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ABSTRACT We present a cellular model of lipid biosynthesis in the plasma membrane that couples biochemical and biophysical
features of the enzymatic network of the cell-wall-less Mycoplasma Acholeplasma laidlawii. In particular, we formulate how the
stored elastic energy of the lipid bilayer can modify the activity of curvature-sensitive enzymes through the binding of amphipathic
a-helices. As the binding depends on lipid composition, this results in a biophysical feedback mechanism for the regulation of the
stored elastic energy. The model shows that the presence of feedback increases the robustness of the steady state of the system, in
the sense that biologically inviable nonbilayer states are less likely. We also show that the biophysical and biochemical features of
the network have implications as to which enzymes are most efficient at implementing the regulation. The network imposes
restrictions on the steady-state balance between bilayer and nonbilayer lipids and on the concentrations of particular lipids. Finally,
we consider the influence of the length of the amphipathic a-helix on the efficacy of the feedback and propose experimental
measurements and extensions of the modeling framework.

INTRODUCTION

The primary function of the lipids in the plasma membrane is

to form a bilayer that provides a permeability barrier between

the cytoplasm and the environment. However, whereas lipids

were once considered purely passive components, it is now

clear that lipids play an active role in a variety of dynamic

processes involving the membranes that compartmentalize

the cell (1). To achieve this dual role of the membrane as a

dynamic boundary and a continuous barrier, the cell must

regulate the mechanical properties of the membrane and does

so partly by controlling its lipid composition.

Membrane lipids are chemically diverse (2) but they can be

classified into the broad categories of bilayer and nonbilayer

lipids, depending on their (in)ability to self-assemble into

bilayers. Bilayer formation is the result of a thermodynamic

equilibrium in which the physicochemical properties of the

lipids, such as the chemical structure of the headgroup and

hydrocarbon chains, play a crucial role. The cell can therefore

regulate the mechanical properties of the bilayer by modi-

fying its lipid composition through lipid biosynthesis. The

balance between bilayer and nonbilayer lipids in the plasma

membrane has been the subject of many reviews (2–4). Ex-

periments have shown that organisms change the lipid

composition of their membranes in response to external

variations in diet, pressure, and temperature (5–7; see also

(18)). Moreover, many of the lipids found in biological

membranes do not form bilayers under physiological condi-

tions. Subsequent studies have confirmed that most organi-

sms contain significant amounts of at least one nonbilayer

lipid (8,9).

The underlying biophysical question is the relationship

between the chemical diversity and variability of membrane

lipid composition, the mechanical properties of the mem-

brane, and the associated protein functions (10,11). A large

experimental effort has been devoted to mapping lipid bio-

synthetic pathways by characterizing and mutating particular

enzymes. There is also an increasing body of experiments

that measure the relationship between the biophysical prop-

erties of lipids and enzyme activity (10,12). However, there

have been few attempts (13) to consider theoretically the

interdependence of these two phenomena by modeling the

lipid biosynthetic network as an integrated system in which

the biochemical and the biophysical descriptions of the

metabolic network are fundamentally linked. The focus of the

model presented here is to provide a set of tools to understand

the interplay between the enzymes and lipids involved in

lipid metabolism in relation to the biophysical properties of

the bilayer.

Fig. 1 depicts a simplified representation of the connection

between the chemical structure of lipids and the mechanical

properties of a lipid monolayer. A lipid monolayer consists of

conformationally flexible lipids, whose amphiphilic nature

leads to a nonuniform pressure distribution across the

monolayer. The lateral pressure profile p(z) determines the

average ‘‘molecular shape’’ that a lipid adopts and, more

importantly, Js, the monolayer spontaneous curvature. Js is an

intrinsic property of a lipid species that corresponds to the

monolayer curvature in which a lipid in the monolayer is at

the conformation with minimum free energy (14). The

spontaneous curvature reflects the desire of a lipid monolayer

to either curve away from, or curve toward, the membrane-

water interface and whether a lipid is a bilayer or nonbilayer

lipid.

A lipid bilayer is formed by two monolayers back-to-back.

This arrangement means that the monolayers may not be able
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to adopt their preferred curvature, Js, since the monolayers in

the bilayer are held together by the hydrophobic effect. This

leads to a difference between the actual curvature of a

monolayer, as given by the principal curvatures c1 and c2, and

its spontaneous curvature, Js (15). Based on this physical

picture, Helfrich (16) formulated the stored elastic energy per

unit area, g, of a lipid monolayer that is constrained to have

principal curvatures c1 and c2:

g ¼ F

A
¼ kM

2
ðc1 1 c2 � JsÞ2;

where F is the Helmholtz free energy, A is the area, and kM is

the bending rigidity of the monolayer. The lipids are at the

free energy minimum, when the total curvature, c1 1 c2, is at

the value of the spontaneous curvature Js. Because at equi-

librium g is minimized, this means it is more difficult for

lipids with large spontaneous curvatures to form a bilayer,

which is a flat conformation with small c1 and c2. Indeed, it

has been suggested that lipids with Js , �1/6 nm�1 (the

negative sign is a convention to denote that the monolayer

curves toward water in an interface) do not form bilayers.

Instead, they form curved mesophases, such as the inverse

hexagonal phase, which are porous (17).

From a biological perspective, porous mesophases would

have severe consequences for cellular function and survival.

Gruner (3) hypothesized that the average spontaneous cur-

vature Jmix
s of the lipids in the plasma membrane must be

tightly regulated to ensure that the membrane lipids form a

(nonporous) bilayer and that the cell is able to control Jmix
s

(15) by modifying its lipid composition through the bio-

chemical networks of lipid metabolism.

This insight has been confirmed experimentally. Lipid

extracts from the cell-wall-less Mycoplasma Acholeplasma
laidlawii grown under different conditions have average

spontaneous curvatures Jmix
s in the small range between �1/

6.6 nm�1 and �1/8.1 nm�1 even though the membrane

contains lipids with Js outside of this range (18). To achieve

this robust regulation, A. laidlawii alters the ratio of its two

main glucolipids in response to the length and saturation of

exogenously fed fatty acids (5), thus maintaining Jmix
s in a

biologically viable ‘‘bilayer range’’ that ensures membrane

integrity yet with enough stored elastic energy to allow for its

dynamical behavior. Remarkably, although the average

spontaneous curvature is controlled, the lipid concentrations

exhibit wide variations. This suggests that the control of Jmix
s

is not achieved by targeting specific lipid compositions.

These observations also apply to Escherichia coli lipid ex-

tracts, which begin to form nonbilayer structures close to

physiological conditions (7).

Biophysical control mechanisms integrated into lipid bio-

synthetic networks have been the subject of intense experi-

mental study. An example is given by cytidine triphosphate/

phosphocholine cytidyltransferase (CCT), an enzyme involved

in the biosynthesis of the ubiquitous lipid phosphatidylcholine.

CCT is inactive in the cytoplasm, but becomes active when

membrane-bound. It has been shown that its activity is affected

by the stored elastic energy in the membrane (12). The bio-

physical control mechanism arises from the presence of an

amphipathic a-helix that affects enzyme activity by regulating

the binding of CCT to lipid bilayers. In a broad sense, the

amphipathic a-helix can be viewed as a ‘‘sensor’’ of the

spontaneous curvature since it binds preferentially to lipid bi-

layers with large negative Jmix
s , thus modulating the activity of

the lipid biosynthetic enzyme. This biophysical control

mechanism is chemically nonspecific, as it is based on a bio-

physical interaction between the enzyme and the membrane,

and appears to be generic to a number of enzymes present in

lipid biosynthetic pathways (12,19), including those present in

A. laidlawii, which is the focus of this study.

We have developed a modeling framework for the lipid

biosynthetic pathways in A. laidlawii. Building upon the A.
laidlawii biochemical network studied in detail by the groups

of Lindblom, Rilfors, and Wieslander (5,6,19,20), we for-

mulate a biophysical mechanism, based upon some of the

conceptual foundations established in CCT (12), that couples

the activity of lipid biosynthetic enzymes to the membrane

composition. Our results show that the presence of feedback

increases the robustness of the steady state of the system to

parameter variations, in the sense that it decreases the prob-

ability of inviable values of Jmix
s that would lead to porous

phases. From a sensitivity analysis, we identify the enzymes

that are most efficient in implementing the control of the

network. We also study the restrictions that the network

imposes on the steady-state concentrations of particular lipids

FIGURE 1 Forces that act between lipids at different depths include

electrostatic and hydrogen bond interactions at the headgroup, interfacial

tension at the hydrophilic-hydrophobic interface, and the packing of the

hydrocarbon chains. The lateral pressure profile p(z) depends crucially on

the chemical nature of the lipid head group and the length and saturation of

the lipid hydrocarbon chains. The lateral pressure profile determines the

spontaneous curvature Js of a lipid monolayer (14).
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and show that the system keeps a balance between bilayer

and nonbilayer lipids. Finally, we consider the influence of

the length of the amphipathic a-helix on the efficacy of the

feedback.

