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ABSTRACT Ion permeation and gating kinetics of voltage-gated K channels critically depend on the amino-acid composition of
the cavity wall. Residue 470 in the Shaker K channel is an isoleucine, making the cavity volume in a closed channel insufficiently
large for a hydrated K1 ion. In the cardiac human ether-a-go-go-related gene channel, which exhibits slow activation and fast
inactivation, the corresponding residue is tyrosine. To explore the role of a tyrosine at this position in the Shaker channel, we
studied I470Y. The activation became slower, and the inactivation faster and more complex. At 160 mV the channel inactivated
with two distinct rates (t1¼ 20 ms, t2¼ 400 ms). Experiments with tetraethylammonium and high K1 concentrations suggest that
the slower component was of the P/C-type. In addition, an inactivation component with inverted voltage dependence was
introduced. A step to �40 mV inactivates the channel with a time constant of 500 ms. Negative voltage steps do not cause the
channel to recover from this inactivated state (t� 10 min), whereas positive voltage steps quickly do (t ¼ 2 ms at 160 mV). The
experimental findings can be explained by a simple branched kinetic model with two inactivation pathways from the open state.

INTRODUCTION

An early inferred structural characteristic of voltage-gated

K channels is a wide internal vestibule or cavity (1), later

confirmed in crystallization studies (2). The volume, and

consequently the amino-acid composition, of the wall of this

cavity critically shapes the ion permeation and gating kinet-

ics. Mutating residues pointing into the vestibule alter acti-

vation and inactivation kinetics. Because of its topological

localization, the residue at the position corresponding to

position 470 in the Shaker K channel plays an important role.

In Shaker and most other voltage-gated K channels, this

position is occupied by isoleucine, making the cavity volume

in a closed channel insufficiently large for a hydrated K1 ion

or organic blockers (3,4). Replacing the isoleucine with the

smaller alanine or cysteine shifts the conductance-versus-

voltage (G(V)) curve in the positive direction along the

voltage axis and (in combination with the T449V mutation)

eliminates the C-type inactivation (4,5). In a few other K

channels among vertebrate channels, notably human ether-

a-go-go-related gene (hERG) and BK, the corresponding

residues are aromatic. This fact is especially noteworthy for

the hERG channel because this channel, important for re-

polarization of the heart action potential, exhibits strongly

deviating activation and inactivation patterns compared with

those of other Kv channels. The inactivation rate as well

as recovery from the inactivated state are relatively fast,

whereas the activation and deactivation rates are relatively

slow, giving the channel inward-rectifying properties (6–10).

Nevertheless, the inactivation has been suggested to be of

C-type (8). The aromatic residue in hERG is tyrosine (Y652).

The role of this residue for producing the specific features of

hERG is only understood fragmentarily. Substituting Y652

and F656 leads to alterations in the C-type inactivation (11).

Neither is the kinetic effect of substituting I470 in Shaker
with tyrosine known; corresponding substitution with the

aromatic tryptophan has been shown, however, to cause a

negative shift of the G(V) curve (5). Aromatic residues are

also found in the corresponding position in the bacterial,

voltage-independent channels KcsA and MthK (F103 and

F87, respectively), which have been crystallized and struc-

turally determined (2,12) and thus have made it possible to

detail the location and position of the discussed residues in

the vestibular wall (see Fig. 1).

To obtain information about the role of the tyrosine residue

in the internal vestibule of hERG, and on the effect of aro-

matic residues in the vestibule of Kv channels in general, we

replaced the isoleucine at position 470, corresponding to

position 652 in hERG, with a tyrosine in a Shaker mutant

lacking N-type inactivation (Shaker H4D6–46 (14,15) here-

after called ShIR). Our investigation showed that tyrosine in

position 470 modifies both activation and inactivation ki-

netics, the rate of activation being decreased and the rate of

the slow inactivation increased compared with that of Shaker.

In addition, the substitution induces an inactivation compo-

nent with an inverted voltage dependence; the mutant chan-

nel in the inverted inactivated state does not recover at

voltages more negative than �40 mV, whereas it recovers

rapidly at positive voltages. This type of inactivation seems

unique, although at first sight it has features of a U-type in-

activation.
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METHODS

Molecular biology and channel expression

We used the ShIR channel (14) lacking the fast N-type inactivation (15).

