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ABSTRACT Phytochromes are light-sensing pigments found in plants and bacteria. For the first time, the Pfr photoreaction of a
phytochrome has been subject to ultrafast infrared vibrational spectroscopy. Three time constants of 0.3 ps, 1.3 ps, and 4.0 ps
were derived from the kinetics of structurally specific marker bands of the biliverdin chromophore of Agp1-BV from Agrobacterium
tumefaciens after excitation at 765 nm. VIS-pump-VIS-probe experiments yield time constants of 0.44 ps and 3.3 ps for the
underlying electronic-state dynamics. A reaction scheme is proposed including two kinetic steps on the S1 excited-state surface
and the cooling of a vibrationally hot Pfr ground state. It is concluded that the upper limit of the E-Z isomerization of the C15 ¼ C16

methine bridge is given by the intermediate time constant of 1.3 ps. The reaction scheme is reminiscent of that of the
corresponding Pr reaction of Agp1-BV as published earlier.

INTRODUCTION

In plants and bacteria, a multitude of processes is controlled

by phytochromes (1,2), a class of photoreceptor proteins with

two photochemically interconvertible and thermally stable

states Pr and Pfr that absorb in the red and far-red spectral

region, respectively. This feature of phytochromes not only

allows the investigation of two different reactions of the same

chromophore within one binding environment, but also

makes them prototypes for biomimetic bistable light-driven

switches. Three-dimensional structures of the chromophore-

binding environments of bacterial phytochromes, DrBphP

(3,4) and RpBphP3 (5), have recently been resolved.

The primary processes of the two photoconversions in-

volve a Z-E isomerization of the methine bridge between

rings C and D of the bilin chromophore for the Pr reaction and

an E-Z isomerization for the Pfr reaction (6,7). Each reaction

pathway involves several intermediate states, with the first

ones being lumi-R (Pr reaction) and lumi-F (Pfr reaction),

which are formed quickly after photoexcitation. The follow-

ing reaction steps occur on the microsecond to millisecond

timescale and have been characterized by UV/VIS, FTIR, and

resonance Raman (RR) spectroscopy using low-temperature

trapping techniques (8–15). In all bacterial and plant phyto-

chromes known so far, the relatively slow Pr photoreaction

takes place within ;5–100 ps as opposed to the relatively fast

Pfr photoreaction which occurs on the timescale of a few

picoseconds (16–18).

The primary photoreaction of the Pr form of different mem-

bers of the phytochrome family has been subject to numerous

investigations, including ultrafast VIS-VIS (17–22) and VIS-IR

(23,24) pump-probe as well as fluorescence (25–27) spec-

troscopy. In contrast, the literature on the primary processes

of the Pfr reaction is still very scarce. However, the high rate

of its excited electronic-state decay has been quantified by

ultrafast VIS-VIS spectroscopy (16–18). Further, fluores-

cence studies on the Pfr form of oat phytochrome do not show

any detectable fluorescence (26), in line with a very efficient

quenching of the excited electronic state.

In this work, we address the primary photoreaction of

the Pfr form of the biliverdin-binding phytochrome Agp1

(Fig. 1) from Agrobacterium tumefaciens (28) by ultrafast

mid-IR transient absorption spectroscopy. To our knowl-

edge, this is the first ultrafast IR investigation of the Pfr re-

action of a member of the phytochrome family. Details of the

chromophore-protein interaction in Agp1-BV have already

been obtained by site-directed mutagenesis and mass spec-

trometry, showing the covalent binding of the biliverdin

(BV) chromophore via its ring A-vinyl side chain to the

Cys20 residue (29). In both stable states, Pr and Pfr, the chro-

mophore has been found protonated via RR spectroscopy

and flash photolysis experiments (30). Recent results using

locked bilin chromophores (31,32) suggest that the chro-

mophore configuration is ZZZssa in Pr and ZZEasa in Pfr

(ZZZssa and ZZEasa denote the configuration (Z, E) and

conformation (a, s) of the methine bridges in the order A-B,

B-C, and C-D).