THE LIPID BIOSYNTHETIC NETWORK
OF A. LAIDLAWII

We take the cell-wall-less Mycoplasma A. laidlawii as our

system for the study of cellular models of lipid biosynthesis.

This simple organism, which has been studied in great de-

tail (5,6), has two features that make it ideal to showcase

our modeling framework. First, virtually all the lipids in

A. laidlawii are in the plasma membrane (21). This simplifies

the model to a single lipid bilayer, avoiding the complexity of

cell walls and intracellular compartments. Second, A. laidlawii
cannot synthesize unsaturated fatty acids and is very lim-

ited in its synthesis of saturated fatty acids (5). Therefore,

A. laidlawii exhibits a significantly reduced number of chem-

ical species in the plasma membrane as it relies on exoge-

nously fed fatty acids for lipid biosynthesis.

The limited fatty acid synthesis implies that the only re-

sponse of A. laidlawii to variations in its fatty acid diet is to

alter the composition of the headgroups of the lipids in the

membrane through the network of enzymatic reactions rep-

resented in Fig. 2. Indeed, experiments show that the mem-

brane lipid composition of A. laidlawii depends strongly on

the length and saturation of exogenously fed fatty acids (5).

When A. laidlawii is fed palmitic acid (a short, saturated fatty

acid), monoglucosyldiacylglycerol (MGlcDAG) is the most

abundant lipid; whereas when A. laidlawii is fed oleic acid

(a long, unsaturated fatty acid), diglucosyldiacylglycerol

(DGlcDAG) dominates. Central to our study is the observa-

tion that although the variation in the lipid composition can

be large, the cell maintains the average monolayer sponta-

neous curvature of the plasma membrane Jmix
s within a

‘‘window’’ in which the bilayer phase is stable (7) (Table 1).

The lipid biosynthetic network is able to adjust the lipid

composition to achieve a Jmix
s . �1/6 nm�1, thus main-

taining a dynamic, yet impermeable plasma membrane.

The lipid biosynthetic network: biochemical and
biophysical descriptions

The biochemical description of the lipid biosynthetic net-

work of A. laidlawii is presented in Fig. 2 A. The first step in

the metabolic network is, as in other organisms, the acylation

of soluble glycerol-3-phosphate (G3P) to form phosphatidic

acid (PA) (22). The network then branches out into two

pathways.

The upper branch is the phosphatidylglycerol (PG) path-

way, well-studied in bacteria, in which PA is converted into

PG through the intermediates cytidine diphosphate diacyl-

glycerol (CDP-DAG) and phosphatidylglycerolphosphate

(PGP). The corresponding enzymes CDP-DAG synthase (CDS),

PGP synthase (PGPS), and PGP phosphatase (PGPP) have

been characterized in E. coli (23,24) and in Clostridium
perfringens (25,26).

The lower branch is a specific pathway in A. laidlawii,
deduced from the discovery and purification of the PA

phosphatase (PAP) (27) and the two consecutive glucosyl-

transferases, MGlcDAG synthase (MGS) (28) and DGlcDAG

synthase (DGS) (29). The final enzymatic reaction is yet

to be characterized since the glycerophosphoryl-DGlcDAG

(GPDGlcDAG) synthase (GPDGS) that catalyzes the pro-

duction of GPDGlcDAG has not been purified yet. However,

the genetic similarity of MGS and DGS to the enzymes of

Gram-positive bacteria (30) suggests that GPDGlcDAG could

be synthesized by the transfer of G3P from PG to DGlcDAG,

a reaction that occurs in the synthesis of lipoteichoic acids in

the cell walls of Gram-positive bacteria (31).

Fig. 2 B presents a biophysical interpretation of the net-

work, showing how the molecular shape of each lipid is re-

flected in its monolayer spontaneous curvature. This physical

picture shows that the position of nonbilayer lipids (Js ,�1/6

nm�1) and bilayer lipids (Js .�1/6 nm�1) within the network

has an effect on which enzymes can exercise effective control

of the Jmix
s of the plasma membrane. By inspection, MGS and

DGS are good candidates for the control of Jmix
s , since MGS

and DGS catalyze the reactions that lead from the lipid with

the most negative Js (DAG) to the lipid with the least negative

Js (DGlcDAG) (Fig. 2 B). This intuition is reinforced by a

structural feature of these enzymes. MGS and DGS are both

peripheral membrane proteins that translocate between the

cytoplasm and the membrane. It is postulated that they are

only active when they are inserted into the membrane, as

suggested by the increased activity of both MGS (29) and

DGS (32) in the presence of lipids with large negative Js.

This picture leads to a biophysical, intrinsic mechanism for

MGS and DGS to control lipid biosynthesis as a function

of the average monolayer spontaneous curvature of the

membrane. Our model is a mathematical formulation of

these ideas.

Cellular model of lipid biosynthesis

The biochemical constituents of our cellular model of lipid

biosynthesis are the membrane lipids, the lipid biosynthetic

enzymes, and the soluble cytoplasmic reactants. The mem-

brane lipids are assumed to be homogenously distributed

over both monolayers of the plasma membrane. Although

labeling studies in E. coli show that lipid biosynthesis occurs

mainly at the inner leaflet of the plasma membrane (33), we

will assume that lipid transport from the inner to the outer

leaflet of the membrane maintains a symmetric bilayer. Our

assumption of spatial homogeneity for the lipids is based on

the fast lateral diffusion of lipids in bilayers (34,35) and leads

to a description in terms of ordinary differential equations.

The soluble reactants (such as the nucleotide CTP or the in-

organic phosphate ions Pi and PPi) are assumed to have
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constant, regulated cytoplasmic concentrations, due to their

involvement in general cellular processes. Therefore, they are

only parameters (not variables) of the model.

The A. laidlawii lipid biosynthetic network is modeled as a

system of nonlinear differential equations for eight lipids with

seven enzymatic reactions. The variables of the model are

compiled into the vector of lipid surface concentrations ex-

pressed in molar fraction: LT ¼ [fPAg fCDP-PAGg fPGPg
fPGg fDAGg fMGlcDAGg fDGlcDAGg fGPDGlcDAGg].
The sum of the lipid molar fractions is 1 at all times: 1T L¼ 1.

Each enzymatic reaction has a nonlinear rate equation of

the Michaelis-Menten type, modified using surface dilution

kinetics, as explained below, to account for the fact that the

reactions take place on the membrane. The enzyme rate

equations are compiled into a vector vT ¼ [vCDS vPGPS vPGPP

vPAP vMGS vDGS vGPDGS]. The modulation of the enzyme ac-

tivity due to the biophysical interaction with the mechanical

properties of the membrane is introduced through a diagonal

matrix Ka ¼ diag([Ka,CDS Ka,PGPS Ka,PGPP Ka,PAP Ka,MGS

Ka,DGS Ka,GPDGS]), which incorporates the possibility that

some of the enzymatic rates, specifically those of MGS and

DGS, could depend on Jmix
s . If the enzyme is curvature sen-

sitive, its association constant Ka,Enzyme will depend on Jmix
s .

Otherwise, the corresponding Ka,Enzyme¼ 1. This is the basis

of the biophysical feedback mechanism, which will be in-

troduced in the following section.