The mutations were made using a QuickChange site-directed mutagenesis

kit (Stratagene, La Jolla, CA). cRNA was synthesized with a T7 mMessage

mMachine kit (Ambion, Austin, TX) and injected into Xenopus laevis
oocytes (20–5000 pg/cell). The oocytes were maintained at 12�C in a

modified Barth’s solution (MBS, in mM: 88 NaCl, 1 KCl, 2.4 NaHCO3, 15

HEPES, 0.33 Ca(NO3)2, 0.41 CaCl2, and 0.82 MgSO4) adjusted to pH 7.6

by NaOH, and supplemented with penicillin (10 mg/ml) and streptomycin

(10 mg/ml).

Electrophysiology

The electrophysiological experiments were carried out 2–4 days after in-

jection of mRNA with a two-electrode voltage-clamp technique, using a CA-

1 amplifier (Dagan, Minneapolis, MN). Microelectrodes were made from

borosilicate glass and filled with a 3 M KCl solution. The resulting resistance

varied between 0.5 and 2.0 MV. The currents were low-pass filtered at 1 kHz.

All experiments were carried out at room temperature (20–22�C). For the

electrophysiological experiments, Ringer’s solution of the following com-

position was used (in mM): 88 NaCl, 1 KCl, 0.8 MgCl2, 0.4 CaCl2, and 15

HEPES adjusted by NaOH to reach pH 7.4. The final concentration of Na1 is

;100 mM. The chemical substances were obtained from Sigma-Aldrich

(Stockholm, Sweden, and Schnelldorf, Germany).

Kinetic modeling

Computer simulations of kinetic models were performed with in-house

software. Table 1 shows equations and parameter values.

RESULTS

The I470Y substitution slows activation and
speeds inactivation

Fig. 2 demonstrates the effect of the I470Y substitution on

currents associated with rectangular voltage steps in 10-mV

increments. At positive voltages, the monoexponential volt-

age-independent slow inactivation in ShIR (t ¼ 3.1 6 0.2 s;

n ¼ 3) is replaced by two more rapidly inactivating compo-

nents following a biexponential time course: 1), a voltage-

independent component, speeded up .100-fold compared

with the inactivation of ShIR (t ¼ 18 6 3 ms; n¼ 10; Fig. 2,

B and C); and 2), a somewhat slower voltage-dependent

component (t ¼ 430 6 54 ms at 160 mV; n ¼ 10; Fig. 2, B
and C). The recovery from the inactivation was about the

same as that of ShIR (16,17). Fig. 2 D shows the time course

of the recovery at�80 mV, yielding a time constant of ;1.0 s.

A further inactivation component became visible when a

second pulse step to 140 mV was applied (Fig. 3 A). This

inactivation component is most pronounced around �40 mV

and disappears at higher voltages. It is also seen as a de-

pression around �40 mV in the standard ‘‘steady-state’’ in-

activation curve (Fig. 3 B) derived from the measurements in

Fig. 3 A. The fact that this inactivation component is difficult

to see in the one-pulse experiments in Fig. 2 A suggests that

channels are trapped in the inactivated state at negative

voltages and that the second (positive) pulse step in the two-

pulse experiments in Fig. 3 A releases the channel from the

inactivated state, making the time course of the inactivation

visible. This explains the differential peak G(V) curves ob-

tained when one-pulse or two-pulse protocols were used

(data not shown). Fig. 3 C shows the peak G(V) curve,

constructed from the measurements in Fig. 3 A (using a two-

pulse protocol) in comparison with a standard G(V) curve for

ShIR. The main effect of the I470Y substitution on the curve

is a shift of ;�10 mV.

The time course of the I470Y-induced inactivation at �40

mV is monoexponential, having a time constant of 483 6 124

ms (n¼ 3) and reaching a steady-state level of 23 6 7% (n¼ 3)

FIGURE 1 Hypothetical side-chain position of the tyrosine residue at

position 470 in a three-dimensional model of Shaker in a closed and open

state as envisioned by homology modeling (13). Corresponding aromatic

residues in three-dimensional structures of the K channels KcsA (F103;

accession No. 1BL8) and MthK (F87; accession No. 1LNQ) are shown in

the lower panel.

