary condition that u9(6 L/2) ¼ 0, which cor-

responds to a flexible protein (see Eq. 3). In our simulations, we use jp¼ 50

nm and kBT ¼ 4.1 pN m. We describe the potential energy of each confor-

mation of the DNA loop as

E uðsÞ½ � ¼ +
N�1

i¼1

jpðDuiÞ2kBT

2Ds
; (9)

where we have replaced the derivative ðdu=dsÞ by ðDui=DsÞ; the bending

modulus Kb by jpkBT, and summed over all the links.

P(L;a) calculation

We employ a methodology, termed as Gaussian sampling, from the work

of Czapla et al. (15). This MC method is superior to the more traditional

Metropolis MC method for calculating P(L;a) because it is computationally

efficient, and it does not suffer from correlations between trial configurations.

In the Gaussian sampling protocol, the DNA chain is grown link-by-link by

adding a new link to the preexisting chain at the growing end until the desired

DNA length is reached. Adding a new link at an angle Dui to the growing end

demands an energy jpðDuiÞ2kBT
� �

= 2Dsð Þ: Hence, this angle is sampled

from the following Gaussian distribution dictated by a Boltzmann distribu-

tion at equilibrium:

pðDuiÞ ¼
ffiffiffiffiffiffi
jp

Ds

r
1

2p
exp �jpDu

2

i

2Ds

� �
: (10)

Because rigid body (overall) translation and rotation of the DNA loop do not

contribute to loop formation probability, we effectively remove them by

constraining the first link in a vertical orientation at the origin. Once the DNA

has grown to a total length of L, the distance between the first and the last link

is computed. If this distance lies in the interval [a� d, a 1 d], we record it as

a ‘‘hit’’ (where d is the tolerance). This process is repeated one billion times

(Ntry) yielding Nhits hits. P(L;a) is simply the ratio of Nhits to Ntry. Results are

reported as an average over four different runs with different initial condi-

tions for the random number seed to generate p(Dui) in Eq. 10. To quantify

the dependence of the angle ua on L/a, for every hit, the observed value of

ua is recorded, and a mean is computed over the Nhits values after each

simulation run.

Figs. 2 and 3 report the equilibrium probability of loop formation P(L;a)

for different values of L and a while Fig. 4 reports the equilibrium value of

average opening angle (defined as p – 2ua) over all conformations recorded

as hits as a function of L/a.

Eigenmode calculation

Eigenmodes of the DNA thermal fluctuations can be extracted based upon

the knowledge of various loop configurations. In our model, we sample DNA

loop configurations from a constant length-constant separation-constant

temperature ensemble. New loop conformations are generated from the ex-

isting one by crankshaft rotation (26). A subchain containing a random

number of links is flipped about an axis joining the end points of this seg-

ment. This new conformation is selected with a probability of acceptance

min½1; expð�ðEnew � EoldÞ=kBTÞ� to satisfy the Metropolis criterion (27),

where Enew and Eold are the energies of the new and old conformations,

respectively, and the min function selects the minimum of the two terms in

parenthesis. In our model, overlap of DNA segments is not allowed and

therefore, trial moves generating loop-segment overlap (Enew ¼N) are au-

tomatically discarded by the acceptance criteria. The eigenmode calculations

can be performed by either imposing fixed end-angles or variable end-angles

in the simulation. However, the theoretical calculation of the first eigenmode

(see Appendix) is performed for the case when the end-angles are fixed.

Therefore, to make the explicit comparison with the theoretical result, we

impose that the end-angles are fixed in our Metropolis MC simulations. Rigid

body translation and rotation are removed by holding the end-points of the

DNA loop fixed. Each MC run is carried out one billion times to ensure that

the system reaches equilibrium and the properties (average energy) converge.

The initial geometry of the links of the DNA loop, to begin the MC

simulations, is obtained from the minimum energy configuration by solving

the following discrete version of Eq. 1:

Kb

ui11 � 2ui 1 ui�1

ðDsÞ2
� �

¼ �FsinðuiÞ: (11)

This equation is a boundary value problem and is solved numerically using a

shooting method (28) by varying the force, F (Lagrange multiplier), to satisfy

the constraint of end-to-end distance.