As has been demonstrated earlier (34,35), ultrafast mid-IR

spectroscopy is an excellent method to monitor light-induced

structural dynamics. Here, it allows us to follow the transient

vibrational spectra of the molecular states along the primary

Pfr photoisomerization in Agp1-BV with subpicosecond time

resolution. Combined with the electronic-states dynamics as

obtained by transient absorption measurements in the visible

spectra, different reaction models for the primary Pfr reaction

can be evaluated.
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METHODS

Sample preparation

Agp1 from Agrobacterium tumefaciens was expressed and purified as al-

ready described elsewhere (28). A D2O (pD ¼ 7.8) buffer solution (20 mM

Tris, 50 mM NaCl) was used for all experiments. The protein was concen-

trated by ultrafiltration (YM-50, Centricon, Houston, TX) to a viscous smear,

homogeneously spread on a 1.5-inch-diameter CaF2 window (2 mm thick)

and sealed by a second, similar window. In the absorption maximum of the Pr

form at lmax ¼ 700 nm, the optical density of the sample was between ;0.5

OD and ;1.0 OD, equivalent to a pathlength of ;25–50 mm. This translates

to an optical density of ;2 in the amide I/II-region of the steady-state FTIR

spectrum of the sample. Note that the photoinduced IR-difference signals

(see discussion below) are three orders-of-magnitude smaller (;1 mOD). To

allow experiments in the region of high amide I background absorption,

samples of lower optical density were used.

The sample was rotated and moved in the focus plane of the laser beam

perpendicular to the direction of incidence during the experiment to provide

fresh sample conditions for each laser pulse, i.e., to exchange the (micro-

scopic) excited sample volume between two pump-and-probe events

(1.6 ms) and to allow for sufficient recovery of the Pfr state. To avoid pho-

toproduct buildup, firstly an excitation wavelength of lexc ¼ 765 nm on the

red edge of the Pfr absorption band was chosen. Secondly, the sample was

irradiated by background light from a halogen lamp (K2500-LCD, red filter,

Schott, Mainz, Germany), fitting the absorption spectrum of the Pr form

(lmax ¼ 700 nm). All measurements were performed at room temperature.

Sample integrity was confirmed by static FTIR and UV/VIS spectroscopy

before and after the experiments. Except for general bleaching of the steady-

state absorption in the visible up to ;10% until the sample was discarded, no

spectral changes were observed.

Pump-probe spectrometer

The short laser pulses for the pump-probe spectrometer were generated in

nonlinear optical devices. A Ti:Sa-regenerative amplifier system (CPA 2001,

Clark-MXR, Dexter, MI) was used as pump source for the whole experiment.

The visible pump pulses were generated in a homebuilt noncollinear optical

parametric amplifier (NOPA), yielding pulses tunable between 470 and 765

nm with pulse lengths routinely at 60 fs.

Infrared probe pulses were generated in a two-stage optical parametric

amplifier with subsequent difference frequency mixing. The center wave-

length of the probe pulses is tunable between 800 cm�1 and 2500 cm�1 (36).

After passing through the sample, the probe pulses with a typical full width at

half-maximum (FWHM) of 100 cm�1 are dispersed in a polychromator and

detected by a 32-element MCT array (Infrared Systems Development,

Winter Park, FL), comprising a spectral window of ;300 nm (�90 cm�1 at

1750 cm�1 and �40 cm�1 at 1180 cm�1). The pump beam was chopped at

318 Hz (half the laser repetition rate), and pump-induced absorption differ-

ences were evaluated on a single-shot basis. Control measurements on a thin

silicon wafer were performed before and after each experiment to determine

the time zero and the FWHM of the instrument response function (typically

280 fs). The optical path through the front CaF2 window and other param-

eters were identical to those of the phytochrome measurements. The spectral

resolution, which varies slightly with the probe wavenumber, was typically

2.5 cm�1.

For VIS-VIS pump-probe experiments, the same NOPA was used as pump

source, and the probe pulses were generated by a second NOPA. The chopping

scheme was the same as in VIS-IR experiments. After passing through the

sample, the probe pulses (spectral width ;20 nm) were dispersed by a mon-

ochromator (bandwidth 6 nm) and detected by a photodiode. Time zero and

FWHM of the system response (100 fs) were determined by cross correlation

in a BBO crystal or in a SiC-photodiode (two-photon absorption (37)).

