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Abstract

The macrophage is the primary host cell for the fungal pathogen Histoplasma capsulatum during mammalian infections, yet
little is known about fungal genes required for intracellular replication in the host. Since the ability to scavenge iron from
the host is important for the virulence of most pathogens, we investigated the role of iron acquisition in H. capsulatum
pathogenesis. H. capsulatum acquires iron through the action of ferric reductases and the production of siderophores, but
the genes responsible for these activities and their role in virulence have not been determined. We identified a discrete set
of co-regulated genes whose transcription is induced under low iron conditions. These genes all appeared to be involved in
the synthesis, secretion, and utilization of siderophores. Surprisingly, the majority of these transcriptionally co-regulated
genes were found clustered adjacent to each other in the genome of the three sequenced strains of H. capsulatum,
suggesting that their proximity might foster coordinate gene regulation. Additionally, we identified a consensus sequence
in the promoters of all of these genes that may contribute to iron-regulated gene expression. The gene set included L-
ornithine monooxygenase (SID1), the enzyme that catalyzes the first committed step in siderophore production in other
fungi. Disruption of SID1 by allelic replacement resulted in poor growth under low iron conditions, as well as a loss of
siderophore production. Strains deficient in SID1 showed a significant growth defect in murine bone-marrow-derived
macrophages and attenuation in the mouse model of infection. These data indicated that H. capsulatum utilizes
siderophores in addition to other iron acquisition mechanisms for optimal growth during infection.
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Introduction

Iron acquisition is critical to cellular function and survival.

During infection of mammals, the host limits the access of iron to

microbial pathogens by a variety of means [1]. In turn, pathogens

utilize a number of strategies to acquire iron in the face of iron

restriction by the host. Here we investigate the role of siderophore-

mediated iron acquisition in the fungal pathogen Histoplasma

capsulatum, which parasitizes host macrophages during infection.

Histoplasma capsulatum is a dimorphic, fungal pathogen that

causes respiratory and systemic disease in humans. Infection of

mammals is initiated by inhalation of fungal spores from soil in

regions of the U.S. where the organism is endemic. Once in the

host, H. capsulatum grows in a budding yeast form that colonizes

alveolar macrophages. Yeast cells replicate within the macrophage

phagolysosome, but the molecular mechanisms governing survival

within host cells remain largely undefined [2].

Replication of H. capsulatum within macrophages is dependent

on the availability of iron. During infection of murine peritoneal

and human monocyte-derived macrophages, addition of the iron

chelator deferoxamine inhibits the intracellular growth of H.

capsulatum. This inhibition is suppressed by the addition of iron-

rich transferrin (holotransferrin), indicating that active iron

acquisition is a critical determinant of intracellular growth [3,4].

In addition, the adaptive immune response to H. capsulatum

infection, which triggers production of the cytokine interferon-

gamma (IFNc) by T-cells [5], may curtail intracellular fungal

growth by limiting iron acquisition by the fungus. Treatment of

murine peritoneal macrophages with interferon-gamma (IFNg)

causes growth restriction of H. capsulatum which, in turn, can be

reversed by addition of holotransferrin [3]. IFNc downregulates

surface transferrin receptors, suggesting that a major means by

which IFNc inhibits intracellular fungal growth is via iron

limitation.

These studies indicate that iron acquisition plays a critical role

in Histoplasma virulence. However, although several biochemical

activities have been identified in H. capsulatum, little is known about

the genes that regulate iron accumulation. H. capsulatum is known

to secrete hydroxamate siderophores that act as low-molecular-

weight ferric iron chelators under low iron conditions [6,7].

Additionally, iron limitation also induces reductive iron assimila-

tion, including ferric reductase activity [8].
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To assess the role of these iron acquisition mechanisms in

virulence, we identified H. capsulatum genes that function in

siderophore-mediated iron acquisition. These genes were tran-

scriptionally induced under low iron conditions and contained a

common putative regulatory site in their upstream regions that

might govern their coordinate expression. Inspection of the

sequences revealed that these genes were clustered together in

the genome, and thus defined a secondary metabolite gene cluster

involved in siderophore biosynthesis. Disruption of one of the

genes of this pathway, SID1, resulted in elimination of hydro-

xamate siderophore synthesis, diminished growth of H. capsulatum

within macrophages, and compromised virulence in mice. These

data indicated that iron scavenging though siderophore produc-

tion facilitates the parasitic growth of H. capsulatum.