The topology of the reaction network is encoded in a

stoichiometric matrix N, where Nij is the number of lipid

species i consumed (negative) or produced (positive) in re-

action j:

N ¼

�1 0 0 �1 0 0 0

1 �1 0 0 0 0 0

0 1 �1 0 0 0 0

0 0 1 0 0 0 �1

0 0 0 1 �1 0 1

0 0 0 0 1 �1 0

0 0 0 0 0 1 �1

0 0 0 0 0 0 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

The matrix N accounts for the enzymatic reactions and

ensures mass conservation. However, our cellular model

must also include both the lipid degradation into soluble

products and the lipid insertion that enables a growing cell to

double the number of lipids before cell division. These

processes are incorporated through the transport vector t and

the normalization vector n. The transport vector t encap-

sulates the balance of lipids inserted and extracted. In our

model, only PA is inserted at a constant cellular rate V1,PA and

lipid degradation is assumed not to play a significant role in A.
laidlawii lipid metabolism (36). Therefore, tT¼ [ V1,PA 0 0 0

0 0 0 0].

The normalization vector n, given by

n ¼ �ð1TtÞL;

reduces the surface concentration of each lipid in proportion

to its molar fraction while at the same time maintaining the

sum of the molar fractions equal to 1.

Combining all the terms, the model can be written com-

pactly as

dL
dt
¼ NKaðJmix

s ÞvðLÞ1 t 1 n: (1)

This system has stationary points L*.

Finally, to close the system, we need to relate Jmix
s to the

lipid concentration. Our underlying, linear assumption is that

Jmix
s is well approximated by the weighted average of the

spontaneous curvatures of the individual lipids:

Jmix

s ¼ JT

s L: (2)

This linear assumption has been shown experimentally to

lead to an accurate approximation of the phase behavior of

lipid mixtures (37). This linear assumption is also used in

many of the experiments that measure the Js of neutral and

anionic lipids (38–41). Using Eq. 2 with the Js values and

experimental lipid composition Lexp in Table 1 leads to a

calculated Jmix
s of �1/7.9 nm�1, which lies within the mea-

sured range from�1/6.6 nm�1 to�1/8.1 nm�1 of A. laidlawii
lipid extracts.

Functional form of the lipid biosynthetic enzyme
kinetic rates, v(L)

Before considering the biophysical mechanism that couples

the biochemical reactions to the mechanical properties of the

membrane, we state first some specific features of the enzyme

kinetic rate equations of the membrane lipid network. The

functional form of the rate equations v(L) in the model differs

from standard enzyme kinetics (42) in two respects. First, our

cellular model must take into account the number of copies of

the enzyme in the cell. Second, we must account for the fact

TABLE 1 Spontaneous curvature and lipid composition of A. laidlawii grown in oleic acid

Lipid PA CDP-DAG PGP PG DAG MGlcDAG DGlcDAG GPDGlcDAG

Js (nm�1) �1/4.3 0 0 �1/8.7 �1/1.01 �1/2.5 �1/13.1 �1/7.7

Reference (67) * * (66) (39) (18) (18) *

Lexp (mol %) 0.7y 0.04y 0.04y 15.1 0.7y 7.8 54.4 21.2

*These Js values are estimated. See Appendix A for a discussion.
yThese lipid molar fractions were below the detection limit and are estimated. See Appendix A.
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FIGURE 2 A. laidlawii lipid biosynthetic network. (A) The biochemical network. The main lipids in the plasma membrane of A. laidlawii A-EF22 are (6):

phosphatidylglycerol (PG), diacylglycerol (DAG), monoglucosyl-DAG (MGlcDAG), diglucosyl-DAG (DGlcDAG), and glycerophosphoryl-DGlcDAG

(GPDGlcDAG). Phosphatidic acid (PA), the liponuleotide CDP-DAG, and PG-phosphate (PGP) are lipid intermediates. The top branch is the PG pathway and

the bottom branch is the glucolipid pathway. The abbreviated soluble reactants are glucose (Glc) and UDP-Glc, glycerol-3-phosphate (G3P), the inorganic

phosphate ions Pi and PPi, and the nucleotide CTP. R indicates an acyl chain. Six of the seven enzymes have irreversible rate equations. A. laidlawii also

synthesizes three monoacyl derivatives of the glucolipids: monoacyl-MGlcDAG (MAMGlcDAG), monoacyl-DGlcDAG (MADGlcDAG), and monoacyl-

bisglycerophosphoryl-DGlcDAG (MABGPDGlcDAG) (6). However, these lipids have been excluded from the model as they are not always synthesized (5)

and their biosynthetic pathways have been postulated, but are not known (59). (B) A biophysical picture of the network. Lipids are color coded according to

their Js, which is linked to their molecular shape as shown. The same color code is used to show that the activity of MGS and DGS increases when the plasma

membrane has a large negative Jmix
s . It can be seen, for instance, that in the case of the lower pathway the effect of MGS and DGS is to increase the effective size

of the headgroup of the lipid upon which they are acting and therefore systematically increase the value of Js among DAG, MGlcDAG, and DGlcDAG. By

controlling the rate of the steps between DAG/MGlcDAG and MGlcDAG/DGlcDAG, the system is capable of regulating Jmix
s: . A. laidlawii also synthesizes

three monoacyl-derivatives of the glucolipids: monoacyl-MGlcDAG (MAMGlcDAG), monoacyl-DGlcDAG (MADGlcDAG), and monoacyl-bisglycer-

ophosphoryl-DGlcDAG (MABGPDGlcDAG) (6). However, these lipids have been excluded from the model as they are not always synthesized (5) and their

biosynthetic pathways have been postulated, but are not known (59).
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that lipid biosynthetic enzymes have soluble, cytoplasmic

reactants that diffuse in three dimensions, whereas their lipid

reactants diffuse within the two-dimensional membrane.

Kinetic studies (27–29) have fitted the rates of A. laidlawii
lipid biosynthetic enzymes to surface-dilution kinetics, in

which soluble reactants have a bulk concentration in units of

molarity and membrane reactants have a surface concentra-

tion in (dimensionless) molar fraction (43). All of the enzy-

matic reactions in the network, except for the reaction

catalyzed by CDS, can be assumed to be irreversible. There is

experimental evidence that supports this assumption, e.g., the

hydrolyses of the phosphoanhydride bonds in PA and PGP

are irreversible (44). Therefore, the rate equations for vPGPS,

vPGPP, vPAP, vMGS, and vDGS are of the form

yEnzyme ¼ Vcell

fLgi

KmL

½S�
KmS

1 1
fLgi

KmL

1
½S�
KmS

; (3)

where fLgi is the surface concentration of the lipid substrate

(in molar fraction) and [S] is the bulk concentration of the

soluble substrate (in units of molarity). Similarly, KmL is

the Michaelis constant of fLgi (in molar fraction) and KmS is

the Michaelis constant of [S] (in units of molarity). Exper-

imental values of the enzyme kinetic constants are listed in

Appendix B.

Note that Vcell is the rate for all copies of the enzyme in the

cell (in units of molar fraction/min):

Vcell ¼
MEnzyme

NLipid

Vmax; (4)

where MEnzyme is the total mass of each enzyme in the cell

and NLipid is the number of moles of lipid in the cell. Vmax is

the standard Michaelis-Menten limiting rate, which typically

has units of moles of product synthesized per milligrams of

enzyme per minute (42). It is assumed that the ratio MEnzyme/
NLipid is kept constant in a growing cell over the cell cycle. In

Appendix B we show how we have estimated these param-

eters.

Two of the enzymatic reactions have slightly different

functional forms. The final reaction of the lower path, cata-

lyzed by GPDGS, although irreversible, involves two lipid

substrates. As mentioned above, the CDS reaction is modeled

reversibly since the equilibrium constant is much less than

1 (23). The rate equations of these reactions are listed in

Appendix B.

Spontaneous-curvature-sensitive enzymes

We now introduce the terms in the model that describe how

the activity of an enzyme with an amphipathic a-helix is

modulated as a function of spontaneous curvature, which is in

turn a function of the lipid composition. As mentioned above,

there is extensive evidence that supports the theory that the

activity and function of many proteins, both integral and

peripheral, are regulated by the biophysical properties of

biological membranes (10,35). Such phenomena differ

markedly from specific protein-lipid interactions. Although

our model deals with the binding of an amphipathic a-helix

to the membrane, the mechanism could be extended to de-

scribe the binding of other amphipathic motifs to the mem-

brane.