The recorded data are the pump-induced absorbance changes DA(Dt, lpr);

cuts along the time axis (Dt) are transients for fixed wavenumbers; and cuts

along the probe wavenumber axis (lpr) are difference spectra at discrete

delay times. The broadband IR probe pulses along with the detector array

allow the detection of one spectral window at a given center wavelength (see

above). Comparability and normalization of the IR data within the entire

investigated spectral regions (Figs. 2 and 3) was achieved via sufficient

overlap between adjacent spectral windows.

Negative absorbance changes display the disappearance of IR absorption

and thus depopulation of the Pfr electronic ground-state vibrations (bleach

bands). Positive absorbance changes indicate the absorption of newly pop-

ulated vibrational states.

The obtained absorbance changes DA(Dt, lpr) between 0.4 ps and 50 ps

were analyzed by a global multiexponential fit,

DAðDt; lprÞ ¼ A0ðlprÞ1 +
N

i¼1

AiðlprÞ3 exp �Dt

ti

� �
; (1)

with A0(lpr) being the pump-induced absorption changes for Dt / N and

Ai(lpr) being the decay associated spectra (DAS) of the corresponding time

constants ti.

RESULTS

Transient IR absorption spectra of Agp1-BV after photoex-

citation at lexc ¼ 765 nm were recorded for the carbonyl and

FIGURE 1 Chemical structure of the biliverdin (BV) chromophore in

ZZEasa configuration, as suggested for the Pfr state (31).

FIGURE 2 Difference spectra of the carbonyl and ethylenic stretch regions

of Agp1-BV Pfr after excitation at lexc ¼ 765 nm at selected delay times.
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ethylenic stretch regions (1490–1760 cm�1) and the finger-

print region (1177–1288 cm�1). Difference spectra in the

respective spectral regions at various delay times are depicted

in Figs. 2 and 3. To correlate the transient vibrational signals

(Fig. 4) with the electronic-state dynamics, ultrafast VIS-VIS

pump-probe experiments were conducted on the same

samples, with excitation at 765 nm and probing at 630, 655,

680, 705, 730, and 755 nm (see Fig. 5 for representative

transients).

Band assignment

The structural dynamics of the biliverdin chromophore are

monitored by the temporal evolution of vibrational marker

bands. The timescale of the detected absorbance changes and

the fact that the most significant structural changes are to be

expected from the chromophore strongly suggest an assign-

ment of the detected signals to vibrations of the BV chro-

mophore rather than the protein moiety. Taking into account

results from experiments using locked chromophores (31,32),

we base our band assignment on the commonly accepted as-

sumption that the chromophore structure of the Pfr form is

ZZEasa. In support of the literature-based assignments,

density functional theory (B3LYP/6-31G**) frequency cal-

culations (38) on the ZZEasa chromophore were performed.

For the calculations, all pyrrole nitrogens were modeled as

protonated (30), no counterion was used, and vibrational

frequencies were scaled with a global factor of 0.9613 (39).

In the carbonyl stretch region (see Fig. 2), the instanta-

neous bleach band at 1710 cm�1 is assigned to the C19 ¼ O

stretching vibration, based on the results in the literature

(9,10,40) and our own calculations. The hydrogen bonding of

the ring D carbonyl group to His280 (3,15) lowers its

stretching frequency significantly, whereas the ring A car-

bonyl group is not hydrogen-bonded and shows up at higher

wavenumbers in PhyA-PFB (10). Furthermore, since the

isomerization occurs at the methine-bridge linking rings

C and D, the contribution of modes located on ring D to

the difference spectra can be expected to be substantially

larger.

The manifold of bleach bands with peaks at 1594 cm�1,

1580 cm�1, and 1574 cm�1 can be assigned to C¼C

stretching vibrations of the p-system comprised by the pyr-

role rings and the linking methine bridges. Previous FTIR

experiments on isotope-labeled Cph1-PCB (40), as well as

RR experiments on Agp1-BV (30) and PhyA-PFB (13,14),

and FTIR experiments on PhyA-PFB (9) have found these

bands and assigned them to C¼C stretching modes. In addition,

FIGURE 3 Difference spectra of the fingerprint region of Agp1-BV Pfr

after excitation at lexc ¼ 765 nm at selected delay times.

