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Abstract

Voltage-gated K+ channels comprise a central pore enclosed by four voltage-sensing domains (VSDs). While movement of
the S4 helix is known to couple to channel gate opening and closing, the nature of S4 motion is unclear. Here, we
substituted S4 residues of Kv7.1 channels by cysteine and recorded whole-cell mutant channel currents in Xenopus oocytes
using the two-electrode voltage-clamp technique. In the closed state, disulfide and metal bridges constrain residue S225
(S4) nearby C136 (S1) within the same VSD. In the open state, two neighboring I227 (S4) are constrained at proximity while
residue R228 (S4) is confined close to C136 (S1) of an adjacent VSD. Structural modeling predicts that in the closed to open
transition, an axial rotation (,190u) and outward translation of S4 (,12 Å) is accompanied by VSD rocking. This large sensor
motion changes the intra-VSD S1–S4 interaction to an inter-VSD S1–S4 interaction. These constraints provide a ground for
cooperative subunit interactions and suggest a key role of the S1 segment in steering S4 motion during Kv7.1 gating.
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Introduction

Voltage-gated potassium channels (Kv) are key regulators of

cellular excitability by shaping action potentials, tuning neuronal

firing patterns, synaptic integration and neurotransmitter release

[1]. Kv channels comprise four subunits arranged symmetrically

around a central ion-conducting pore. Each subunit consists of six

transmembrane segments, including an S5–S6 region encompass-

ing the aqueous pore and a peripheral S1–S4 voltage sensor

domain (VSD). A large body of evidence indicates that the first

four arginine residues in S4 account for most of the 12–13

electronic charges per channel that are translocated across the

membrane’s electric field [2,3]. Although it is well accepted that

the movement of the voltage-sensing S4 helix is tightly coupled to

opening and closing of the cytoplasmic S6 channel gate, the nature

of S4 motion is uncertain. Specifically, the topology of the VSD in

the channel closed state and the magnitude of the S4 movement

following depolarization remain controversial. So far, three main

models of VSD motion have been proposed: (i) the transporter

model, in which S4 moves only a small distance (2–3 Å), but

through a focused and mobile electric field within an aqueous

crevice whose accessibility changes during gating [4]; (ii) the

helical screw model, in which the S4 helix rotates clockwise and

translates outward (,13 Å) along its axis to move the gating

charges across the membrane electric field [5,6]; (iii) the paddle

model where the sensing unit (S4-S3b) undergoes a large

transverse movement (,15–20 Å) across the membrane and in

which the S4 arginines are mostly exposed to lipids [7].

While great efforts have been dedicated to elucidate the nature

of the VSD motion using Shaker channels as a general model,

virtually no study has addressed this key issue in Kv7.1 channels

[8]. This question is particularly pertinent in light of the

pathophysiological importance of cardiac Kv7.1 (KCNQ1)

channels and their unusual slow gating kinetics arising from their

native co-assembly with the KCNE1 b subunits. In this work, we

substituted residues along the S4 N-terminus and the short S3–S4

linker with cysteines and studied their propensity to form metal or

disulfide bridges, using Cd2+ or copper-phenanthroline (Cu-Phen),

respectively. Experimental data and structural modeling constrain

the Kv7.1 closed state to an intra-VSD S1–S4 interaction and,

upon depolarization to an inter-VSD S1–S4 interaction. In the

accompanying paper, we show that KCNE1 interferes with the

inter-VSD S1–S4 interaction and thereby modulates Kv7.1

voltage sensor properties.

Results

The wild-type (WT) Kv7.1 subunit has nine endogenous

cysteines, of which three are in principle accessible from the

external solution and could thus potentially form metal or disulfide

bridges (C136, C214 and C331, located in the S1, S3 and S6

transmembrane segments, respectively) (Figure 1). The remaining

six cysteines are intracellularly located and likely inaccessible from

the external solution; thus, they were not considered as potential

coordinating residues. We first introduced single cysteine muta-

tions into the short S3–S4 linker and the S4 N-terminus (residues
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220–228) in the background of WT Kv7.1 channels and expressed

the mutant channels in Xenopus oocytes (Figure 1). We examined

the propensity of engineered cysteines to form metal or disulfide

bridges, using extracellular Cd2+ ions (100 mM) or copper-

phenanthroline (100 mM, Cu-Phen; 1:3 ratio) respectively, and

studied their effects on K+ currents by two-electrode voltage-

clamp. As shown in Figure 2A and B, neither Cd2+ nor Cu-Phen

significantly affected WT Kv7.1 channels. Current amplitudes,

gating parameters and kinetics were unaffected by either reagents.

This suggests that none of the endogenous cysteines in Kv7.1 is

able to form a metal or disulfide bridge under these experimental

conditions or alternatively, if any bridge is formed it does not affect

channel function. The reducing agent dithiothreitol (DTT, 2 mM)

had no effect on WT Kv7.1 (not shown). In non-injected Xenopus

oocytes, none of the above reagents affected the endogenous

oocyte currents (Figure 2C).