Enzyme kinetic studies have shown that lipids with large

negative Js increase the activity of both MGS (29) and DGS

(32). MGS has an amphipathic a-helix between residues 67

and 85 (30,45), that shares 5 of its first 8 residues with an

a-helix of the E. coli division-site-selection protein MinD

(46) that targets heterologous proteins to the membrane (47).

Since it has been shown that MGS (19,29), the MGS am-

phipathic a-helix (20), and the MinD amphipathic a-helix

(48) all preferentially bind to membranes with large negative

Jmix
s , we hypothesize that the curvature-sensitive activity of

MGS is a result of the membrane binding of this a-helix.

Through surface plasmon resonance (SPR) experiments, it

has been concluded that liposomes bind to MGS through a

two-step process (19). The first binding step is independent of

lipid composition and has a dissociation constant of ;10 nM.

The second binding step has a large dependence on lipid

composition, as its dissociation constant decreases from 10

mM to 100 nM when the liposomes have large negative Jmix
s

(19). Since liposomes with large Jmix
s increase both the ac-

tivity of MGS and the strength of the second binding step, it

follows that MGS is only active after the second binding step.

Amphipathic peptides form random coils in solution. The

first binding step corresponds to surface adhesion induced by

the electrostatic attraction of exposed basic residues to acidic

membrane lipids. The second, subsequent step is the insertion

of the hydrophobic residues into the membrane coupled with

the emergence of the a-helix, which is entropically favored

by the hydrophobic membrane environment. This two-step

membrane binding (49) can be summarized through a simple

kinetic mechanism,

Soluble �
Kd1

Surface �
Kd2

Inserted;

where Kd1 and Kd2 are the dissociation constants of the

binding steps. At steady state, the fraction of membrane-

inserted amphipathic a-helices that result in active enzymes

is given by the association constant

Ka ¼
1

1 1 Kd2 1 Kd1Kd2

: (5)

We now derive expressions for Kd1 and Kd2 from bio-

physical considerations.

First binding step, Kd1

From SPR studies, Kd1 is measured to be ;10 nM (19). It is

proposed that this first (irreversible) binding is a result of

electrostatic attraction. Structurally, the presence of eight
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positively charged residues on the 19-residue amphipathic

a-helix (see Fig. 4 B) will produce a strong electrostatic at-

traction. Indeed, there is ample evidence that negatively

charged anionic lipids are essential for the binding and activity

of MGS. For instance, it is known that shielding the anionic

lipids with 0.75 M NaCl prevents the binding of MGS (19).

From simple electrostatic considerations, Kd1 is given by

the Boltzmann relation,

Kd1 ¼ exp
zpec0

kBT

� �
; (6)

where zpe¼18e is the net charge of the amphipathic a-helix

and c0 is the membrane surface potential. A dissociation

constant of 10 nM would imply c0ffi�60 mV at 40�C, which

is comparable to the measured membrane surface potentials

of bacterial lipid bilayers (50). This simple estimate rein-

forces the plausibility of the interpretation of the first binding

step in terms of electrostatic interactions. Clearly, the bio-

physical picture will be complex, including the shielding of

charges on the peptide to give an effective valence (51) and

the likely involvement of other positively charged enzyme

domains.

Second binding step, Kd2

The second binding step involves at least three energetic

processes: membrane insertion of the hydrophobic residues;

peptide folding to form the a-helix; and lipids bending to

accommodate the inserted a-helix. It has been observed that

Kd2 decreases dramatically along the lipid sequence di-

oleoylphosphatidylglycerol (DOPG) . cardiolipin (CL) .

dioleoylphosphatidylethanolamine (DOPE) . dioleoylglycerol

(DOG) (19), i.e., as Js becomes more negative (39,52). This is

the basis for our assumption that the second binding step is

dominated by the energy of lipids bending to accommodate

the helix.

We can understand this process through the following

simplified biophysical picture. Consider a locally flat bilayer

with average monolayer spontaneous curvature Jmix
s . The

diameter of the a-helix is comparable to that of a lipid.

Consequently, the insertion of an amphipathic a-helix into a

flat membrane does not result in a change of the monolayer

curvature, yet it leads to a change in the molecular shape of

the lipids alongside the a-helix (12) (Fig. 3 A). This would

translate into a monolayer curvature, cbound 6¼ 0, for a

monolayer formed entirely by lipids like those surrounding

the amphipathic a-helix.

Fig. 3 A sketches a very simple geometrical argument to

obtain a first-order estimate of cbound:

cbound ¼ �1=Rbound ¼
�rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aðr2
1 t

2Þ
q ; (7)

where r ¼ 0.45 nm is the radius of the a-helix (53); t is the

monolayer thickness (the distance between the middle of the

a-helix and the bilayer midpoint), which is measured to be

1.71 nm (53); and A is the average interfacial surface area of

the A. laidlawii lipids, which is measured to be 0.65 nm2 (5).

A is assumed to be square and the pivotal plane is assumed to

coincide with the middle of the a-helix. Equation 7 gives an

estimated cbound � �1/3.2 nm�1, which is significantly

nonflat.

The cylindrical deformation of the a-helix ensures that one

of the principal curvatures is zero, c2 ¼ 0. Therefore, the

change in the stored elastic energy in Eq. 1 due to the bending

of the lipids alongside the amphipathic a-helix is

FIGURE 3 (A) Geometric argument used to

calculate cbound, the curvature of a lipid mono-

layer consisting entirely of lipids that lie along-

side an amphipathic a-helix. (B) Association

constant Ka as a function of Jmix
s for a 19-residue

a-helix (dark solid line) and, for a 58-residue

a-helix, such as that of CCT, plotted for com-

parison (dark dashed line). The dashed vertical

line is Js ¼ �1/6 nm�1 and the solid vertical

lines give the measured range of Jmix
s of lipid

extracts (5). (Inset) Helical-wheel projection of

residues 67–85 of MGS. The bar gives the

Eisenberg consensus normalized hydropho-

bicity scale (76).
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Fðc1 ¼ cboundÞ � Fðc1 ¼ 0Þ ¼ NhA
kM

2
cboundðcbound � 2Jmix

s Þ;

(8)

where kM is the bending rigidity of lipids, which we take to

be 10 kBT (38), and Nh¼ 7.1 is the number of lipids that adopt

curvature cbound along both sides of the amphipathic a-helix.

Nh is calculated for a 19-residue a-helix of length 2.85 nm

with 3.5 lipids of length 0.651/2 nm along each side of its long

axis. For the range of Js values in Table 1, the free energy is

between�1.7 kBT/lipid and 0.2 kBT/lipid. These energies are

not large enough to cause the lateral sequestration of lipids

around the a-helix (54), thus justifying the use of Jmix
s .

Equation 9 provides an estimate for the binding energy if

we assume that the main energetic contribution to this process

comes from lipid bending. The dissociation constant of the

second binding step would then be given by the Boltzmann

relation:

Kd2 ¼ exp NhA
kM

2
cboundðcbound � 2J

mix

s Þ=kBT
� �

: (9)

Note that for the range of Js values in Table 1, the modeled

KD2 ranges between 4 M and 5 mM. The difference with the

experimental values of KD2 may be explained by the en-

hanced electrostatic attraction due to the absence of divalent

cations and the use of zwitterionic lipids in the SPR exper-

iments (19,20). Note that when Jmix
s ¼ cbound/2 ¼ �1/6.3

nm�1, the binding energy is zero and MGS is equally likely to

be bound or unbound. Reassuringly, this bound-to-unbound

transition is centered at a value of Jmix
s that lies between the

formation of nonbilayer structures and the lower bound of the

experimental curvature of lipid extracts in A. laidlawii:�1/6 ,

cbound/2 , �1/6.6 (Table 1).