FIGURE 4 Transient absorption changes of Agp1-BV Pfr after excitation

at lexc ¼ 765 nm at selected probe wavenumbers of 1554 cm�1 and 1574

cm�1. (Dashed line) Global fit with time constants of t1¼ 0.3 6 0.1 ps, t2¼
1.3 6 0.1 ps, and t3 ¼ 4.0 6 0.1 ps. For the fit, only data after 400 fs delay

time was used to exclude nonlinear artifacts before (perturbed free induction

decay (57)) and at time zero (cross phase modulation (58)) as well as the

system response.

FIGURE 5 Transient absorption changes of Agp1-BV Pfr after excitation

at lexc ¼ 765 nm at selected probe wavelengths of 630 nm and 755 nm.

(Dashed line) Global fit with time constants of tV1¼ 0.44 pm 0.05 ps, and tV2¼
3.3 pm 0.1 ps. Data before 400 fs delay time was excluded from the fit.
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our own calculations show a multitude of modes with dom-

inant C¼C stretching character in this spectral region.

Two pyrrole breathing modes located mainly on rings B

and C are favored for the assignment of the small bleach band

at 1509 cm�1. The frequencies of these two modes were

calculated to 1491 cm�1 and 1523 cm�1. The involvement of

their constituent atoms in the delocalized p-system of the

chromophore backbone makes them sensitive to the isom-

erization.

The broad and short-lived positive signal between 1610

cm�1 and 1700 cm�1 appears almost instantaneously and

decays with a time constant of 0.3 ps (see analysis below, Fig.

6). Thus, it is likely due to S1 vibrational modes.

In the fingerprint region, our own calculations show nu-

merous C-H rocking and C-C stretching vibrations, so that

the assignment of the difference bands in Fig. 3 at 1276 cm�1,

1238 cm�1 and 1184 cm�1 to modes of that character is only

qualitative.

Kinetic analysis

A global analysis of the complete time-resolved IR data was

performed via Eq. 1. Three exponentials are necessary to fit

the data, whereas a four-exponential approach does not in-

crease the goodness of fit. This analysis yields time constants

of t1¼ 0.3 6 0.1 ps, t2¼ 1.3 6 0.1 ps, and t3¼ 4.0 6 0.1 ps,

and the corresponding decay-associated spectra (DAS) A1, A2

and A3, as shown in Figs. 6 and 7 for the respective spectral

regions. Singular value decomposition of the time-resolved

difference spectra and triexponential fit of the most signifi-

cant component (not shown) renders time constants of 0.3 ps,

1.0 ps, and 3.6 ps. This further corroborates the results of the

global fit.

The further discussion will make significant use of the

shapes of the DAS, whose features can be compiled as fol-

lows (note that negative/positive amplitudes of the DAS

represent absorbance strength, which increases/decreases

with the respective time constants): A1 shows signals that

appear within the system response time of the experiment,

thus positive signals are interpreted as signals from the first

states detectable by the experiment. The short-lived and

broad absorption bands centered at ;1740 cm�1, 1650 cm�1,

and 1265 cm�1 are then likely to be caused by S1 vibrational

modes that are formed rapidly after photoexcitation. The

negative contributions in A1 at ;1563 cm�1 and 1230 cm�1,

together with its local minimum at ;1697 cm�1, do not show

any significant overlap with the ground-state bleach signals

at 1710 cm�1, 1594 cm�1, and 1238 cm�1, but are system-

atically red-shifted. Furthermore, they show a systematic

overlap with negative contributions of A2 and positive con-

tributions of A3, suggesting that A1 and A2 represent pro-

cesses that feed a state related to A3. In the context of the

described systematics, it is plausible to regard the local

minimum of A1 at 1697 cm�1 as a negative contribution in

A1, in line with those at 1563 cm�1 and 1230 cm�1, since the

broad positive S1-absorption in A1 can easily obscure nega-

tive bands.