To calculate the eigenmodes of DNA loop fluctuations from the MC data,

a covariance matrix Cij ¼ Æðri � ÆriæÞðrj � ÆrjæÞæ is constructed (29), where ri

is the position vector of each link, and Æ�æ represents average over confor-

mations sampled from the MC run. Eigenvectors of this matrix represent the

principal modes of loop fluctuations, while each eigenvalue indicates the

FIGURE 2 Probability of loop formation P(L;a) plotted as a function of

nondimensionalized length L/jp for various values of the end-to-end

distance a. The probability is peaked at L/jp � 5. There is also a second

peak at much smaller values of L/jp, which is depicted in Fig. 3. A peak at

L/jp � 5 is expected from the classical WLC model of DNA, which does

not account for the presence of the protein. The location of this peak shows

only a weak dependence on a. Link length ¼ 2.5 nm; tolerance in a ¼
0.5 nm. Coefficient of variation of P(L;a) (not shown in the figure) is ,1%.
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squared amplitude of the fluctuations along each eigenmode. Because the

eigenvectors are orthogonal, they represent independent modes (basis

functions) for describing the collective DNA loop fluctuations in the equi-

librium ensemble of the conformations.

Fig. 5 reports the calculated shape of the first (slowest) eigenmode re-

sulting from the covariance analysis (see above).

Validation of the quasiharmonic assumption

To calculate the eigenfunctions of the fluctuation operator, T (see Eigenmode

Calculation), we expanded the potential energy functional to quadratic order

in du, thus treating the DNA loop as a quasiharmonic system. In this sec-

tion, we describe a method to validate this assumption by comparing the

configurational density of states (DOS) of the DNA loop against that of

n-independent harmonic oscillators. To this end, we use the DOSMC

method, developed by Wang and Landau (30), to calculate DOS of the DNA

loop. DOSMC is an enhancement over conventional MC techniques since

it directly produces the DOS, g(E) instead of the canonical distribution

gðEÞe�ðE=kBTÞ generated by conventional techniques. DOSMC achieves this

task by performing a random walk in energy space instead of random walk

in the conformational space. Starting from g(E) ¼ 1 and energy histogram,

h(E) ¼ 0, random walks in the energy space are performed by generating

new loop conformations by crankshaft rotation (see Validation of the

Quasiharmonic Assumption). The new conformation is accepted with a prob-

ability min½ðgðEoldÞ=gðEnewÞÞ; 1�: Each time an energy state is visited, the

corresponding DOS and energy histogram are updated according to g(E) ¼
g(E) 3 f and h(E) ¼ h(E) 1 1, where f is a modification factor .1 (in our

simulations, we take f ¼ e1). The random walk in energy space is continued

until the accumulated energy histogram is flat within a predefined tolerance

(we define a histogram to be flat when h(E) is within 65% of average h(E)).

To increase the accuracy of g(E) (which is proportional to ln f), f is reduced

according to the rule fnew ¼
ffiffiffiffiffiffi
fold

p
; and the histogram is reset to zero, i.e.,

h(E) ¼ 0. These steps are performed until the desired accuracy in g(E) is

obtained. In this work, simulations are performed until f reduces to 10�7. To

speed up the simulations, the energy space is divided into overlapping energy

windows. Any walk outside the corresponding energy window is rejected. To

satisfy the boundary condition imposed by Eq. 3, the energy cost to change

the terminal angle that the last/first link makes with the positive x axis is set to

zero. At the end, resultant pieces of g(E) in the respective windows are

merged together so as to minimize the error between g(E) in the overlapping

regions. The obtained g(E) is an accurate estimate of the configurational DOS

of the system up to a constant multiplicative factor.

For a DNA loop of n links (i.e., length nDs) in two dimensions, a total of

2n 1 2 coordinates need to be specified. However, the following constraints

on the system reduce the degrees of freedom available to the DNA loop: 1),

absence of rigid body translation and rotation defines three constraints; 2),

each link length being constant defines n constraints; and 3) distance between

first and last link being constant defines one constraint. Hence, the DNA loop

effectively has only (n � 2) degrees of freedom. The quasiharmonic treat-

ment of the DNA loop assumes that DNA motion can be treated as a col-

lection of (n � 2) independent harmonic oscillators. For a system comprised

of m independent harmonic oscillators, the number of states with a total

configurational energy between energy E and E 1 dE is N(E)dE, where N(E)

is given by (31)

NðEÞ}
Z N

�N

d E� +
m

i¼1

1

2
kix

2

i

� �Ym

i¼1

dxi; (12)