Equations 6 and 9 provide the biophysical feedback for the

system in Eq. 1, as the association constant Ka,MGS multiplies

the rate vMGS. Given the individual lipid spontaneous cur-

vatures Js in the system (Table 1), and assuming a constant

Kd1 ¼ 10 nM, the association constant is constrained to be in

the range 1 $ Ka,MGS $ 0.23 (Fig. 3 B), and the 19-residue a-

helix provides a fourfold regulation of MGS activity. At large

negative Jmix
s , almost all MGS is active and the synthesis of

MGlcDAG increases Jmix
s . The opposite effect is produced

when Jmix
s is less negative. Clearly, a longer amphipathic a-

helix would produce significantly stronger regulation of ac-

tivity (Fig. 3 B).

Parameter estimation for the model

The time evolution of the system in Eq. 1 and its corre-

sponding stationary point depend on the model parameters.

Most of these parameters have been collected from an ex-

tensive survey of the literature, or have been estimated or

measured directly. As is usual in the literature, some of the

parameters carry substantial uncertainty. In addition, there is

an absence of kinetic parameters for some of the enzymes of

the A. laidlawii lipid biosynthetic network.

To complete our parametric description, we carry out a

constrained nonlinear parameter estimation in which we

search for the positive parameter set p that reproduces the

experimentally observed lipid concentrations Lexp as close as

possible while minimizing the distance to the reliable liter-

ature values. Our method of choice to solve this constrained

optimization is the Stochastic Ranking Evolutionary Strategy

(SRES) (55), an evolutionary strategy with stochastic rank-

ing, which has been shown in a recent survey (56) to be

successful in finding feasible parameters in nonlinear bio-

chemical pathways.

For such an underdetermined system, a multiobjective

optimization is pursued. The primary objective is to minimize

the difference between L*(p), the stationary point of the

model in Eq. 1 for the parameter set p, and the experimentally

observed lipid composition Lexp given in Table 1,

kL�ðpÞ � Lexpk2
:

The secondary objective is to minimize the difference be-

tween the estimated parameter set p and the literature param-

eters plit. Instead of minimizing the Euclidean norm kp� plitk,
in our case we minimize a more appropriate measure of the

relative distance between the parameter sets, previously in-

troduced to quantify the robustness of dynamical systems

(57),

+
j

cj

����log10

pj

plitj

 !����;
i.e., the sum of the absolute logarithmic errors between p and

plit weighted by cj, the confidence in the jth literature param-

eter. In particular, parameters obtained from A. laidlawii
experiments have been assigned cj ¼ 1, whereas cj ¼ 1/2 for

parameters taken from experiments on other organisms, such

as E. coli. As a check that the combination of our model and

this multiobjective estimation procedure produces plausible

parameter sets, we have verified that we can obtain parameters

for which the model reproduces all the different lipid com-

positions that have been observed experimentally (5).

There are a total of 25 kinetic parameters in the model, of

which only 18 have literature values. We run our multi-

objective optimization by varying 15 parameters (the 7 un-

known and 8 parameters with uncertain literature values) and

obtain the estimated parameter set p0 presented in Table 2.

The distance between each estimated parameter and its lit-

erature value has been constrained to be at most two orders

of magnitude. The estimated parameter set reflects the sen-

sitivity of the steady state to particular parameters, specifi-

cally those appearing in the numerator of the rate equations:

Vcell,Enzyme and the soluble substrate concentrations. This

emphasizes the importance of measuring intracellular me-

tabolite concentrations.

Our model in Eq. 1 with the estimated parameter set p0 in

Table 2 will be our reference system henceforth. This system

has a stationary point at the experimental lipid composition
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shown in Table 1, with Jmix
s ¼ �1=7:9 nm�1. In the next

section, we explore the effect of the biophysical regulation

mechanism introduced above.

RESULTS

We now investigate the behavior of the cellular model of lipid

biosynthesis through the numerical integration of Eq. 1 under

a variety of conditions. The first robust feature of the model is

that it evolves to a steady state that is independent of the

initial condition. Although we have not proved global sta-

bility explicitly, numerical integrations from more than 105

randomly generated initial conditions all converge to the

same stationary lipid composition. This is strong evidence

that the steady state is globally attracting. Our numerical

investigation of the model therefore translates into an eval-

uation of how the fixed point L*(p) changes in response to

variations in the parameters or in the presence of feedback.

Which enzyme rates most affect Jmix
s ?

Experiments indicating that the activities of both MGS and

DGS are curvature-sensitive (28,29) have led to the hy-

pothesis that these two enzymes are responsible for the

control of Jmix
s . If this is true, the rates of MGS and DGS must

have a large effect on the steady-state Jmix
s ðL�Þ. In this sec-

tion, we use our model to determine which enzymes of the A.
laidlawii lipid biosynthetic network have the largest effect on

Jmix
s ðL�Þ in the absence of feedback. This is an initial step

before we introduce the biophysical feedback explicitly in the

next section, i.e., in this section the matrix Ka does not depend

on the curvature Jmix
s .

This question can be posed in the well-known framework

of sensitivity analysis, which has been used to characterize,
e.g., the robustness of bacterial chemotaxis networks (57).

For the reference parameters p0 (Table 2), the model evolves

to the experimental lipid composition Lexp (Table 1), i.e.,

L*(p0) ¼ Lexp. However, the parameters p are inherently

noisy. Specifically, the seven Vcell,Enzyme have the most in-

fluence on the steady state while at the same time having

large variability. Therefore, our sensitivity analysis investi-

gates how changes in the different Vcell,Enzyme translate into

variations of the steady-state Jmix
s ðL�Þ.

The sensitivity analysis is performed through Monte Carlo

sampling, one enzyme at a time. The Vcell,Enzyme of the en-

zyme under study is fixed at the reference value in Table 2.

We then produce 106 parameter sets where the other six

Vcell,Enzyme are drawn from a random distribution conditioned

to produce uniform sampling (over the interval [0,6]) of the

logarithmic variation of the parameter set, k:

k ¼ +
j

����log10

pj

p0j

� �����: (10)

Clearly, this implies that the individual Vcell,Enzyme parameters

are not sampled uniformly (see the inset of Fig. 4 A).

Effectively, our sensitivity analysis considers variations of

up to almost two orders of magnitude in each of the six

Vcell,Enzyme, and an overall uniform variation of six orders of

magnitude for the complete parameter set. The fixed point for

each of the 106 parameter sets is obtained and the correspond-

ing Jmix
s is calculated.

Fig. 4 A shows the results for the enzyme MGS as a two-

dimensional histogram of PMGS(Jmix
s ; k), the distribution of

the 106 random parameter sets. As expected, the distribution

is centered on the reference value of Jmix
s ¼ �1=7:9 nm�1

and becomes broader as the variation of the parameter set, k,

grows. Since biophysical experiments show that membranes

with Jmix
s ,� 1=6 nm�1 do not form bilayers, we can con-

sider such compositions as biologically nonviable (17). This

is marked as a dashed line in Fig. 4 A. Therefore, the distri-

bution P(Jmix
s ; k), or its marginal P(Jmix

s ), quantifies how likely

it is for the system to evolve to a nonbilayer state when a par-

ticular enzyme is kept fixed at its reference value and all other

enzymes have uncertain Vcell,Enzyme values. Essentially, this is

also a measure of the relevance of the particular enzyme for the

controllability of the system, as it quantifies the variability of

the output when a given parameter is kept tightly controlled.

The complete results for the system are summarized in Fig.