TABLE 1 Rate constants and parameters used in the

model calculations

kf, kb a, b g, d k, l m, n e, u s, t

kf, kb (ms�1) — — 0.1, 1.0 — — 0.003, 0.0002

keq (ms�1) 0.5 0.005 — 0.01 0.05 —

zf 0.5 1.5 — 1.5 0.25 —

zb 1.0 1.5 — 1.5 0.25 —

Veq �55 �80 — �10 60 —

Forward rate constant kf is calculated as keq exp((V � Veq) 3 zf 3 F 3

R�1 3 T�1) and backward rate constant kb as keq exp(�(V � Veq) 3 zb 3

F 3 R�1 3 T�1). R, T, and F have their normal thermodynamic meanings.
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of peak current (Fig. 4 A). The rate of activation at�40 mV in

the I470Y channel is considerably slower than that of ShIR at

corresponding open probability levels (�30 mV; see Fig. 3

C). Thus, whereas the activation t½ for I470Y at �40 mV is

20 6 7 ms (n ¼ 4), the activation t½ for ShIR at �30 mV is

only 3.6 6 0.7 ms (n ¼ 5) (Fig. 4, A and B), thus sixfold

faster. To highlight the voltage dependence of the I470Y-

induced inactivation component just discussed, we plotted

the quotient between steady-state current and peak current

(Iss/Ipeak) against voltage (Fig. 4 C). The curve is clearly

U-shaped around �40 mV, with the minimum at �43 mV,

showing that this inactivation component in this respect re-

sembles the U-type inactivation described previously for the

Shaker channel (18). However, as already discussed, in

contrast to the U-type inactivation of Shaker, the I470Y-in-

duced inactivation does not disappear at negative voltages

but does rapidly disappear at positive voltages, suggesting

different mechanisms. We therefore refrained from using the

term U-type for the I470Y-induced inactivation component

at �40 mV.

In conclusion, introducing a tyrosine in the vestibule

portion of the ShIR S6 at the same position as the tyrosine in

the vestibule portion of S6 of hERG leads to a slowed channel

opening at voltages around�40 mV and a faster inactivation,

both at positive voltages (two components) and around �40

mV. Below, the characteristics of the inactivation compo-

nents (of I470Y), especially the latter component, and their

relations to the parent inactivation (in ShIR) are analyzed in

more detail.

The inactivation component induced by a �40
mV pulse has a recovery pattern of reversed
voltage dependence

Fig. 5 A shows the currents through I470Y channels associ-

ated by several consecutive steps to �40 mV from a holding

voltage of�80 mV and applied with intervals of 3 s. Only the

first pulse elicits a current that shows inactivation. An inter-

pulse interval of 3 s is not sufficient to release the channel

from the inactivated state, although this interval duration is

clearly sufficient to release ShIR from a C-type inactivated

state. Increasing the interval between the pulses up to 10 min

did not change the situation; the I470Y channel did not re-

cover from inactivation. We also tested pulses (of 1 s) down

to �170 mV with no sign of recovery (Fig. 5 B).

However, Fig. 3 A clearly shows that the I470Y channel is

not permanently trapped in the inactivated state. There are

evidently pathways to escape from the inactivated state. At

voltages more positive than �40 mV, the channel quickly

recovers from the inactivated state. Fig. 5 C shows the re-

covery after a voltage step of varying amplitude, based on

measurements using the protocol shown. The recovery curve

obtained is reversed in comparison to the recovery curves for

other inactivating channels (19,20). The peak current has

fully recovered after a step to �10 mV or more positive.

FIGURE 2 Effects of the I470Y substitution on ion currents. (A) Currents

associated with depolarizations from �80 to 160 mV in increments of 10

mV for control ShIR and I470Y. (B) Test of exponential fits to the current

associated with a voltage step to 160 mV. (Left panel) A monoexponential

function fitted to the data. (Right panel) The sum of two exponentials fitted

to the data. (C) Time constants of the two inactivation components induced

at positive voltages, calculated from the recordings in A. (D) Time course of

the recovery at�80 mV from the inactivation induced at 180 mV. t ¼ 1.0 s.