Results

Transcriptional response to low iron
The genes involved in iron acquisition are tightly regulated at

the level of transcription in most microorganisms. To identify

genes that are transcriptionally regulated by iron limitation

conditions in H. capsulatum, we grew H. capsulatum (strain G217B)

yeast cells under iron-limiting (100 mM deferoxamine mesylate) or

iron-replete (5 or 10 mM FeSO4) conditions for various periods of

time. The transcriptional profiles of these samples were compared

using whole-genome oligonucleotide microarrays. We found seven

genes that were transcriptionally induced under conditions of iron

limitation and named them according to the putative functions of

the corresponding proteins (Figure 1A). These genes included L-

ornithine monooxygenase (SID1, previously named LOM1 [9],

EU253976), the enzyme catalyzing the first committed step in

extracellular and intracellular siderophore production in other

organisms; an acetylase (SID3, EU253977); an acid co-A ligase

(SID4, EU253978); a non-ribosomal peptide synthase (NPS1,

EU253973); an oxidoreductase (OXR1, EU253974); a major

facilitator superfamily (MFS) transporter (MFS1, EU253970)

[10]; and an ATP-binding cassette transporter (ABC1,

EU253969) [10].

Based on precedent from other fungi, these genes were likely to

have roles in the production, transport, and utilization of

siderophores, and could comprise the entire pathway of hydro-

xamate siderophore production [11–13]. SID3 is orthologous to

SidF in Aspergillus fumigatus, an N5-transacylase involved in the

synthesis of fusarinine and triacetylfusarinine [13]. NPS1 is

orthologous to the non-ribosomal peptide synthases involved in

extracellular siderophore production in ascomycetes [13,14].

MFS1 is homologous to mirB of Aspergillus nidulans, a siderophore

transporter [15]. And finally, ABC1 contains homology to

MTABC3, a mammalian ABC transporter involved in iron

homeostatis [16].

Quantitative RT-PCR (QRT-PCR) analysis confirmed that all

seven genes were transcriptionally induced during iron deprivation

(Figure 1B). Both the microarrays and QRT-PCR analysis also

showed that transcription of these genes began to be induced even

in the presence of iron supplementation at late time points,

suggesting that iron eventually becomes limiting under these

conditions, or perhaps that the induction of genes involved in

siderophore synthesis is highly sensitive to a subtle decrease in iron

availability.

Surprisingly, all but one of these iron-regulated genes were

located adjacent to each other in an approximately 25 kb region

of the genome of the G217B strain of H. capsulatum (Figure 2A).

Only MFS1 is encoded by a distinct genomic region. This

genomic cluster of iron-regulated genes was also present in the two

other sequenced strains of H. capsulatum: G186AR (Genome

Sequencing Center, Washington University, St. Louis, MO) and

WU24 (Broad Institute, Massachusetts Institute of Technology,

Cambridge, MA). In G186AR, an additional MFS transporter,

MFS2 (EU253971), as well as a second acetylase (SID5,

EU253979), was found within the putative iron-regulated gene

cluster. WU24 contained the 59 end of the MFS2 gene, but did not

contain SID5. We observed a similar genome structure in the

closely related fungus Coccidioides immitis (data not shown), but only

a subset of the genes were found adjacent to each other in other

fungal genomes (see discussion).

Two of the genes located within this genomic cluster, NIT22

(encoding a dehydratase, [9], EU253972) and RTA1 (encoding a

predicted protein containing an RTA domain, resistance to 7-

aminocholesterol, EU253975), did not appear to be iron regulated

by microarray. We used QRT-PCR analysis to determine whether

these genes were regulated differentially in response to iron levels.

However, whereas RTA1 expression was not detected by QRT-

PCR under either iron-rich or iron-poor conditions (data not

shown), NIT22 expression was induced under iron limitation

(Figure 1B). Unlike the other iron-regulated genes in this

genomic cluster, NIT22 did not encode a protein with homology

to known siderophore-biosynthesis genes. Thus, its induction

under conditions of iron limitation may reflect a previously

unidentified role of its dehydratase activity in siderophore

biosynthesis. To determine if the iron-dependent regulation of

this gene cluster extended beyond the genes we identified by

microarray, we also examined the expression of UBP1 (encoding a

ubiquitin C-terminal hydrolase), a gene approximately 6kb

upstream of OXR1. UBP1 expression was not regulated by iron

levels (Figure 1B). In addition, we used QRT-PCR to determine

that genes found in the iron cluster of G186AR were also

transcriptionally regulated by iron levels (Figure S1).