4 B, where we plot the marginal distributions PEnzyme(J
mix
s )

TABLE 2 Model parameters for the reference system

Parameter Literature (plit) Estimated (p0)

V1,PA, min�1 8.2 3 10�3

Vcell,CDS, min�1 y 9.6 3 10�3

Vcell,PGPS, min�1 y 4.7 3 10�3

Vcell,PGPP, min�1 * 3.2

Vcell,PAP, min�1 4.1 3 10�2 7.7 3 10�2

Vcell,MGS, min�1 1.8 3 10�3 1.4 3 10�2

Vcell,DGS, min�1 3.5 3 10�4 1.2 3 10�3

Vcell,GPDGS, min�1 * 1.5 3 10�2

CDS KM,PA, mol % * 9.3 3 10�2

PGPS KM,CDPDAG, mol % * 1.0 3 10�2

PGPP KM,PGP, mol % * 38.2

PAP KM,PGP, mol % 10

MGS KM,DAG, mol % 6 5.2

DGS KM,MGlcDAG, mol % 1

GPDGS KM,PG, mol % * 25

GPDGS KM,DGlcDAG, mol % * 85

CDS KM,CTP, mMy 0.58

PGPS KM,G3P, mMy 0.32

MGS KM,UDP-Glc, mM 0.4

DGS KM,UDP-Glc, mM 0.14

CDS Keqm 0.22

CTP, mM 0.5

UDP-Glc, mMy 0.4 2.5

PPi, mMy 1

G3P, mMy 0.2 0.32

Parameters are obtained through a multiobjective optimization using the

evolutionary algorithm SRES (55). Parameters marked * have not been

measured. Parameters marked y correspond to E. coli and are given less

weight in the optimization. See Appendix B for references and details of the

literature parameters.
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for the seven enzymes. All the distributions are centered on

the reference Jmix
s value of �1/7.9 nm�1; however, the var-

iance and the tails of the distributions differ. Specifically,

DGS and MGS (marked with symbols in Fig. 4 B) have much

smaller variances and sharper decay tails than the other five

enzymes. The left tail of the distribution is relevant as it gives

the proportion of biologically inviable stationary states that

do not form bilayers. Fig. 4 C shows the fraction of viable

steady-state lipid compositions as a function of the variability

k. The results clearly show that keeping the rate of DGS fixed

to its reference value is the most efficient way of guaranteeing

a viable system.

The reason for this sensitivity is clear if we examine the

network in Fig. 2 B. The enzyme DGS catalyzes the synthesis

of DGlcDAG, with a small negative Js, from MGlcDAG,

with a large negative Js. Since the membrane binding of

amphipathic a-helices is increased by lipids with large neg-

ative Js, this provides a direct link with the biophysical

feedback mechanism described above. The implication is that

enzymes that catalyze reactions that result in a large positive

change in Jmix
s (i.e., DGS and to a lesser extent MGS) are

strong candidates to exert the biophysical feedback control of

membrane curvature, in accordance with kinetic data. In the

next section, the effect of the biophysical feedback provided

by the amphipathic motifs is investigated in detail.

Effect of the biophysical feedback on Jmix
s

We now study the effect of the biophysical feedback, medi-

ated by amphipathic a-helices, on the control of the steady-

state Jmix
s . Our model encodes this mechanism through the

association constants Ka,MGS and Ka,DGS collected in the

matrix KaðJmix
s Þ.

A sensitivity analysis similar to that performed in the

preceding section is carried out to measure how much the

variability of the system is reduced in the presence of feed-

back. We draw 106 parameter sets from a random distribution

of Vcell,Enzyme such that the logarithmic variation k, defined in

Eq. 10, is uniform over the interval [0,7]. Fig. 5 A shows four

marginal distributions of the steady-state Jmix
s of the system

without feedback and with different combinations of feed-

back on MGS and DGS. In particular, we model MGS to

have a 19-residue amphipathic a-helix (see Fig. 3 B) and we

hypothesize that a similar a-helix is responsible for the cur-

vature-sensitive activity of DGS, as suggested by secondary-

structure predictions (30). The numerics show that the effect

of feedback is noticeable in the reduction of the left tail of the

distribution. This means that inviable, nonbilayer steady

states are less probable when feedback is present. This is

especially prominent for DGS, although MGS also contrib-

utes to the control of Jmix
s , as shown in Fig. 5 B. The com-

bined feedback of MGS and DGS reduces the fraction of

inviable oleoyl acyl lipid compositions by 19%.

The robustness of the lipid compositions

A central feature of the biophysical feedback mechanism is

the fact that the enzymatic network controls the physical

property Jmix
s and not the steady-state lipid concentrations

L*. However, Jmix
s is a function of the lipid concentrations,

FIGURE 4 (A) Histogram of the distribution PMGS(Jmix
s ; k) of the steady-state Jmix

s for a sampling of 106 random parameter sets, where Vcell,MGS is fixed and

the other six Vcell,Enzyme values are varied. k is defined in Eq. 10 and measures the logarithmic variation of the parameter set. The individual Vcell,Enzyme

distribution used (solid, top inset) ensures that the logarithmic variation k is sampled uniformly (solid, bottom inset). If uniform individual Vcell,Enzyme

distributions were used (dashed, top inset), then k would approach a Gaussian distribution (dashed, bottom inset). (B) Marginal probability distributions

PEnzyme(J
mix
s ) of all seven enzymes, where one Vcell,Enzyme is fixed, whereas the other six Vcell,Enzyme are varied. The dashed vertical line indicates the critical

value Jmix
s ¼ �1=6 nm�1 below which bilayers do not form. (C) Cumulative probability that the steady state will be viable (Jmix

s .� 1=6 nm�1) against the

logarithmic variation k of the state.
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and it is important to study the underlying variability of L*,

with respect to the reference lipid composition Lexp, when the

parameters of the model are uncertain. This point can be il-

lustrated with the data obtained in the preceding section

through our sensitivity analysis. Fig. 6 shows the probability

distribution of steady-state compositions L* as a function of

Jmix
s and kL*� Lexpk1, the distance to the experimental lipid

composition, in the absence and in the presence of feedback.

In the absence of feedback (Fig. 6 A), the data show that a

majority of L* are close to Lexp, but a range of lipid mixtures

is allowed by the system. Note that the system does not by

default evolve toward pure, monocomponent compositions.

In addition, the L* in the biologically viable region (Jmix
s .

�1=6 nm�1) consist mostly of mixtures of PG, DGlcDAG,

and GPDGlcDAG, and not of the intermediates PA, CDP-

DAG, or PGP. On the other hand, the inviable L*, with Jmix
s ,

�1=6 nm�1, appear through the increase in MGlcDAG, and

not of DAG. These trends stem from the constraints that the

network structure imposes on the control mechanism and

highlight how the steady-state Jmix
s is bounded by the simplex

of the Js values of the individual lipids.

Fig. 6 B shows that the most notable effect of the feedback

is to reduce the likelihood of inviable states with values of

Jmix
s ,� 1=6 nm�1, specifically those with high concentra-

tions of MGlcDAG. In addition, our numerical results clearly

indicate that the control is not achieved by targeting specific

(possibly monocomponent) compositions, as the overall shape

of the probability distribution remains broadly unchanged and

mixed states are the norm. In fact, the proportion of mono-

component states is reduced when the feedback is on. Another

effect of the feedback is the increase of the probability of states

with Jmix
s close to the boundary between bilayer and non-

bilayer states. This follows from the functional form of the

feedback that is centered on the value cbound/2¼�1/6.3 nm�1.

This is clearly observable in Fig. 6. The implication is that lipid

compositions with large negative Jmix
s are more improbable,

but at the same time there is an increase in lipid compositions

with Jmix
s close to the bilayer to nonbilayer transition.

The effect of the length of the
amphipathic a-helices

As seen in Fig. 3 B, the proposed biophysical feedback ex-

erted by a 19-residue amphipathic a-helix gives rise to a

fourfold regulation, which results in a modest reduction of

the likelihood of inviable states. The functional form of our

feedback implies that the magnitude of the feedback depends

strongly on the length of the amphipathic a-helix. We now

investigate how the length and number of amphipathic

a-helices on MGS and DGS affect Jmix
s regulation.

Biological evidence indicates that the size of amphipathic

motifs should be studied parametrically as it is an important

FIGURE 5 (A) Effect of the biophysical feedback on the control of the steady-state Jmix
s . The four marginal distributions P(Jmix

s ), obtained from 106 random

parameter sets in which all seven enzyme rates Vcell,Enzyme are varied, show a reduction of the probability of inviable states with Jmix
s , �1/6 nm�1. In the

absence of feedback, we fix Ka,MGS at the reference value of Ka,MGS (Jmix
s ¼ �1=7:9 nm�1) shown in Fig. 3 B (3). MGS is modeled to have a 19-residue

a-helix (h), DGS is modeled with a 19-residue a-helix (s), both MGS and DGS are modeled with 19-residue a-helices (n). (B) The cumulative probability

that the steady state forms a bilayer (Jmix
s .� 1=6 nm�1) as a function of the logarithmic variation k.
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feature in protein-membrane interactions. Secondary-structure

predictions suggest that both MGS and DGS have multiple

a-helices that may insert into the membrane (20,30). How-

ever, it is difficult to identify amphipathic a-helices and

determine their length from genetic sequences. It is also

important to mention that some enzymes with amphipathic

a-helices can act in concert. For instance, there is evidence

that CCT acts as a dimer that is only active when the 58-

residue amphipathic a-helices of both monomers are bound

to the membrane (58). In a simplified picture, this dimer

would be viewed as having an effective amphipathic a-helix

of 116 residues.