On the other hand, the negative contributions of A3 coin-

cide well with the most prominent ground-state bleach sig-

nals at 1710 cm�1, 1594 cm�1, and 1238 cm�1, in addition to

further minor bleach signals at 1511 cm�1, 1277 cm�1, 1260

cm�1, and 1186 cm�1. Overall, A3 shows a shape that is

typical for vibrational cooling, with negative contributions

overlapping with ground-state absorption bands, and positive

contributions that are systematically red-shifted and asym-

metrically broadened to the red side of the spectrum. Such

characteristic patterns have been observed with transient IR

spectroscopy on azobenzene (41) and protonated Schiff base

retinal in solution (42) and have been attributed to vibrational

cooling in the electronic ground state. Similar processes have

been reported for many molecular systems in the condensed

phase (43). The time constant t3 in our experiment complies
FIGURE 6 Decay-associated spectra for the Pfr primary reaction of Agp1-

BV in the carbonyl and ethylenic stretch regions as derived from a global fit.

FIGURE 7 Decay-associated spectra for the Pfr primary reaction of Agp1-

BV in the fingerprint region as derived from a global fit.
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with the time range found for electronic ground-state vibra-

tional cooling in protein systems (24,34,44).

The A0 spectra of the global analysis of the infrared data

represent the residual signals for virtually infinite delay time,

and thus should show the difference spectra of lumi-F–Pfr.

Although the low isomerization quantum yield (see below)

hampers the identification of lumi-F in the A0 spectrum,

qualitative agreement is found between the A0-carbonyl

region and low-temperature FTIR difference spectra of

PhyA-PFB (9,10).

From the transient absorption experiments in the visible

with probe wavelengths of 630, 655, 680, 705, 730, and 755

nm, two global time constants of tV1 ¼ 0.44 6 0.05 ps and

tV2 ¼ 3.3 6 0.1 ps were derived. Singular-value decompo-

sition analysis as well yields two time constants of 0.6 ps and

3.3 ps, in good agreement with the global fit results. The

transients given in Fig. 5 show the recovery of the electronic

ground-state bleach (lmax� 750 nm), which is probed at 755

nm, and the decay of the S1 excited-state absorption, which is

probed at 630 nm and which accompanies the ground-state

bleach decay. It should be kept in mind that the Pfr state of

Agp1-BV exhibits significant absorbance between 600 and

800 nm (28). The traces at both wavelengths show contri-

butions from both detectable time constants tV1 and tV2,

whereas the amplitude of tV2 is substantially larger for the

recovery of the ground-state bleach compared to the excited-

state absorption decay. The contribution of the tV2 compo-

nent in the transient signal at 630 nm is considered due to

ground-state processes (see below).

The relative amount of recovery of the initial ground-state

bleach signals in the IR allows the determination of the

isomerization quantum yield independently of a specific re-

action scheme (24). For this purpose, the IR transients at

1710 cm�1, 1594 cm�1, and 1238 cm�1 were quantitatively

evaluated. Their average bleach recovery suggests a quantum

yield for lumi-F formation of ;8%, which deviates from the

reported value of 0.4% for the Pr formation (28). Note that the

only scenario leading to an overestimation of the lumi-F

quantum yield is an overlap of the (initial) bleach bands by

short-lived absorption bands directly after photoexcitation.

This can be excluded for all but the 1710 cm�1 bleach bands,

and is thus very implausible to cause an error of one order of

magnitude.

DISCUSSION

The analysis of the ultrafast data allows the construction of

several reaction schemes for the primary processes, three of

which (Schemes A–C, see Fig. 8) are taken into consider-

ation, with Scheme C being discussed in more detail. In the

following, ti and tVi are used as given above.