Identification of a putative regulatory site
Since the genes in this siderophore biosynthetic cluster were

transcriptionally co-regulated in response to iron levels, we used

Multiple Em for Motif Elicitation (MEME) to identify conserved

sequences in the upstream regions of these genes from both the

G217B and G186AR strains of H. capsulatum. A consensus site, 59-

(G/A)ATC(T/A)GATAA-39, was present at least once in the 59

regions of all of the genes in the siderophore biosynthetic cluster

(Figure 2B). Interestingly, this consensus contained an HGATAR

Author Summary

Fungal infections are a growing public health threat,
particularly for immunocompromised individuals such as
people with AIDS, organ transplant recipients, and cancer
patients. Present antifungal therapies are often highly toxic
and resistance to these therapies continues to rise.
Histoplasma capsulatum is a pathogenic fungus that
infects humans, causing pulmonary and systemic disease.
It is the most common cause of fungal respiratory infection
in the world, and is endemic to the Mississippi and Ohio
River valleys of the United States. H. capsulatum produces
small molecules, called siderophores, to acquire iron, an
essential nutrient. We have identified genes that are
involved in the synthesis of siderophores in this fungus
and have found that siderophore production in H.
capsulatum is important for its virulence. Since siderophore
production is confined to microbes and plays no role in
human biology, it is an excellent target for rational drug
design.

H. capsulatum Siderophores and Virulence
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sequence, the recognition site for fungal GATA transcriptional

regulators [17], some of which are known to regulate the

expression of siderophore-biosynthesis genes in other fungi [18–

20]. In H. capsulatum, an ortholog of these GATA factors, Sre1, was

shown to bind in vitro to the consensus site we identified here,

suggesting that Sre1 limits expression of the siderophore

biosynthetic gene cluster under iron-replete conditions (Chao et

al, submitted).

Disruption of SID1 eliminated siderophore production
To test whether this pathway was important for siderophore

production, we disrupted SID1, which encodes the enzyme that

catalyzes the first committed step in siderophore production. The

gene disruption was performed in the wild-type G186ARura5D
strain background and confirmed by PCR (data not shown) and

Southern blot analysis (Figure 3A). The sid1D strain grew with

normal kinetics under iron-replete conditions, but displayed a

growth defect under conditions of iron limitation (Figure 3B).

Consistent with its poor growth under iron-limiting conditions, the

sid1D strain also failed to produce siderophores (Figure 3C).

To insure that the observed growth defect was due to disruption

of SID1, we complemented the sid1D strain with a wild-type copy of

the SID1 gene. SID1, including all intergenic regions 59 and 39 of the

open reading frame, was cloned into an integrating Agrobacterium

tumefaciens T-DNA vector (pED2). This construct was randomly

integrated into the wild-type genome and into two independent

sid1D isolates. The SID1 gene fully complemented the growth defect

in low-iron medium (Figure 3B), but only partially complemented

siderophore production (Figure 3C) for unknown reasons. QRT-

PCR analysis revealed that SID1 transcript accumulation was

similar under iron-limiting conditions in the wild-type and

complemented strains (data not shown). We also introduced a

SID1 complementation construct on a high-copy episomal plasmid,

but these transformants expressed SID1 at very low levels and

showed little complementation of siderophore production (data not

shown), suggesting that integration into the genome may be

required for normal levels of SID1 transcription.

SID1 is important for virulence
In other pathogens, iron acquisition from the host is a critical