FIGURE 4 Most probable angle ua plotted as function of L/a. Error bars

represent standard error in the reported values. As a / 0, we see that ua /
49.5�, which corresponds to a loop opening angle of 81� predicted by

Shimada and Yamakawa (4). The most probable angle was obtained from

the probability distribution of the end angles of the loops generated by the

MC simulations. The line is the result of a calculation based on a mini-

mization of elastic bending energy which predicts that the optimal loop is the

one whose curvatures are zero at the ends. This condition corresponds to a

situation in which the protein exerts no moments on the DNA. The inset

shows the energy of an elastic rod plotted as a function of ua for L¼ 5jp and

two different values of L/a. In both the panels we also plot�log(P(ua;L/a)) 1

C, where C is an arbitrary constant using data from MC simulations and

find good agreement. We note that the energy wells in both the panels are

shallow (which implies that we should expect a large variance), which

explains why the MC data for most probable ua for large values of L/a does

not agree too well with the curve.

FIGURE 3 Probability of loop formation P(L;a) plotted as a function of

nondimensionalized length L/jp for various values of the end-to-end

distance a. The presence of a new length-scale a imposed by the protein

results in a second peak at small values of L. The WLC theory for cyclization

does not predict this peak. The wells in the probability distributions

correspond to lengths at which the elastic energy required to bend a short

fragment of DNA to satisfy the constraint on end-to-end distance is a local

maximum. The inset on the top shows that there is good correlation between

the locations of the well, determined from the MC simulations versus the

locations of maximum bending energy. The disagreement between these two

calculations increases with increasing length due to the increasing effects of

fluctuations. The inset in the bottom depicts the shape of a DNA loop when

L � a. Link length ¼ 1.0 nm; tolerance in a ¼ 0.5 nm. Coefficient of

variation of P(L;a) (not shown in the figure) is ,1%.
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where d is the Dirac d-function, and ki and xi are, respectively, the spring

constant and the displacement of the ith oscillator. The DOS for this system

is then gðEÞ ¼ ðdNðEÞ=dEÞ; yielding gðEÞ}Eðm=2Þ�2 (in deriving this rela-

tion, we first performed the integration in Eq. 12 (32)). Hence, if the quasi-

harmonic approximation holds for a DNA loop of n links, its DOS should

obey gðEÞ}Eððn�2Þ=2Þ�2: By comparing the slope of the ln g(E)-versus-E plot

(Fig. 6) from the DOSMC simulations to the slope, which is equal to the

density-of-states exponent, from the above expression, i.e., (n – 2)/2 – 2 (Fig.

6 inset), we can assess the validity of quasiharmonic approximation for the

DNA loop.

RESULTS AND DISCUSSION

The main message of this article is that the probability of loop

formation in DNA is affected by the geometry of the looping

protein. This result is manifest in Figs. 2–4. Fig. 2 shows the

probability of loop formation P(L;a) as a function of the

length L of the loop and the size of the protein complex a. As

expected from the classical WLC model (33) of DNA there is

a peak in the probability of loop formation for L/jp� 5. This

is a result of the competition between elastic bending and

entropy. The probability is not much affected by the protein

size a at these lengths, since a� L. Similar conclusions were

reported also by Merlitz et al. (16), who showed (using a

Brownian dynamic simulation) that the effect of the finite

size of the looping protein is most dramatic for contour

lengths ,300 bp and small for lengths .500 bp. This does

not imply, however, that the size of the protein complex is

irrelevant for these loop lengths. This can be better appreci-

ated from Fig. 4, which summarizes the effect of protein size

on the value of the loop opening angle. For example, the

optimal opening angle of a DNA loop is known to be 81�
when a / 0 (4), but for a¼ 10 nm at L� 250 nm we find an

optimal opening angle of 75�. Fig. 4 also suggests that the

most probable shape of the loop corresponds to the case in

which the curvatures at the ends are zero. Evidence for this

assertion comes from the strong correlation between the

continuous line obtained from an argument resting on the

minimization of elastic energy of the loop and the data ob-

tained from MC simulations, and the fact that an opening

angle of 81� for a¼ 0 calculated by Shimada and Yamakawa

(4) does actually correspond to the zero end-curvature con-

dition. This observation implies that the most probable loop

shape is one in which the protein exerts no moments on the

DNA at their points of contact. The agreement between the

curve obtained from the elastic calculation and the data ob-

tained from MC simulations seems to get poorer as L / N.