Scheme A includes a structural relaxation from the Franck-

Condon region to a S1-state Pfr* within t1, where a branching

occurs. The productive pathway of the branching leads di-

rectly to the first metastable photoproduct lumi-F, whereas

FIGURE 8 Reaction schemes for the Pfr primary reaction of Agp1-BV

(see text). Solid bars denote excited electronic states, open bars denote elec-

tronic ground states.
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the nonproductive part decays back to a vibrationally hot

electronic ground-state Ofr, which repopulates the (cold) Pfr

vibrational ground state. The decay of Pfr* is supposed to

occur with a rate constant of 1/t2 and the Ofr/Pfr transition

with a rate of 1/t3. This reaction scheme is compatible with

the analysis of the infrared data in that the positive contri-

butions in A3, which we attribute to a population of Ofr, al-

ways coincide spectrally with negative contributions from A1

and A2. Since the rate constants attributed to A1 and A2 are

relatively similar, these two processes cannot be viewed as

completely decoupled, hence the formation of Ofr shows

kinetic contributions from the decay of SFC and Pfr*.

The deficiencies of Scheme A are twofold: Firstly, for the

photoreaction to occur on an ultrafast timescale, one would

assume the gradient of the S1 surface in the Franck-Condon

region to be relatively large. This implies that the initial

structural relaxation (not necessarily along the C15 ¼ C16

torsional coordinate) occurs significantly faster than the

system response time of the experiment and also faster than

t1. Secondly, the decay of the excited-state absorption as

detected in the VIS-VIS experiment shows tV1 as dominant

time constant, which is very close to t1. Thus, we can assume

t1 to represent the dominant S1 decay process, which con-

tradicts its interpretation as movement out of the Franck-

Condon region.

Scheme B is considered as a sequential reaction on the S1

excited-state potential energy surface involving two S1 sub-

states, Pfr** and Pfr*. From the Franck-Condon region, the re-

action proceeds via Pfr** and Pfr*, with a branching to lumi-F

and to the electronic ground-state Pfr (in its vibrational

ground state) that occurs with the decay of Pfr*. Here, the time

constants are assigned as follows: Relaxation from the

Franck-Condon region with t1, reaction from Pfr** to Pfr* with

t2, decay of Pfr* and formation of lumi-F and Pfr with t3. An

additional reaction path between Pfr** and Pfr cannot be ex-

cluded.

Scheme B not only suffers from the same deficiencies as

described above for Scheme A. Additionally, it cannot be

assumed in general that the decay of the excited electronic-

state Pfr* leads directly to a (vibrationally) relaxed electronic

ground state. For this unrelaxed ground state not to be

traceable in the time-resolved infrared data, either its lifetime

has to be small compared to t3, or its vibrational spectrum has

to coincide with that of Pfr* or of Pfr. However, the lifetime of

the vibrationally excited electronic ground state can be esti-

mated to ;3–4 ps by comparison to the Pr reaction (24).

Further, since the additional state is assumed to be structur-

ally or vibrationally unrelaxed, its spectrum cannot coincide

with that of Pfr, and a coincidence with the Pfr* vibrational

spectrum seems far-fetched.

Scheme C accommodates our observations much better

and avoids the difficulties of Schemes A and B. Here, the step

from the Franck-Condon region to Pfr** is assumed to be

much faster than the system response time of the experiment

and thus undetectable. With the decay of Pfr**, a first

branching occurs with reactions to Pfr* and to the vibrationally

unrelaxed electronic ground-state Ofr. The time constant t1 is

assigned to the decay of Pfr**. Pfr*, with a lifetime of t2, decays

with a branching between the formation of the first meta-

stable photoproduct lumi-F and the formation of a structur-

ally unrelaxed form of the educt-state Pfr, subsumed with Ofr.

Ofr reacts back to the vibrational ground-state Pfr, via vibra-

tional cooling and structural relaxation within t3. Since Ofr is

populated from Pfr** and Pfr*, it is suggested to comprise vi-

brationally hot as well as structurally unrelaxed Pfr ground

states that cannot be spectrally separated and share closely

similar kinetics in their relaxation to Pfr.

It should be pointed out that the construction of the reac-

tion schemes is based on the three time constants and the

related DAS that were derived from the highly structured IR

data. The two time constants of the VIS transients are nev-

ertheless consistent with the dynamics described in Scheme

C. Apparently the fit cannot distinguish between t1 and t2,

but yields a weighted average tV1. This can be rationalized by

the fact that the electronic absorption spectra are generally

broad and unstructured, in contrast to vibrational spectra.