FIGURE 3 Activation and inactivation of the I470Y

channel. (A) Currents associated with voltage steps

from�120 to 160 mV in 10-mV increments, followed

by a step to 140 mV. (B) Steady-state inactivation curve

based on the recordings in A. (C) Peak-conductance

curves for I470Y and ShIR, measured as Gpeak1¼ Ipeak1/

(V� EK). Each point is the mean value from six or seven

experiments.
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Furthermore, the recovery at positive voltages is very fast,

comparable to the activation of the channel. At 140 mV, 76 6

9% (n¼ 3) of the channels had recovered within 2.5 ms (Fig.

5, D and E) corresponding to a time constant of 1.8 ms. A

positive step forces the channel from the inactivated state

occupied at �40 mV to an open state before it inactivates

again. This is seen in Fig. 5 D as well as in Fig. 3 B. Thus, the

channel does not go directly from the inactivated state with

reversed voltage dependence to the more conventional in-

activated state but passes an open state.

In conclusion, the I470Y substitution induces, at voltages

around�40 mV, an inactivation with a voltage dependence of

the recovery pattern that is reversed (or inverted) in compar-

ison with previously described inactivation processes; the

channel is trapped in the inactivated state when below �40

mV and rapidly recovers when above �40 mV. In the fol-

lowing, we refer to this inactivation component as the inverted

inactivation component.

The different inactivation processes in I470Y are
caused by different mechanisms

How are the inactivation components of I470Y related to

previously described inactivation types? The most commonly

studied slow inactivation mechanisms are the C-type and

P-type inactivation. These inactivation types are assumed to

FIGURE 4 Characterization of currents in I470Y.

(A) Comparison between the activation rates of I470Y

and ShIR at approximately equal open probabilities

(0.5). (B) Same as in A but at a faster time scale. (C)

The quotient between current at 2.5 s and peak current-

versus-voltage curve, showing the U-type resembling

voltage dependence of the inverted inactivation com-

ponent. Each point is the mean value from six or seven

experiments.

FIGURE 5 Voltage and time dependence of recovery from inverted inactivation in I470Y. (A) Lack of recovery in currents associated with voltage steps

from �80 mV to �40 mV, repeated at a frequency of 0.2 Hz. (B) Lack of recovery from inactivation induced at �40 mV after pulse steps down to �170 mV.

Superimposed currents. (C) Voltage dependence of recovery from the inactivation induced at �40 mV, measured as Ipeak2/max Ipeak2. (D) Recovery from the

inactivation induced at �40 mV after a 2.5-ms duration pulse step to 140 mV (Dt ¼ 2.5 ms). (E) The dependence of the recovery from inactivation on the

duration (Dt ¼ 2.5–50 ms) of a pulse step to 140 mV, measured as Ipeak4/Ipeak1 (see D). Half-time value is 1.9 ms.
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involve a conformational alteration or collapse of the ion-

conducting pore, leading to a channel obstruction (21). The

pore collapse has sometimes been referred to as P-type, and

the later conformational change, stabilizing the inactivated

state, has been referred to as C-type (16). The relation between

the two forms is not fully understood. A prerequisite for the

collapse is that K1 ions escape from the selectivity filter.

Prevention of this K1 escape by increasing extracellular K1

or by adding the K-channel blocker tetraethylammonium

(TEA) slows down the pore constriction and the pore/collapse

(P/C)-type inactivation (22–24). To investigate the I470Y

inactivation components, we therefore added TEA or K1 to

the extracellular solution and measured the resulting currents.

Fig. 6, A and B, shows current families in control and 30

mM TEA solutions for the I470Y mutant with a two-pulse

protocol used to release the channel from the inverted in-

activated state. TEA has a very clear effect on the inactivation

rate at positive voltages but hardly any effects on the inverted

inactivation. Fig. 6 C shows a step to 160 mV for control, 10

mM TEA, and 30 mM TEA. TEA clearly retards (almost 10-

fold) the slow phase of inactivation but has a much smaller

(and opposite) effect on the fast phase (Fig. 6 D), suggesting

that at least the I470Y slow component of the positive-volt-

age-induced inactivation is of the P/C type. In contrast, TEA

has no effect on the inverted inactivation (Fig. 6, E and F).