The reason for this can be understood by looking at the insets

of Fig. 4. The continuous lines in the inset were obtained by

calculating (following (14)) the elastic energy of the loop as a

function of the end-angle ua for L ¼ 5jp and two different

values of a. The open circles are data from MC simulations

for the same values of L and a. The probabilities were con-

verted into energies (up to an additive constant) through the

Boltzmann law. It is remarkable that the data from the MC

simulations agree so well with the elasticity calculation. This

suggests that the shapes of the loop corresponding to different

values of the fluctuating variable ua are such that the corre-

sponding energies are not too different from the equilibrium

shape for those boundary conditions. We also see that for

FIGURE 6 DOS for the 200-nm fluctuating DNA loop plotted as a

function of the energy. The inset shows the DOS exponent as a function

of the nondimensionalized length L/jp. The excellent agreement between the

slope predicted from quasiharmonic theory of independent oscillators with

that from DOSMC simulations shows that expanding the energy up to

quadratic order in the fluctuations in u (s) is a good approximation for the

lengths of the DNA considered in this article.

FIGURE 5 The first eigenmode of the fluctuating loop obtained from MC

simulations. The solid line represents the mean configuration and the dashed

line represents the deformation due to the fluctuations along the first eigen-

mode. The end-to-end distance of the loop is fixed and so are the angles

made by the tangents (to the x axis) at the ends. The inset shows the corre-

sponding change in the tangent angle du as a function of the arc-length s

calculated using theory (solid line plotted using Eq. 23) and using MC

simulations (dotted line) calculated as described in Eigenmode Calculation.
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large values of L/a the probability of having an end-angle ua

is peaked at the value of ua corresponding to zero end mo-

ments. However, the energy well is shallow, implying that

the variance is large. This is the reason behind the relatively

poorer agreement between the two methods used for deter-

mining the most probable value of the end angles. One has to

do an impractically large MC calculation to obtain better

agreement.

The most significant effects of the size of the protein

complex are felt at small values of the length L. The proba-

bility of loop formation is peaked at values of L that are

comparable to a as seen from Fig. 3. This peak is significantly

higher than the peak observed at L/jp � 5 and has not been

predicted by the classical WLC model of DNA. Some re-

searchers have suggested that looping probabilities will

necessarily be high when the DNA contour length is com-

parable to the span of the protein complex, but a quantitative

prediction is still lacking (34). In fact, most studies which

predict high probability of loop formation at short DNA

lengths do so only after the introduction of defects, such as,

kinks or hinges in the DNA, thus deviating from the WLC

model (7,34–36). A notable exception is a study by Merlitz

et al. (16) which shows, through Brownian Dynamics sim-

ulations based on the classical WLC model of DNA, that

the probability of loop formation is enhanced .10-fold at

L � 40 nm when we go from a ¼ 0 to a ¼ 10 nm. They also

analyzed the effects of nonlinearities such as permanent

bends in the DNA, and showed how these defects can greatly

enhance looping probabilities and rate constants for contour

lengths L in the interval 40 nm , L , 100 nm for various

values of the span a. Merlitz et al. do not report results for

lengths shorter than 40 nm, but it would not be unreasonable

to expect that to obtain high looping probabilities in this

regime would require introduction of nonlinearities in the

DNA. However, this is exactly the regime where we have

obtained a second peak and valley in the looping probabili-

ties. In the light of this observation the significance of the

results summarized in Fig. 3 is that high looping probabilities

for short DNA contour lengths (L , 40 nm) can be explained

with the classical WLC model of DNA (without nonlinear-

ities such as kinks or permanent bends) if we account for

the geometry of the looping protein. At these short contour

lengths, shape fluctuations make only a small contribution

to the free energy so that the peak in probability is simply a

result of the low elastic bending energy required to satisfy the

constraint on the end-to-end distance placed by the looping

protein. In fact, the location of the well in the probability

distribution between the two peaks (at L � a and L � 5jp)

is strongly correlated with the length at which the elastic

bending energy has a local maximum (see Fig. 3, inset).
The results summarized in Figs. 2 and 3 could also provide

an alternative interpretation for the experimental results of

Smith et al. (13). In this experiment, the probability of loop

formation was measured as a function of the length of the

loop for several enzymes which interact with DNA at two

separate sites (13). The main results of these experiments

were that the probability distribution was different for dif-

ferent proteins and that looping at short contour lengths was

far more probable than predicted by the WLC theory alone.