Fig. 7 plots the dependence on the length of the amphi-

pathic a-helices of the marginal distribution P(Jmix
s ) in Fig. 5

A, where both MGS and DGS are curvature sensitive. Clearly,

as the length of the a-helices is increased, the distribution

becomes sharper and the likelihood of getting inviable states

is reduced. As the inset of Fig. 7 shows, the reduction in the

proportion of nonbilayer states increases to more than 50%

when both MGS and DGS have 60-residue a-helices.

DISCUSSION

This article outlines a bottom-up modeling framework that

couples a biochemical network with an intrinsic biophysical

feedback mechanism. The central idea behind the biophysical

regulation is that the activity of certain enzymes involved in

lipid biosynthesis is dependent on the spontaneous curvature

of the lipids, which is itself a function of the lipid composi-

tion. This introduces a feedback loop that can regulate Jmix
s , a

property that must be kept within a narrow window to allow

for cellular activity and survival (3,7).

The numerical results of our model show that the system

evolves toward biologically plausible mixtures of lipids.

When the biophysical regulation is present, it decreases the

likelihood of inviable steady-state lipid compositions that

would not be expected to form a lamellar bilayer. Moreover,

our sensitivity analysis indicates that two enzymes in the

network (DGS and MGS) have the largest effect on the

steady-state Jmix
s , in agreement with kinetic data. This fact

follows from both the intrinsic properties of the enzymatic

reactions (the corresponding substrates have large negative Js

and the reactions result in large positive changes in Js), and

from their position in the lipid biosynthetic network. There-

fore, the model underscores the possibility that a chemically

nonspecific, biophysical mechanism can participate effec-

tively in the regulation of Jmix
s in the plasma membrane. Such

a mechanism implies that the lipid biosynthetic enzymes

regulate the concentration of individual lipids not only as a

function of their own concentration but also as a result of

larger scale, mechanical properties of the membrane.

The sensitivity analysis used here brings to the fore the

importance of characterizing parameter variability in bio-

logical systems. Indeed, the sensitivity of Jmix
s is dependent on

FIGURE 6 Histogram of the distribution of steady-states L*, showing the probability distribution of Jmix
s and the distance of L* to the experimental

concentration Lexp. The data are obtained by sampling 106 random parameter sets as in Fig. 5. (A) Distribution in the absence of feedback. The vertical dashed

line at Jmix
s ¼ �1=6 nm�1 separates the nonbilayer and bilayer fractions. The dashed lines correspond to the steady-state Jmix

s that results from adding a

particular lipid to Lexp until one reaches a monocomponent state, marked by crosses. (B) Distribution when both MGS and DGS exert biophysical feedback

through a 19-residue amphipathic a-helix.
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how the parameters are varied. In the absence of additional

knowledge, our approach has been to sample the Vcell,Enzyme

parameter sets uniformly according to their relative loga-

rithmic distance to the reference set, k, with a maximum

variation for each individual parameter of ;2 orders of

magnitude. This leads to mixed steady-state lipid composi-

tions localized mostly in the biologically viable region (Fig.

6). However, if the parameter variation is larger, our numerics

indicate that monocomponent steady-state lipid compositions

begin to appear. At present, it is difficult to infer from ex-

perimental results the range of Vcell,Enzyme a cell is likely to

experience and is likely to be robust to. For example, cells that

overexpress enzymes 100 times are often still viable; how-

ever, this is unlikely to result in a 100-fold increase in enzyme

activity. Clearly, the shape and width of the parameter dis-

tributions are an essential part of a meaningful sensitivity

analysis of biological systems, and further experimental

characterization in this area is needed.

Our study also highlights the importance of the length of

the amphipathic a-helix as it is related (linearly in our simple

model) to the energy released when it is inserted into the

membrane. This suggests that the membrane binding of short

amphipathic a-helices, such as the eight-residue a-helix on

E. coli MinD (46), is less sensitive to Jmix
s , whereas the

binding of long amphipathic a-helices is much more sensi-

tive to Jmix
s . In addition, enzymes that act as oligomers pro-

vide more effective regulation of Jmix
s , as seems to be the case

with CCT. This aspect of the influence of a-helix length on

the regulation of Jmix
s could be investigated experimentally by

site-directed mutagenesis.

The proposed modeling framework could be extended in

several directions. First, our model has been constructed

considering amphipathic a-helices at its core, with an esti-

mate for the binding energy based on a simple geometric

calculation of the curvature around an a-helix. This very

simplified picture could be generalized to include entropic

contributions and the possibility of more general amphipathic

motifs (10). Such an extension would be incorporated into the

association constant that encodes the regulation. Second,

our model excludes the monoacyl (MA)-derivatives of the

glucolipids: MAMGlcDAG, which is rarely present, and

MADGlcDAG and MABGPDGlcDAG, which are each only

present at ;10 mol % when the lipids have a palmitoleoyl

fraction .30 mol % (5). The model could be extended to

include the MA-derivatives, although this would require a

more detailed understanding of the postulated biosynthetic

pathways (59). However, based on the insight provided by

the current model, it is unlikely that the enzymes involved in

the synthesis of MA-derivatives would have their activity

modulated by amphipathic a-helices, since synthesis of these

lipids would lead to a more negative Js,mix.

Another extension would be to model the effect of lipid acyl

chain length, which directly affects the Js of a lipid, on the

lipid composition (5,18,60). In its present form, the model

only considers lipids with oleoyl acyl chains. However, Fig. 6

illustrates how important the individual lipid spontaneous

curvatures are in determining the steady-state Jmix
s . Experi-

mentally, it is known that if A. laidlawii is fed shorter and

saturated fatty acids (making the Js values in Table 1 more

positive), the organism reacts by changing the proportion of

lipid headgroups (5). The length and saturation of the lipid

acyl chains have a nonlinear, but as yet unquantified, effect on

the spontaneous curvature (39). The challenge is to model

how the length and degree of unsaturation of the lipid acyl

chains affect the lipid Js values and to relate this to lipid

biosynthesis. Based on our results, the acyl chain length

will undoubtedly affect the regulatory role of MGS and

DGS. When the lipids have shorter, saturated acyl chains,

MGlcDAG and DAG are present at a significantly higher

molar fraction. Since MGS catalyzes the reaction between

these two lipids, it is hypothesized that when the lipids have

shorter, saturated acyl chains, MGS will play a larger regu-

latory role.

FIGURE 7 Effect of amphipathic a-helix length on steady-state Jmix
s .

Shown are three marginal distributions P(Jmix
s ) of the steady-state Jmix

s under

uncertain parameters where both MGS and DGS are curvature sensitive with

amphipathic a-helices of different lengths: 19-residue (blue, same as Fig. 5

A), 57-residue (green), and 114-residue (red). Vertical dashed line at

Jmix
s ¼ �1=6 nm�1 indicates the nonbilayer region. (Inset) Probability that

the steady state does not form a bilayer against a-helix length, when MGS

has an a-helix (3); DGS has an a-helix (1); and MGS and DGS both have

a-helices (h). Colored squares correspond to the three plotted P(Jmix
s ) in the

main figure.
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The model can be used to study lipid biosynthesis in other

organisms, but it would have to be extended to deal with the

particular biochemical and biophysical characteristics of each

network. In particular, it is likely that more lipid species will

be present, thus increasing the dimensionality of the model

and leading to diverse control strategies in different orga-

nisms. For instance, E. coli is known to regulate Jmix
s by

changing the unsaturation of the lipid acyl chains (7). This

results in a combinatorial increase in the number of chemical

species and to a lesser extent the number of enzymes. In

addition, a detailed understanding of the lipid-dependent

activity of the enzymes that control the metabolism of lipid

acyl chains would also be necessary. This does, however,

highlight the importance of characterizing the biophysical

properties of individual lipid types including the values of

their monolayer spontaneous curvature. At present this is a

relatively neglected area of research and this is a damaging

oversight given the role of lipids in regulating key biological

processes.