virulence determinant. To examine the role of siderophore-

mediated iron acquisition in H. capsulatum infection, we infected

bone-marrow-derived murine macrophages (BMDMs) with wild-

type, sid1D, and complemented strains. At zero, 6, 24, and

48 hours following infection, the macrophages were lysed and

colony-forming units (CFUs) of H. capsulatum cells were determined

(Figure 4A). Wild-type H. capsulatum cells were able to proliferate

within the macrophages as expected. Although the sid1D strains

were also able to grow intracellularly, they reached only ,40% of

wild-type levels by 48 hours after infection (p,0.001). The

doubling time of wild-type cells in macrophages was 10 hours

while the sid1D strain doubled in 14 hours. Addition of 100 mM

FeSO4 to infected macrophages reversed this phenotype, strongly

suggesting that the proliferation defect in macrophages was due to

the decreased ability of the mutant strains to acquire iron

(Figure 4B). The complemented strains did not display a growth

defect in macrophages, indicating that they made sufficient

siderophores to permit wild-type growth during macrophage

infection (Figure 4A). The growth defect of the mutant strain and

complementation of the defect with either reconstitution of the

 OXR1 

 NPS1 

 SID4 

 SID3 

 SID1 

 ABC1 

 MFS1 

0 4 24 48 4 24 48

5µM FeSO4 100µM Df

-6 60

A
B

C
1

re
lq

ua
nt

U
B

P1
re

lq
ua

nt

5
10
15
20
25
30
35

5
10
15
20
25
30
35

0 1 4 24 1 4 24

+Fe +Df
0 1 4 24 1 4 24

+Fe +Df
0 1 4 24 1 4 24

+Fe +Df

5
10
15
20
25
30
35

M
FS

1
re

lq
ua

nt

5
10
15
20
25
30
35

SI
D

3
re

lq
ua

nt
O

XR
1

re
lq

ua
nt

5
10
15
20
25
30
35

N
IT

22
re

lq
ua

nt

5
10
15
20
25
30
35

SI
D

1
re

lq
ua

nt

5
10
15
20
25
30
35

5
10
15
20
25
30
35

N
PS

1
re

lq
ua

nt

SI
D

4
re

lq
ua

nt

20
40
60
80

100
120
140
160A B

Figure 1. Iron Regulated Gene Expression of Siderophore Biosynthesis and Utilization Genes. A. Iron-dependent gene expression cluster
from whole genome oligonucleotide microarray analysis of G217B yeast grown under iron replete (5 mM FeSO4) and iron limited (100 mM
deferoxamine mesylate) conditions for 0, 4, 24, and 48 hours, as described in Materials and Methods. Red indicates up-regulated genes, green
indicates down-regulated genes, black indicates genes that do not change in expression, and gray indicates that no data are available. Microarray
time courses were repeated with three biological replicates. A representative experiment is shown. Similar results were seen for iron replete
conditions of either 5 or 10 mM FeSO4. B. Quantitative RT-PCR of siderophore biosynthesis and utilization genes. Total RNA from the 0, 1, 4, and 24 hr
time points used in the microarray analysis were analyzed for relative transcript levels using QRT-PCR. Transcript levels were normalized to ACT1
transcript. Relative quantities were normalized to t = 0 values (black bars). For the 1, 4, and 24 hr time points, white bars indicate growth in medium
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doi:10.1371/journal.ppat.1000044.g001
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wild-type gene or the addition of iron was consistent over several

infections (Figure 4C).

To investigate whether siderophore production plays a role in

animal infections, we first infected C57BL/6J mice intranasally with

a lethal dose (effective inoculum of ,16105 CFU) of either wild-

type, sid1D, or complemented strains. No significant differences in

pulmonary fungal burden were observed under these conditions

(data not shown). However, since the literature suggested that

assessing the virulence of a mutant strain in competition with wild-

type can provide a more sensitive assay for pathogenesis defects

[21,22], we decided to perform a competitive infection with wild-

type, sid1D, and the complemented strains. We infected C57BL/6J

mice intranasally with a sublethal dose (effective inoculum of

,16104 CFU) of an equal mix of either wild-type and sid1D or

wild-type and sid1D+SID1 strains. Lung homogenates from multiple

time points were analyzed for CFUs and ratios of wild-type, sid1D,

and complemented strains were calculated. The competitive index,

which reflects the defect of a particular strain with respect to the

wild-type strain, was determined as described in Materials and

Methods. We observed that the sid1D strain showed a significant

defect in pulmonary colonization compared to wild-type cells

(Figure 5). This defect began at day 5, with a severe defect

apparent at day 15 (p,0.01). This phenotype was reversed in the

complemented strain, which accumulated to slightly higher levels

than the wild-type strain for unknown reasons (p,0.05). These data

indicated that siderophore production is important for optimal

growth of H. capsulatum in mouse lungs.

Discussion

Iron acquisition is essential for the growth of most microorgan-

isms and occurs primarily by two mechanisms: siderophore

production and reductive iron assimilation [23]. Both of these

processes are induced by H. capsulatum during iron limitation [6,8],

but their role in cell growth and virulence has not been previously

investigated. In this study, we determined the role of siderophore

production in growth under conditions of iron limitation as well as

during infection. We identified a siderophore biosynthetic gene

cluster that was transcriptionally induced in response to iron

limitation. Disruption of siderophore production resulted in iron-

dependent growth in culture and during macrophage infection,

and caused a growth defect in mice.

Presumably the sid1D mutant shows a strong pulmonary

colonization defect in competition with wild-type because it has

a reduced capacity for iron acquisition in vivo. The in vivo growth

defect caused by lack of siderophore production is most

pronounced at 15 days post infection. Interestingly, the peak of

IFN-c production by T cells in response to H. capsulatum infection

occurs at day 14 [24]. Since one of the functions of IFN-c is to

restrict iron, perhaps siderophore production is primarily required

for iron acquisition during the latter stages of infection, whereas

redundant iron acquisition mechanisms, such as reductive iron

assimilation, might play a role early in infection.

In other fungal pathogens, siderophore production and

reductive iron assimilation, which is usually mediated by ferric
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reductase activity, play differential roles in pathogenesis. For

example, siderophore production is essential for virulence in

Aspergillus fumigatus, but reductive iron assimilation is neither

necessary nor sufficient for normal growth and survival in the host

[25]. Similarly, in the phytopathogens Cochliobolus miyabeanus,

Alternaria brassicicola, Cochliobolus heterostrophus, and Fusarium grami-

nearum, extracellular siderophore production is required for full

virulence [14]. In contrast, deletion of the SID1 gene in U. maydis

does not affect virulence in maize [26]; instead, reductive iron

assimilation is required for virulence [27]. This also true in Candida

albicans, where ferric reductase activity is required for systemic

infection [25,28].