The authors had also found two peaks in the probability

distribution for looping by some proteins. Qualitatively similar

observations in bulk experiments were made by Reuter et al.

(37), who found that the propensity of cutting by certain two-

site restriction enzymes (EcoRII) was peaked at two different

contour lengths with the highest propensity occurring at the

peak at short lengths. They had suggested that at short contour

lengths the DNA is slightly bent to meet the constraints placed

by the enzyme while at longer lengths it was looped. All of

these observations are replicated in our model which accounts

for the effects of protein size. A direct comparison of our re-

sults with those of Smith et al. (13) is not possible, since our

calculations have been carried out only in two dimensions,

whereas the experiments are fully three-dimensional. Also,

despite our results which rely solely on an elastic rod model

of DNA, the possibility of kink or hinge formation at high

curvatures still remains open.

An important by-product of our MC simulations is that we

have decomposed the fluctuating shapes of the loop into ei-

genmodes. Such a decomposition is possible when the fluc-

tuations around equilibrium are small so that the energy of an

arbitrary shape can be expressed as the sum of the energy of

the equilibrium shape and a term that is quadratic in the small

fluctuations. For the case of the DNA loop, the shape can be

written in terms of the angle u (s), which is the angle made

by the tangent to the loop to the positive x axis. Fig. 5 shows

the deviations in the shape of the loop and the angle du (s) as

a function of the arc-length s. The first eigenmode (corre-

sponding to the largest eigenvalue of covariance matrix) is

shown together with comparison to an analytical result. The

analytical calculation is performed in a slightly different

context in which the force at the ends (as opposed to the

end-to-end distance) as well as the angles made by the tan-

gents at the ends are held fixed. Despite this difference in the

boundary condition, the theory and simulations yield similar

variation for the change in the tangent angle along the arc

length of the DNA (see Fig. 5, inset). Movies showing the

projection of the MC data on the two slowest eigenmodes are

available as Supplementary Material data. Both the results

show that the shape fluctuations are large in the regions of the

loop which are nearly straight (low curvature) and small in

the highly curved regions. This would imply that the entropic

contributions to the free energy of the loop have their origin in

the low curvature regions. A similar conclusion was also

reached by Fain et al. (38) in their analysis of plectonemes in

DNA where it was determined that most of the free energy

of the plectonemes was elastic bending and twisting energy

while the entropic part was always negligible. To the best of the

authors’ knowledge, this is the first report on the fluctuating

modes of a DNA loop subjected to clamped boundary condi-

tions. Calculations such as these could be important building
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blocks for determining the free energies of binding/unbinding

reactions of biological entities which have only recently been

shown to depend strongly on configurational entropy.

Finally, from our DOSMC simulations, we have confirmed

that expanding the potential energy of the DNA loop to

quadratic order in fluctuations is a good approximation (see

Fig. 6). The assumption of quasiharmonicity simplifies a

variety of thermodynamic property calculations, the most

prominent example being the entropy. Based on the confor-

mational sampling of metropolis MC and its subsequent

eigenvector decomposition, we can calculate the quasihar-

monic configurational entropy of the DNA loop (29). Fur-

thermore, the DOS can be directly used to compute the free

energy and entropy, quantities which are not directly avail-

able in conventional MC methods.

CONCLUSIONS

In this article, we have summarized the effects of the size of

the mediating protein on the propensity of loop formation in

DNA. Many of the qualitative features observed in recent

single molecule experiments on enzyme-mediated DNA

looping are reproduced by the WLC theory if we take into

account the nonzero size of the looping enzyme. Two im-

portant effects that seem to directly depend on the size of the

enzyme complex are that, 1), the overall propensity of loop

formation at any given value of the DNA contour length in-

creases with the size of the enzyme complex; and 2), the con-

tour length corresponding to the first peak as well as the first

well in the probability density functions increases with the size

of the enzyme complex. These qualitative features of the results

can be readily tested by performing the looping experiments

with looping proteins of known sizes. Also, of special interest

are the eigenmodes of DNA fluctuations. Our theoretical cal-

culations and MC simulations have shown that the fluctuations

in the DNA are large where the curvature is small. Perhaps this

observation can also be verified from experiments where real-

time motions of DNA are recorded (39).