Thus, the differences between the Pfr** and the Pfr* VIS spectra

along with their similar lifetimes do not allow their separation

into two kinetic components. The longer lifetime tV2 ¼ 3.3

ps is in fair accordance with t3 ¼ 4.0 ps obtained in the IR.

Following Scheme C, tV2 has then to be attributed to pro-

cesses on the electronic ground-state surface: 1), the recovery

of the vibrationally fully relaxed Pfr electronic ground state,

monitored at 755 nm; and 2), the decay of the structurally

unrelaxed fraction of Ofr, which is suggested to contribute

significantly to the transient absorbance at 630 nm.

Similar time constants have been observed in previous

VIS-VIS experiments on the Pfr form of PhyA-PFB (17)

(0.68 ps and 4.0 ps) and the Pfr form of Cph1-PCB (18) (0.54

ps and 3.2 ps). These results suggested a reaction with two

consecutive steps, but no specific reaction schemes were

presented. For PhyA-PFB, it remained unclear whether the

longer time constant describes an electronic ground- or excited-

state process. Similarly, the Cph1-PCB data did not allow an

unequivocal assignment of the kinetics to electronic ground-

or excited-state dynamics.

So far in this discussion, photoinduced intramolecular pro-

cesses as transitions between different electronic-state poten-

tial energy surfaces, and conformational changes as well as

vibrational relaxation of the chromophore, have been ad-

dressed. In addition, intermolecular energy flow from the

chromophore to the surrounding protein and finally to the

buffer solution will lead to an increased temperature of

the microscopic sample volume. Timescales for energy con-

duction and heat diffusion, respectively, through protein

matrices, have been found to be on the timescale of our ex-

periment, e.g., 7–20 ps for hemoglobin (45). One temperature

effect could be a change in the absorption bands of the sur-

rounding water, leading to a spectrally rather unspecific

baseline shift. This was not observed in our experiments.
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Spectrally specific contributions could originate from heat-

ing of the protein backbone, which for bacteriorhodopsin

have been shown to yield IR difference bands in the amide II

region at ;1550 cm�1 and (much smaller) in the amide I

region (46). The difference signals for long times (A0 spec-

trum) do not give indications for such bands. Further

spectrally specific changes at long delay times (e.g., 50 ps)

could be due to the vibrational spectrum of the chromo-

phore, having released its excess energy to the environment.

However, the band shift induced by such a small tempera-

ture change (a few Kelvin) is negligible, considering the

relatively low chromophore concentration (41,46). We

therefore conclude that neither the determination of the

quantum yield nor the observability of the lumi-F state are

affected by a temperature effect.

The identification of A3 (and thus also of t3) as a relaxation

process of a vibrationally unrelaxed Pfr electronic ground

state leads to the conclusion that the first metastable photo-

product, which we assume to be lumi-F, can only be popu-

lated from the longest living electronic excited-state Pfr*,

which decays within t2 ¼ 1.3 ps. Considering the low

quantum yield of the lumi-F formation, the fact that the

cooling process is readily observed strongly suggests it to be

part of the nonproductive pathway. Thus, an involvement of

t3 in the isomerization reaction is very unlikely. Although the

low quantum yield does not allow the detection of lumi-F

product bands, this suggests the E-Z isomerization to occur

along the excited-state reaction pathway, with an upper limit

for the isomerization time of t2 ¼ 1.3 ps. A stepwise isom-

erization via a ground-state reaction is implausible, since

time-resolved experiments on the Pfr state of other phyto-

chromes (17,18) with higher isomerization quantum yields

were also unable to detect spectral changes beyond the order

of magnitude of t3.

The isomerization quantum yield of the Pfr primary reac-

tion, as derived here via the primary recovery of the Pfr educt-

state, is very similar to that of the Pr reaction (24). In contrast

to the Pr reaction, where the yield of the primary reaction

(lumi-R formation) was found to be equal to that of the Pfr

formation (28), the corresponding values of the Pfr reaction

differ in more than one order of magnitude, i.e., 8% vs. 0.4%.