Ferric reductase activity has been clearly demonstrated in H.

capsulatum [8], though the relevant genes that encode these

activities have not been identified, and thus their role in virulence

has not been assessed. Perusal of the genome revealed seven

putative ferric reductase genes, though none of these candidates

were observed to be upregulated by iron limitation in our

experiments. Nonetheless, any or all of these genes could

contribute to pathogenesis in the host.

In addition to identifying a role for siderophore production in

virulence, this study revealed several interesting regulatory

properties of siderophore-biosynthesis genes. First, inspection of

the sequences upstream of each gene revealed a consensus sequence

that was present at least once per gene. The expression of several

fungal orthologs of SID1 is repressed by GATA-type negative

regulators that recognize the HGATR motif [19,20,29]. Interest-

ingly, the consensus sequence we identified, 59-(G/A)ATC(T/

A)GATAA-39, contained an HGATAR motif, and was shown to

bind an H. capsulatum GATA factor in vitro (Chao et al., submitted).

We are now investigating whether these regulatory sequences are

necessary to confer gene regulation in response to iron levels in vivo.

Second, the siderophore biosynthesis genes were located

adjacent to each other in the genome, and thus comprise the

first secondary metabolite gene cluster defined in H. capsulatum. We

observed similar clustering in the genome of the closely related

systemic dimorphic fungal pathogen C. immitis, but it is not evident

to nearly the same extent for siderophore biosynthesis genes in

other sequenced fungal genomes [27,30,31].

Third, we could not express significant levels of SID1 from an

episomal plasmid, suggesting that integration of the gene may be

critical for normal expression levels. Additionally, integration of

SID1 at random sites in complementation strains resulted in partial

complementation of siderophore production, suggesting that

optimal function might be achieved only with expression from

the original genomic locus. Unfortunately, targeted integration is

extremely challenging in H. capsulatum, making it difficult to

directly test this hypothesis.

The potential significance of the H. capsulatum gene cluster with

regards to gene regulation is intriguing. One possibility is that

clustering in the genome facilitates local changes in chromatin

structure that allow a regional change in promoter accessibility.

This type of regulation is reminiscent of transcriptional control of

secondary metabolite clusters in Aspergillus species, where tran-

scriptional accessibility of genes in the cluster is controlled by the

putative methyltransferase LaeA [32,33]. Perhaps local control of

chromatin structure allows a rapid and coordinated transcriptional

switch in response to changes in iron levels.

Materials and Methods

Strains and culture conditions
Histoplasma capsulatum strains G217B (ATCC 26032) and

G186ARura5D (WU8), all kind gifts from the laboratory of

William Goldman, Washington University, St. Louis, as well as

strains generated in this study (Table 1) were grown in HMM

broth or plates [34], or in mRPMI broth [RPMI 1640 medium

without phenol red or bicarbonate (Invitrogen, www.invitrogen.

com), supplemented with 1.8% dextrose (Fisher Scientific, www.

fishersci.com), 25 mM HEPES pH 6.5 or pH 7.5 (Fisher Scien-

tific), and 100 units/mL of both penicillin and streptomycin

(UCSF Cell Culture Facility, www.ccf.ucsf.edu), modified from

[8]]. Unlike HMM, mRPMI contained no added iron, but did not

eliminate trace amounts of iron, though cultures grown in mRPMI

medium were incubated in plastic flasks to reduce trace iron

contamination. Media was supplemented with various concentra-

tions of FeSO4 (Fisher Scientific) as described in the text. HMM

and mRPMI media were supplemented when needed with

200 mg/mL hygromycin (Roche, www.roche.com) and 200 mg/

mL uracil (Sigma-Aldrich, www.sigmaaldrich.com). Cultures were

grown at 37uC under 5% CO2.

For microarray studies, an initial culture of G217B yeast cells was

grown in 5 mL HMM, and then passaged 1:25 into 80 mL HMM.

After 3 days of growth, the culture was pelleted, washed in 80 mL of

PBS, and resuspended in 1 L of mRPMI pH 7.5 supplemented with

5 mM FeSO4. After 24 hours of growth, 200 mL of culture was

harvested for the zero time point. Then the culture was split into

26400 mL, and an additional 5 mM or 10 mM FeSO4 was added to

one culture and 100 mM deferoxamine mesylate (Sigma-Aldrich)

was added to the other. At each time point, 100 mL of culture was

harvested and processed as below.