APPENDIX: FLUCTUATION OPERATOR

To visualize the fluctuations away from the equilibrium shape ueq(s), we vary

the shape by du (s) and expand the following potential energy functional (see

Eq. 13) characterizing a bent rod up to quadratic order in du (s):

E½uðsÞ� ¼
Z L

2

�L
2

Kb

2
u9

2
ds�

Z L
2

�L
2

Fcosuds: (13)

The first term in the above potential energy is the elastic bending energy and

the second term is the potential energy of the applied force F. We assume

here that a known force F is applied at the ends of the loop. This is different

from specifying a given end-to-end distance on the loop as a constraint as

summarized by Eq. 4. In that case, F should be interpreted as a Lagrange

multiplier enforcing the constraint on the end-to-end distance. Here we will

work with the case when the force F is specified since the mathematics in this

situation is relatively simpler. We now wish to compute T which is the so-

called ‘‘fluctuation operator’’ and is given by

dE ¼ E½ueqðsÞ1 duðsÞ� � E½ueqðsÞ� ¼ du
T
2

du: (14)

Fortunately, this exercise has been carried out by Kulic et al. (19), who have

shown that the fluctuation operator is given byffiffiffiffiffiffiffiffi
KbF
p

kBT
T ¼

ffiffiffiffiffiffiffiffi
KbF
p

kBT
�@

2

@t
2 1 2k

2
sn

2ðtjkÞ � 1

� �
; (15)

and t ¼ s/l and the equilibrium shape of the loop is described by Eq. 5. We

are interested in the eigenvalues np and eigenfunctions fp(s) of this operator,

which satisfy

Tfp ¼ npfp; fp 6
L

2l

� �
¼ 0: (16)

The second condition is a result of requiring that duð6L=2Þ ¼ 0; which

would be the case if the angle at the ends of the loop were constrained by a

rigid protein. If, on the other hand, the protein was flexible, then we would

require du9ðL=2Þ ¼ 0; which leads to

Tfp ¼ npfp; f 9p 6
L

2l

� �
¼ 0: (17)

Real numbers np and corresponding functions fp(s) satisfying the equation

Tfp ¼ npfp for the operator T given by Eq. 15 are known (see (19)). The

eigenvalues and corresponding eigenfunctions are

k
2 � 1; with eigenfunction dnðtjkÞ; (18)

0; with eigenfunction cnðtjkÞ; (19)

k
2
; with eigenfunction snðtjkÞ: (20)

The values np¼ 0 and fpðsÞ ¼ cnððs=lÞjkÞ satisfy the conditions summarized

by Eq. 17. However, none of these eigenfunctions satisfy Eq. 16. But,

fortunately, the operator T also has a continuous spectrum apart from the

discrete eigenvalues given above. The spectrum was determined as part of a

one-dimensional problem in solid-state physics regarding the valence and

conduction bands in solids (40). The eigenvalues and eigenfunctions of the

continuous spectrum are

np ¼
k

2

cn
2ðtpj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k

2
p

Þ
; fpðtÞ ¼

Hðt 1 itpjkÞ
QðtjkÞ expð�tZðitpjkÞÞ;

(21)

where H(tjk),Q(tjk) and Z(tjk) are Jacobi’s h, u, and z-functions, and

�2Kð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

Þ# tp # 2Kð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

Þ and K(k) are the complete elliptic inte-

grals of the first kind. The lower bound on the continuous spectrum of

eigenvalues is obtained when tp¼ 0 or tp ¼ 62Kð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

Þ resulting in np¼
k2, which leads to the eigenfunctions fpðtÞ ¼ C1ðkÞsnððpt=2KðkÞÞjkÞ and

fpðtÞ ¼ C2ðkÞsnððpt=2KðkÞÞjkÞcosð2pt=KðkÞÞ where C1(k) and C2(k) are

real numbers that depend only on k. We note, however, that the eigenvalue

np ¼ k2 also has another eigenfunction fp(t) ¼ sn(tjk). In other words, the

eigenspace corresponding to the eigenvalue k2 is spanned by three eigen-

functions and we can satisfy the boundary condition that duðL=2Þ ¼ 0 by

finding constants a and b such that

sn
pL

4lKðkÞjk
� �

a 1 bcos
pL

lKðkÞ

� �� �
1 sn

L

2l
jk

� �
¼ 0:

(22)

The required eigenfunction corresponding to eigenvalue k2 is then simply a

linear combination of these eigenfunctions:
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fpðsÞ ¼ asn
ps

2lKðkÞjk
� �

1 bsn
ps

2lKðkÞ

� �

3 cos
2ps

lKðkÞ

� �
1 sn

s

l
jk

� �
: (23)
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