There is, however, a small effect on the activation that is

connected with a modest TEA-induced shift of the G(V)

curve (data not shown).

Fig. 7 shows experiments with 100 mM K1 solution,

corresponding to the TEA experiments in Fig. 6, A and B. The

figure demonstrates that the high K1 concentration inhibits

the slow, but not the fast, phase of the inactivation at positive

voltages, as most clearly seen in Fig. 7 C. To detect a possible

action on the inverted inactivation, we calculated G(t) curves

for the voltages around �40 mV (not shown). No systematic

effect was found.

Altogether, these experiments suggest that the slow phase

of the positive-voltage-induced inactivation is of P/C type,

FIGURE 6 Effects of TEA on the inactiva-

tion components induced at high voltages. (A
and B) Currents at steps between�80 and 160

mV from a holding voltage of �80 mV and a

subsequent step to 140 mV in control (A) and

30 mM TEA (B). (C) Superimposed currents at

160 mV in varying concentrations of TEA,

highlighting the decreased inactivation in high

TEA concentration. (D) Effect of 30 mM TEA

on time constants of the fast and slow inacti-

vation components plotted versus voltage in the

range from 15 to 160 mV, showing the

difference in TEA effect on the two compo-

nents. (E) Effect of 30 mM TEA on the current

associated with a step to �40 mV. (F) Effect of

30 mM TEA on the inactivation time constant

versus voltage curve.
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whereas the inverted inactivation (and the fast phase of the

positive-voltage-induced inactivation) is of another origin.

Kinetic modeling of the I470Y mutant

The basic features of these findings can be modeled by a

relatively simple branched scheme with two separate inacti-

vation pathways from the open state: one two-step forward

pathway, explaining the biphasic inactivation time course at

high potentials, and one two-step backward pathway, ex-

plaining the inactivation-trapped behavior at low threshold

potentials (;�40 mV). Fig. 8 A shows the model, and Table

1 lists the rate constants and associated parameter values. C

denotes closed states, O the open state, and I inactivated

states. The horizontal transitions are voltage dependent

whereas the vertical are not. The model assumes four inde-

pendent voltage sensors responsible for the transitions from

C1 to C5. The opening step (C5/O6) is slower and more

voltage dependent than the previous steps in the activation

pathway. In total, nine elementary charges are moved to open

this model channel, in relative agreement with the number

estimated for Shaker WT 12 charges (25). The open channel

is assumed to equilibrate quickly with the I6 state. This

transition is voltage independent and biased toward the open

state with a factor of 10. (I6 could also be assumed to be a

conducting state with only minor differences in currents.)

The I5/I6 transition has the same voltage dependence as

C5/O6 and is almost equally fast. However, although

C5/O6 is biased toward O6 at �40 mV, I5/I6 is biased

toward I5. The two transitions are shifted 70 mV in relation to

each other (see Table 1), causing the channel to enter I5 with a

high degree of probability at �40 mV. From O6, the channel

quickly and voltage-dependently inactivates to I7P at positive

voltages. From I7P, there is a further slow and voltage-inde-

pendent inactivation step to I7C. Thus, a channel in I5 will stay

trapped in this state at negative voltages but will rapidly reenter

O6 at positive voltages, from where it moves to I7C and I7P.

Compared with a corresponding model of Shaker WT, the

I470Y model differs in three respects: it assumes two extra

states of inactivation (I5 and I6), other values for the inacti-

vation transitions O6/I7P and I7P/I7C, and for the last ac-

tivation step C5/O6. The I470Y model was constructed to

reproduce the features presently studied and does not claim to

be complete; e.g., it does not explain the fast recovery from

inactivation associated with positive potentials. Thus, there

must be a pathway from I7C to C1 without passing O6. Prob-

ably there is also a pathway from O6 to C1 without passing C5

on deactivation. Fig. 8 B shows a highly schematic view of

FIGURE 7 Effects of 100 mM K1 solution on the

inactivation components induced at high voltages. (A

and B) Currents at steps between �80 and 140 mV

from a holding voltage of �80 mV and a subsequent

step to 140 mV in control (A) and in 100 mM K1

solution (B). (C) Superimposed currents at 140 mV in

control and 100 mM K1 solution, highlighting the

decreased inactivation in 100 mM K1 solution.