For growth, siderophore production, and QRT-PCR assays in

G186AR based strains, cells were grown in 5 mL HMM. When

the cultures reached late log phase, they were sonicated twice for

3 seconds to disperse cells and then passaged 1:25 into HMM.

After 24 hours of growth, they were pelleted, washed in an equal

volume of PBS, and resuspended in an equal volume of mRPMI

pH 6.5. For growth curves, triplicate samples of 1 mL of cells were
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Figure 5. Disruption of SID1 Causes a Growth Defect in Mice.
C57BL/6J mice were infected intranasally with an effective inoculum of
16104 CFU of an equal mix of hcLH95 and hcLH97 (wt:sid1D, black
boxes) or hcLH95 and hcLH106 (wt: sid1D+SID1, white boxes). Boxes
indicate the competitive index (CI) for individual mice as determined in
Materials and Methods. Horizontal bars indicate the means of CI values.
A pairwise comparison of the 15-day CI for the wt:sid1D and wt:
sid1D+SID1 infections by the Mann-Whitney/Wilcoxon test revealed that
they were significantly different (p = 0.0286). Significance for WT:sid1D
time course was determined using Kruskal-Wallis test (ANOVA) with
Dunn’s Multiple Comparisons test. This analysis showed that the CI at
t = 4 hr and t = 15 days was significantly different (p,0.01).
doi:10.1371/journal.ppat.1000044.g005

H. capsulatum Siderophores and Virulence

PLoS Pathogens | www.plospathogens.org 6 April 2008 | Volume 4 | Issue 4 | e1000044



taken at each time point, sonicated twice for 3 seconds, and

dilutions were measured by spectrophotometer at OD600. For

QRT-PCR, after resuspension in mRPMI pH 6.5, cells were

grown for an additional 24 hours. At that point, a t = 0 sample was

harvested, then the culture was split. One culture was maintained

in mRPMI pH 6.5 media with no additions, the other was treated

with 5 mM FeSO4. Cells were harvested at 1, 4, and 24 hours and

total RNA was isolated using a guanidine thiocyanate lysis

protocol as previously described [10].

Electrotransformation of DNA
Approximately 100 ng of PacI-linearized plasmid DNA with

exposed telomere ends was transformed into yeast cells as

previously described [35].

Agrobacterium Transformation
H. capsulatum yeast cells were transformed using Agrobacterium-

mediated gene transfer as described previously [36]. Briefly, the A.

tumefaciens strain (LBA1100, a kind gift of Thomas Sullivan and

Bruce Klein with permission from Paul Hooykas (Leiden

University, Leiden, The Netherlands)) transformed with the

desired plasmid was induced overnight with 200 mM acetosyr-

ingone (AS, from Sigma-Aldrich). H. capsulatum yeast cells were

harvested from 4 day patches on HMM+uracil plates and diluted

to 56108 cells/mL. Equal volumes of the H. capsulatum and A.

tumefaciens cultures were mixed, and 400 mL of the mix was spread

onto BiodyneA nylon membranes (Pall Gelman, www.pall.com) on

IM agarose plates containing 200 mM AS and 200 mg/mL uracil.

Co-cultivation plates were incubated at 28uC for 3 days. The

membranes were then transferred onto HMM plates with no

added uracil and incubated at 37uC for 2 to 3 weeks. Strains WU8,

HcLH25, and HcLH26 were transformed with pVN61 (vector

control marked with URA5) and pED2 (SID1 complementation

marked with URA5). All of the transformed strains show similar in

vitro growth in liquid and solid media without uracil.

Microarrays
Cultures of H. capsulatum were harvested by filtration, and total

RNA was isolated using a guanidine thiocyanate lysis protocol as

previously described [10]. This RNA was used for both

microarrays as well as QRT-PCR. For microarrays, polyadenyl-

ated RNA was purified from total RNA using an Oligotex mRNA

kit (Qiagen Inc.,www.qiagen.com). cDNA synthesis from polyA-

selected RNA and fluorescent labeling was performed as described

previously [37]. Briefly, an equal mass of RNA from each time

point was pooled to generate a reference sample and labeled with

Cy3. cDNA from each individual time point was labeled with Cy5

and competitively hybridized versus the reference pool using H.

capsulatum G217B 70-mer oligonucleotide microarrays. The

microarrays contain a single 70-mer oligo for each predicted gene

in the G217B genome, as well as two 70-mer oligos for low

confidence genes.

Arrays were scanned on a GenePix 4000B scanner (Axon

Instruments/Molecular Devices, www.moleculardevices.com) and

analyzed using GENEPIX PRO, version 6.0 (Molecular Devices),

Spotreader (Niles Scientific, www.nilesscientific.com), NOMAD

2.0 (http://nomad2.ucsf.edu/NOMAD/nomad-cgi/login.pl),

CLUSTER [38], and Java Treeview 1.0.12 (available at

http://sourceforge.net/project/showfiles.php?group_id = 84593).