Finally, the connection of lipid biosynthesis to the cell

cycle and the spatial inhomogeneity of lipids are two closely

interconnected areas in which the modeling framework could

be extended. Lipid biosynthesis is linked to the cell cycle by

the need to double the lipid mass before cell division (61).

Furthermore, experiments show that the anionic lipid card-

iolipin (62) and peptides that contain amphipathic a-helices,

such as MinD (63) and MGS (45), localize at the bacterial

poles. This localization may act as a trigger for lipid biosyn-

thesis and cell division. Experimental evidence also shows

that bacterial membranes may exhibit transbilayer asymmetry

(64) and may be divided into domains, for instance a septal

and a polar region (62), which have vastly different lipid

compositions and enzyme concentrations. In these cases, the

modeling framework could be extended to model the lipid

compositions in the different lipid domains and lipid mono-

layers separately.

APPENDIX A: LIPID COMPOSITIONS AND JS

VALUES (TABLE 1)

The lipid composition in Table 1 is Extract 13 from Andersson et al. (5). This

lipid composition also contains 3.2 mol % of the monoacyl-DGlcDAG

(MADGlcDAG), which we model as MGlcDAG in Table 1. The assumption

is that the Js of MADGlcDAG (2 glucose: 3 acyl chains) is close to that of

MGlcDAG (1 glucose: 2 acyl chains). The molar fractions of DAG and the

lipid intermediates, PA, CDP-DAG, and PGP, are often below the experi-

mental detection limit. In our model, any unaccounted molar fraction is

distributed among these lipids and we assume that PA and DAG are present at

20 times the level of CDP-DAG and PGP, based on E. coli data (65).

The Js values of DOPG (66), dioleoylphosphatidic acid (DOPA) (67), and

DOG (39) have been measured experimentally. The Js values of DOPG and

dioleoylphosphatidic acid are both taken from experiments with a divalent

cation concentration above 20 mM. This reproduces the A. laidlawii

cytoplasmic environment where a divalent cation is bound to 1 in 10 anionic

lipids (68). The Js values of MGlcDOG, DGlcDOG, and the A. laidlawii lipid

extracts are estimated from the measured hexagonal phase cylinder diameter

d (18), using the equation Js ¼ 1/(d/2 � 0.9 nm). CDP-DAG and PGP are

present at negligible amounts and their Js values are estimated to be 0 nm�1.

The estimated spontaneous curvature of GPDGlcDOG follows from using the

linear assumption in Eq. 2 and the experimental range of lipid extract Jmix
s

values of between�1/6.6 nm�1 and�1/8.1 nm�1 to give a value of Js¼�1/

7.7 nm�1. This estimated value suggests GPDGlcDAG forms a lipid bilayer

and is consistent with observations that GPDGlcDAG, with a mixture of

palmitoyl and oleoyl acyl chains, forms a mixture of micellar and lamellar

aggregates (69). The Js value of the anionic lipid GPDGlcDAG is also likely to

depend on the concentration of free and bound cations (66). The lipid Js values

in Table 1 give a Jmix
s in the experimental range for all other measured oleoyl

acyl lipid compositions (5,18).

APPENDIX B: LITERATURE MODEL
PARAMETERS (TABLE 2)

Functional forms for vGPDGS and vCDS

Two reactions of the lipid biosynthetic network are not described by Eq. 3,

which is an irreversible Michaelis-Menten kinetic rate equation with one

lipid substrate and one soluble substrate. GPDGS catalyzes an irreversible

reaction, but the reaction involves two lipid substrates. This gives a rate

equation with the functional form,

yEnzyme ¼ Vcell

fLgi

KmLi

fLgj

KmLj

1 1
fLgi

KmLi

1
fLgj

KmLj

: (B1)

The reaction catalyzed by CDS is reversible and is modeled with a reversible

rate equation,

yEnzyme ¼ Vcell

fLgi

KmL

½S�
KmS

 
1�

fLgj½P�
fLgj½S�

Keqm

!

1 1
fLgi

KmL

1
½S�
KmS

1
fLgj

KmL

1
½P�
KmS

; (B2)

TABLE 3 Enzyme kinetic constants

Enzyme

Vmax (mmol

mg�1 min�1)

KmL (molar

fraction)

KmS

(mM) Keqm Reference

CDP-DAG synthase* 55 y 0.58 0.22 (23)

PGP synthase* 20 y 0.32 N/A (24)

PA phosphatase 12.8 0.1 N/A N/A (27)

MGlcDAG synthase 12 0.08 0.4 N/A (28)

DGlcDAG synthase 1.3 0.01 0.14 N/A (29)

*Vmax and Km kinetic constants of these enzymes are taken from E. coli.
yThese enzymes were not studied with the surface dilution mechanism.

TABLE 4 Vcell

Enzyme Enzyme yield Vcell, Enzyme (min�1) Reference

CDP-DAG synthase 1/8000* 9.6 3 10�3 (23)

PGP synthase 1/6000* 4.7 3 10�3 (24)

PA phosphatase 1/440 4.1 3 10�2 (27)

MGlcDAG synthase 1/9100 1.8 3 10�3 (28)

DGlcDAG synthase 1/5250 3.5 3 10�4 (29)

*Enzyme yield of these enzymes is taken from E. coli.
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where [P] is the soluble product bulk concentration; the lipid product and

soluble product Michaelis constants are assumed to be equal to the substrate

Michaelis constants KmL and KmS, respectively; and Keqm is the equilibrium

constant.

Enzyme kinetic constants

Three of the seven A. laidlawii lipid biosynthetic enzymes have been studied

in detail. In addition, we use experimental data for two other reactions from

E. coli. Although E. coli and A. laidlawii are very different organisms, most

sequenced bacterial genomes are found to encode a protein that has a strong

homology to CDP-DAG synthase of E. coli (22). Table 3 summarizes the

corresponding Vmax, KmL, KmS, and Keqm values.

The Vcell values are obtained from Eq. 4 using the Vmax in Table 3 and the

ratio MEnzyme/NLipid (protein mass to moles of lipid per cell), which is

estimated as follows. A. laidlawii has 1.35 mmol of polar lipid for each

milligram of membrane protein (70). Polar lipids constitute ;40% of the

A. laidlawii membrane. Membrane proteins are measured to constitute 21.2%

of the overall protein mass (71). This gives an MProtein/NLipid ratio of 1.4 mg

mmol�1. The enzyme yield MEnzyme/MProtein is taken from the purification of

each enzyme and is given in Table 4, which also presents the resulting

estimate of Vcell.

Soluble reactant concentrations

The rate equations for the enzymatic reactions feature the soluble substrates

G3P and uridine diphosphate (UDP)-glucose, CTP, and PPi. In our model,

we assume that the soluble metabolites are not dynamic variables and have

the constant, regulated cytoplasmic concentrations in Table 5. This assump-

tion is motivated by their involvement in many cellular processes other than

lipid biosynthesis.

Lipid insertion

The enzyme that synthesizes PA in A. laidlawii is not well characterized.

Therefore, V1,PA is estimated from the doubling time of A. laidlawii. In an

exponentially growing membrane, the number of lipids is given by

NLipidðtÞ ¼ NLipidð0ÞexpðtV1; PAÞ: (B3)

Taking the doubling time of A. laidlawii in the exponential growth phase to

be between 80 and 90 min (Å. Wieslander, University of Stockholm personal

communication, 2003, 2004), V1,PA is 8.2 3 10�3 min�1.

The authors thank Åke Wieslander for providing invaluable expertise of the

lipid biosynthesis of A. laidlawii. We also thank Robin Leatherbarrow for

insightful discussion. We are grateful to Thomas P. Runarsson and Xin Yao
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