FIGURE 8 Kinetic modeling of the I470Y mutant.

(A) The kinetic scheme used for the calculations. C

denotes closed states, O an open state, and I inactivated

states. Rate constant symbols indicated. See Table 1 for

parameter values. (B) Schematic structural model of

the kinetic model, showing hypothetical movements of

voltage sensors, selectivity filter, and internal gate. The

different positions of the voltage sensors in IC7 and IP7

are based on a scenario suggested by Loots and Isacoff

(16). (C) Calculated time evolution of the model

current at voltage steps in increments of 10 mV fol-

lowed by a step to 140 mV (cf. Fig. 3 A). (D) Cal-

culation of Iss/Ipeak1 from C (cf. Fig. 4 C). (E)

Calculation of currents associated with two consecu-

tive steps to �40 mV from a holding potential of �80

mV. The traces are superimposed to illustrate that the

channel model is trapped in an inactivated state (cf.

Fig. 5 A).
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tentative molecular correlates. Fig. 8 C shows the currents

corresponding to the experimental measurements in Fig. 3 A,

calculated from the model. Fig. 8 D shows the quotient be-

tween steady-state current and peak current (Iss/Ipeak) against

voltage, corresponding to the curve in Fig. 4 C. Fig. 8 E shows

currents corresponding to the experimental measurements in

Fig. 5 A.

DISCUSSION

Kv channels exhibit a broad spectrum of inactivation phe-

notypes with varying kinetics, ranging from very fast (N-type)

to slow (P/C- and U-type), and with different underlying

mechanisms. The N-type inactivation is caused by an intra-

cellular pore-plugging mechanism (15,26) and the P/C type

by a selectivity filter collapse (23,27,28). The mechanism of

the U-type inactivation (18,29) remains unclear, although a

role for the T1 domain has been implicated (30).

Our investigation shows that a tyrosine substitution in the

S6 segment at position 470 of the ShIR channel induces a

faster and more complex inactivation pattern compared with

that of ShIR, which is mainly of the P/C type. The I470Y-

induced inactivation comprises 1), a fast voltage-independent

and 2), a slower but still relatively fast voltage-dependent

component at positive voltages, and 3), a component at

voltages around �40 mV that shows no recovery at voltages

more negative than �40 mV but a very fast recovery at pos-

itive voltages. The latter component thus shows a reversed

voltage dependence of the recovery pattern compared with

that of ShIR. Experiments with TEA and high K1 concentra-

tions suggest that the different inactivation components in this

mutant depend on different underlying mechanisms; the

voltage-dependent component at positive voltages are possi-

bly of P/C type. No other substitution at position 470 has been

reported to cause similar effects (3–5). The substitution I470Y

also induces a slower activation around �40 mV. In conclu-

sion, the I470Y substitution thus induces both a slower acti-

vation and a faster inactivation within a certain voltage range.

At first sight this suggests induction of hERG-like features.

However, quantitatively these induced features clearly devi-

ate from those characterizing hERG; the induced slowing of

activation is not comparable to the slow activation seen in

hERG, and the rate of inactivation of the fast component is

still much slower than that of hERG. Furthermore, replacing

the tyrosine in the 652 position in hERG with alanine has no

marked effects on the gating kinetics of the hERG channel

(11).