To eliminate elements with low signal, we did not analyze

elements for which the sum of the medians for the 635-nm and

532-nm channels was #500 intensity units. All of the time points

were normalized relative to the zero time point.

Quantitative RT-PCR
Total RNA was treated with DNaseI (Promega, www.promega.

com). cDNA was synthesized from 3.3 mg of DNaseI-treated RNA

using Stratascript reverse transcriptase (Stratagene, www.strata-

gene.com) and oligo-dT. Quantitative PCR was performed on

1:100 dilutions of cDNA, except for MFS2 and SID5 reactions,

which used 1:40 dilutions of cDNA. The reactions included

1.5 mM MgCl2, 16 Amplitaq buffer, 0.6 units Amplitaq Gold

(Applied Biosystems, www.appliedbiosystems.com), 16 SYBR

Green (Molecular Probes, probes.invitrogen.com), and 200 nM

primers. Reactions were performed on the Mx3000P QPCR

system (Stratagene, www.stratagene.com) with Comparative

Quantitation (with dissociation curve) program, using actin

(ACT1) as the normalizing transcript. Cycling parameters were

95uC for 10 minutes, then 40 cycles of 95uC (30 s), 57uC (1 min),

72uC (30 s) followed by dissociation curve analysis. All reactions

were performed in triplicate. A calibrator sample made from an

equal mix of each RNA sample was included on each plate.

Reactions were analyzed using MxPro software. Primer sequences

are included in supplemental material (Table S1).

Accession Numbers
The H. capsulatum GenBank/NCBI (http://www.ncbi.nlm.nih.

gov/) nucleotide sequences for the genetic loci described in this

publication are ABC1 (EU253969), MFS1 (EU253970), MFS2

(EU253971), NIT22 (EU253972), NPS1 (EU253973), OXR1

(EU253974), RTA1 (EU253975), SID1 (EU253976), SID3

(EU253977), SID4 (EU253978), and SID5 (EU253979).

Consensus site identification
Promoter regions (including 1 kb upstream of ATG, or entire

intergenic regions for SID4/SID1 and NPS1/ABC1) of SID3, SID4,

SID1, NIT22, NPS1, ABC1, OXR1, and MFS1 from G217B and

G186AR were submitted for MEME (Multiple Em for Motif

Elicitation) analysis at http://meme.sdsc.edu. The length range for

consensus site was set between 6 and 50 base pairs.

Disruption of SID1
A positive-negative selection strategy was utilized to disrupt

SID1 in G186ARura5D (WU15), as described in [39]. Originally,

we attempted to disrupt this gene in the G217Bura5-23 strain, but

we were unsuccessful. A disruption construct, pLH36, was made

containing 1213 bps 59 and 943 bps 39 of the SID1 open reading

from G217B. The open reading frame was replaced with the

Table 1. Strain List.

Strains Genotype

ATCC 26032 G217B wt

WU8 G186AR ura5D

HcLH25 G186AR ura5D sid1D(827)::hph

HcLH26 G186AR ura5D sid1D(921)::hph

HcLH27 G186AR ura5D sid1D(922)::hph

HcLH95 G186AR ura5D zzz::URA5

HcLH97 G186AR ura5D sid1D::hph zzz::URA5

HcLH103 G186AR ura5D zzz::SID1-URA5

HcLH106 G186AR ura5D sid1D::hph zzz::URA5

zzz indicates integration into unknown location in genome.
doi:10.1371/journal.ppat.1000044.t001
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hygromycin resistance gene, hph under the control of the Aspergillus

nidulans gpd promoter. This construct was introduced into

G186ARura5D (WU15) by electrotransformation. Seven indepen-

dent transformants were colony purified, inoculated into

HMM+hygromycin+uracil+20 mM FeSO4 medium and passaged

3 times (1:25 dilution) once the cultures had reached mid log

phase. After the final passage, serial dilutions of the cells were

plated onto HMM (pH 4.5)+1 g/L 5-Fluoroorotic acid (5-FOA,

Zymo Research, www.zymoresearch.com) +20 mM FeSO4 aga-

rose plates. Genomic DNA from colonies on 5-FOA plates was

tested by PCR for the disruption. Potential gene disruptions were

further tested by Southern analysis.

Quantification of siderophores
Secretion of siderophores was detected using chrome azurol S

(CAS) [40]. Briefly, 0.5 mL of culture supernatant was mixed with

0.5 mL of CAS assay solution (600 mM hexadecyltrimethyl

ammonium (Sigma Aldrich), 15 mM FeCl3 (Sigma Aldrich),

150 mM CAS (Sigma Aldrich), 500 mM anhydrous piperazine

(Fluka), 750 mM HCl (Fisher Scientific), and 4 mM 5-sulfosalicylic

acid (Sigma Aldrich)), incubated for 1 hour, and the OD630 was

measured with a spectrophotometer.