This suggests the possibility of a short-cut reaction origi-

nating in an intermediate state along the Pfr/Pr reaction path

and leading back to the Pfr form. In consequence, this dark

reaction would have to include a thermally driven Z-E isomer-

ization. Double-bond isomerizations of free chromophores

often require the energy of an absorbed photon (47,48).

Thus, such a short-cut reaction was unexpected. However,

dark conversion of, e.g., bacteriorhodopsin (49), PYP (50),

or phytochromes (28) are examples for thermally driven

isomerization reactions that take place within the protein

environment. The dark conversion of Agrobacterium phy-

tochrome Agp2 and some other bacterial phytochromes

proceeds from Pr to Pfr (51,52). These examples show that

also a Z/E dark isomerization around the C15¼ C16 double

bond of the bilin chromophore is not impossible. This study

suggests that such a dark isomerization is an integral part of

the Agp1 photocycle. It seems that Agp1 is an exception in

this respect, because the overall quantum yield of the Pfr-to-Pr

conversion of other phytochromes is .10% and thus in the

range of the Pfr to lumi-F quantum yield estimated here (28).

The rather complex Pfr-to-Pr reaction of Agp1 is thus most

likely the consequence of an evolutionary process which

finally resulted in the rather low Pfr-to-Pr quantum yield of

this phytochrome.

Comparison of reaction Scheme C of the Pfr primary re-

action (Fig. 8) with the scheme of the Pr primary reaction (24)

yields close similarities. The schemes for both reactions are

basically identical, with the only difference in the values of

the time constants. The decay of the first structurally relaxed

excited electronic-state, Pfr** in the Pfr scheme and A in the Pr

scheme, with 0.3 and 0.7 ps, respectively, and the relaxation

on the electronic ground state, i.e., the decay of Ofr and Or,

with 4.0 and 3.3 ps, respectively, show very similar time

constants. In contrast, the lifetime of the longest-lived S1

species differs significantly from 1.3 ps in the Pfr reaction to

33.3 ps in the Pr reaction. The very short S1 lifetime in the Pfr

reaction is consistent with the vanishingly small fluorescence

quantum yield of the Pfr reaction as compared to the Pr re-

action (26). Note that the similarity of the reaction schemes

for Pr and Pfr implies in turn specific similarities of the two

sets of DAS—Ai (Pr) (24) and Ai (Pfr). In fact, qualitative

match is found concerning their sign and relative spectral

position. Observed differences, e.g., in terms of spectral

width and absolute spectral position are not unexpected,

since both reactions originate from different chromophore

configurations and thus exhibit different ground- and excited-

state vibrational spectra.

The observation of a slow Pr reaction and a fast Pfr reaction

in Agp1-BV is in line with earlier results on the primary

photoreactions of different phytochromes (16–18). Similarly

distinct timescales for the forward- and backward-direction

of cis-trans isomerizations have been found in the photo-

chemistry of stilbene and azobenzene. In azobenzene, the

isomerization processes are completed within 10 ps for the

trans-cis and within 1 ps for the cis-trans direction (53). In

stilbene, the cis-trans isomerization takes ,1 ps and the

trans-cis isomerization .10 ps, dependent on the solvent

(54). The asymmetry of the reaction kinetics with respect

to the initial configuration reflects the differently shaped re-

gions of the excited-state potential energy surfaces that are

accessed upon photoexcitation of the respective cis- or trans-

state. Certainly, fundamental aspects of cis-trans photo-

isomerization already discussed for stilbene and azobenzene

in solution can be applied to bilin chromophores in a protein

environment. However, the example of retinal proteins

(55,56) demonstrates how drastically the specific properties

of the strongly anisotropic environment realized by the pro-

tein moiety can alter the photoinduced isomerization kinetics

of a protein-bound chromophore.
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In conclusion, femtosecond IR spectroscopy has brought

forward a new and more specified reaction scheme of the Pfr

photoisomerization of Agp1-BV. Whether or not a unique

reaction scheme applies to the Pfr reaction of many phyto-

chromes, if not of phytochromes in general, is up to future

studies.
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