The mechanisms of the I470Y
inactivation components

The size and chemical character of the residue in position 470

are crucial for a number of functional features of Shaker. They

determine the functional size of the internal vestibule (3), they

influence C-type inactivation (4,31), and they regulate the

tendency of the channel to become defunct at removal of K1

ions on both sides of the membrane (3). The ShIR isoleucine

(as is similar-sized leucine) is large enough to prevent the

closure of the channel if a hydrated K1 ion is located in the

cavity, causing a gating current tail with a slowly rising phase

(3). ShIR also C-type inactivates and becomes defunct at K1

removal (32). The smaller residues, alanine and cysteine,

enlarge the cavity, allowing a hydrated K1 ion, or even a TEA

molecule, to reside in the cavity when the channel is closed

(3,4). They also shift the G(V) curve in a positive direction

(4,5). Alanine and cysteine mutant channels do not C-type

inactivate (in combination with T449V) and cannot become

defunct (32). The bulkier tyrosine or tryptophan delimit the

cavity size further, compared with ShIR isoleucine, and shift

the G(V) curve in negative direction (5) (present investiga-

tion). Tyrosine and tryptophan mutant channels C-type in-

activate, but their tendency to become defunct is still

unexplored.

We find intriguing similarities between the defunct state

and the inverted inactivation state of the I470Y channel. The

sequence of events leading to a defunct channel includes 1), a

depolarization step that allows the K1 ions to escape from the

selectivity filter, 2), a step to �40 mV that leads to accumu-

lation of channels in alternative closed states, inaccessible in

the presence of K1, and 3), a subsequent step to �80 mV,

which moves back the S4 to a resting state. In the defunct

channel, the S4 can still move to some extent, but the channel

cannot open because of a conformational change in the se-

lectivity filter, which affects the last step of the S4 movement.

Recovery from the defunct state is possible after long depo-

larizations in the presence of K1 (33). The similarities be-

tween the defunct and inverted inactivation states are evident:

the importance of an opening step (O6 in the model) and of

intermediate, alternative, closed states (at �40 mV) (I6) for

entering the state and for the impossibility to escape from it

(I5) at hyperpolarization.

How does the introduced tyrosine induce the novel inacti-

vation components in the mutant channel? We find it in-

triguing that the aromatic residues corresponding to hERG

Y652 in the closed KcsA and the open MthK point in different

directions and therefore shape the internal vestibule wall

differently (see Fig. 1). One is pointing upward toward the

selectivity filter (KcsA), and the other is pointing toward

the center of the cavity (MthK). One possible scenario is that

the different tyrosine configurations in I470Y are state de-

pendent, the upward position being associated with the closed

state and the cavity-pointing position with the open state (see

the Shaker homology models in open and closed state; Fig. 1),

and that the induced inverted inactivation process depends on

the configuration alterations. As seen in the schematic dia-

gram in Fig. 8 B, this would mean that the cavity-pointing

tyrosine position is found in the inactivated state I6. At in-

termediate potentials (;�40 mV), the channel will move into

the I5 state, from which it can escape only when the channel is

sufficiently depolarized to push Y470 into the upright position
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(in state O6). We suggest that state I5 bears some resemblance

to the alternative closed state, leading to the defunct state (32);

but for escape from the defunct state, reintroduction of K1 is

also needed.

The I470Y substitution is also associated with a biphasic

inactivation at positive voltages, the slow phase of which is

most likely of C-type. A coupling between C-type inactiva-

tion and the tendency to become defunct has been suggested

(34). How the different inactivation components in the I470Y

mutant are related, and how the tyrosine residue affects the

selectivity filter, remain to be explored.

What gating mechanisms are causing the different inacti-

vation processes in the mutant channel? The P/C-type-like

inactivation component is possibly caused by a tyrosine-in-

duced destabilization of the selectivity filter in agreement with

the conclusions from previous studies of P/C-type inactiva-

tion regarding the structural changes of the selectivity filter

(16). Concerning the inverted inactivation component, we

find three scenarios conceivable: tyrosine 1), interacts directly

with the hydrated ion in the vestibule because of its cavity-

pointing position in state I5 (see Figs. 1 and 8 B), 2), interacts

indirectly and allosterically destabilizes the selectivity filter,

or 3), modifies the gating process at the bundle crossing or at

the glycine hinge. All the alternatives are speculative, but the

first alternative seems least likely, considering the small effect

on the permeation path the aromatic residues at corresponding

positions have in KcsA and MthK. In both cases, the aromatic

residues do not appear to constitute steric, electrostatic, or

reaction field barriers (35). If the inverted inactivation state

has some resemblance to the defunct state, the most likely

scenario seems to be the third alternative, that tyrosine causes

this effect by allosterically modifying the gating process (3).
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