Macrophage culture and infections
Bone-marrow-derived macrophages (BMDM) were isolated

from femurs of 6- to 8-week old female C57BL/6J mice. The

bone marrow was eluted using BMM (Bone Marrow Macrophage)

medium, which consists of Dulbecco’s Modified Eagle Medium,

D-MEM High Glucose (UCSF Cell Culture Facility), 20% Fetal

Bovine Serum (Hyclone, Thermo Fisher, www.hyclone.com), 10%

v/v CMG supernatant (the source of CSF-1), 2 mM glutamine

(UCSF Cell Culture Facility), 110 mg/mL sodium pyruvate

(UCSF Cell Culture Facility), penicillin and streptomycin (UCSF

Cell Culture Facility). The bone marrow cells were cultured for 6

days at 37uC with 5% CO2. The cells were harvested with cold

PBS (without Mg and Ca), and frozen in BMM+10% DMSO.

For infections, H. capsulatum cells were grown to late log phase in

HMM. The cells were pelleted and resuspended in BMM

medium, sonicated twice for 3 seconds, and counted by hemacy-

tometer. Approximately 16106 H. capsulatum cells were used to

infect 26105 BMDM in 24-well cell culture dishes. After a 1 hr

incubation, the infected macrophages were washed twice with D-

MEM High Glucose and then incubated in 500 mL fresh BMM

medium with or without 100 mM FeSO4 at the zero time point. At

6, 24 and 48 hrs, the medium was removed from the wells and

500 ml H2O was added. After 5 min incubation, the lysed

macrophages were transferred to a 1.5 mL eppendorf and

sonicated for 3 sec. Dilutions were plated onto HMM plates to

determine CFUs. CFUs were normalized to the zero time point.

Significance was determined using ANOVA with Bonferroni

Multiple Comparisons Test.

Competitive index mouse infections
H. capsulatum strains hcLH95 (wild-type), hcLH97 (sid1D::hph),

and hcLH106 (sid1D::hph+SID1) were grown in 5 mL of HMM.

Cells were passaged once and grown until late log phase. 1 mL of

culture was sonicated twice for 3 seconds to fully disperse cells

then washed twice with cold PBS. Cell concentration was

determined by hemacytometer. Mice were infected intranasally

with 56104 cells in 25 mL PBS containing an equal proportion of

hcLH95 and hcLH97 (wild-type and sid1D::hph) or hcLH95 and

hcLH106 (wild-type and sid1D::hph+SID1) followed by 5 mL of

PBS chase. Four mice were used for each time point.

Lungs were homogenized in 5 mL of HMM. Serial dilutions

were plated onto both HMM and HMM+hygromycin plates in

order to distinguish sid1D::hph and sid1D::hph+SID1 strains from

the wild-type strain. Enumeration of wild-type, sid1D, and

sid1D+SID1 yeast allowed for the determination of competitive

index ratio (CI) using the following formula: CI = (mutant output/

wild-type output)/(mutant input/wild-type input). Input was

determined at four hours post infection. Significance of the results

was determined with the Kruskal-Wallis Test (ANOVA) with

Dunn’s Multiple Comparisons Test and with the Mann-Whitney/

Wilcoxon rank sum test. Enumeration of yeast by patch test onto

HMM and HMM+hygromycin was also performed and yielded a

CI identical to the plating of serial dilutions (data not shown).

Female C57BL/6J mice were purchased from The Jackson

Laboratories. Experiments were in accordance with the NIH

Guide for the Care and Use of Laboratory Animals and were

approved by the Institutional Animal Care and Use Committee at

U. C. San Francisco.

Supporting Information

Table S1 Primers Used in This Study

Found at: doi:10.1371/journal.ppat.1000044.s001 (0.03 MB

DOC)

Figure S1 Iron Regulated Gene Expression of Siderophore

Biosynthesis Genes in G186AR. Quantitative RT-PCR of side-

rophore biosynthesis genes in G186AR (hcLH95). Total RNA

from cells grown in the presence or absence of 5 mM FeSO4 for 1,

4, and 24 hrs was analyzed for relative transcript levels using

QRT-PCR. Transcript levels were normalized to ACT1 transcript.

Relative quantities were normalized to t = 1 hr+Fe values. For the

1, 4, and 24 hr time points, white bars indicate growth in medium

supplemented with FeSO4 (+Fe), and gray bars indicate growth in

the absence of FeSO4 (no iron).

Found at: doi:10.1371/journal.ppat.1000044.s002 (0.33 MB EPS)
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