Among the cysteine mutants that were engineered (residues

220–228), A223C and T224C did not produce functional channels

in Xenopus oocytes. While Q220C, V221C, A226C exhibited a

similar voltage dependence of activation as WT Kv7.1

(V50 = 224.162.3 mV, n = 12), F222C, S225C and R228C

displayed a significant right shift in their activation curve

(Figure 3 and Table 1; V50 = 28.361.3 mV,

Figure 1. Schematic cartoon showing the S3–S4 linker and the
S4 N-terminal region of the Kv7.1 channel where the cysteine
scan was performed. In red labels are shown the three endogenous
cysteines accessible from the external solution, which could potentially
form metal or disulfide bridges (C136, C214 and C331, located in the S1,
S3 and S6 transmembrane segments, respectively).
doi:10.1371/journal.pone.0001935.g001

Figure 2. Effects of external Cd2+ or Cu-Phen on WT Kv7.1 (A and B), non-injected oocytes (C) and mutants F222C (D) and A226C (E).
Oocytes were bathed in ND96 in the absence and presence of either 100 mM CdCl2 or 100 mM Cu-Phen. Currents were evoked by depolarizing steps
from 2140 mV to +40 mV in 15 mV increments (holding potential, 280 mV; tail potentials 260 mV), as shown in the scheme protocol between
panels A and B. Shown are representative traces and current-voltage relations were determined as indicated.
doi:10.1371/journal.pone.0001935.g002

S4 Sensor Constraints in Kv7.1
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V50 = 21.961.5 mV and V50 = +3.961.3 mV, respectively;

n = 8–17, p,0.01). Neither Cu-Phen (100 mM) nor Cd2+

(100 mM) produced a significant effect on Q220C, V221C,

F222C and A226C mutants as exemplified in Figure 2D and E.

Mutant I227C is stabilized in the open state by Cd2+ and
Cu-phen

When recording of mutant I227C was performed without prior

incubation of oocytes with 100 mM DTT (1 hour at 20uC under

no voltage-clamp), large K+ currents were observed with a

characteristic instantaneous rising component (at +40 mV, Iinst/

Imax ratio = 0.4060.05; n = 11) and a partial loss of the voltage

dependence. This latter feature was reflected by significant inward

K+ currents evoked upon hyperpolarization (Figure 4A). Some-

times, tonic currents were recorded with a linear ohmic K+

current-voltage relation (Erev = 29462 mV, n = 11). Following

one hour preincubation of oocytes with 100 mM DTT, these

features disappeared (at +40 mV, Iinst/Imax ratio = 0.160.01;

n = 11, p,0.01) and I227C channels regained the properties of

clear voltage dependence and outward-rectification (Figure 4B and

C, upper inset). These observations suggest that in I227C

channels, disulfide bonds form spontaneously and stabilize the

mutant channels in the open state. Therefore, to prevent

spontaneous openings and to check the effects of Cd2+ and Cu-

Phen, we routinely preincubated the oocytes with 100 mM DTT.

Removal of DTT by external application of 100 mM Cd2+ to

oocytes expressing I227C channels, rapidly converted the slow

voltage-dependent activation into instantaneous leak K+ current

(Figure 4B, lower inset; tact slow = 9816138 ms vs. tact

fast = 90610 ms, at +40 mV, n = 10), with an increased Iinst/Imax

ratio (Table 1). This drastic change is reflected by the conversion

of the outwardly-rectifying K+ current into a linear I-V relation

(Fig. 4). Consequently, Cd2+ potently increased the amplitude of

the inward current (by ,11.8-fold at 2140 mV, n = 11, p,0.01)

while slightly enhancing that of the outward current (by ,1.2-fold

at +40 mV). A significant activation was already observed at

25 mM Cd2+ (,5-fold increase at 2140 mV, n = 6, p,0.01). To

further quantify the Cd2+ effect, we calculated the rectification

index which corresponds to the ratio of the current amplitude

measured at 2140 mV to that measured at 25 mV. The larger is

this ratio, the stronger is the constitutive open leak K+ current

component (Table 1). Thus, for I227C channels the rectification

index is 0.064 and 0.481 in the absence and presence of 100 mM

Cd2+, respectively. These effects of Cd2+ were substantially

reversed upon a 5 min washout, with yet some trend of

spontaneous openings. We reasoned that if the mutant I227C is

able to form a metal bridge, which is likely involved in the

activating effect of Cd2+, it should also be capable of forming a

covalent disulfide bond induced by Cu-Phe, with the same

functional consequences on channel activity. We obtained very

similar results when oocytes expressing I227C were externally

exposed to 100 mM Cu-Phen. Cu-Phen progressively converted

the voltage-dependent outwardly-rectifying K+ current into an

instantaneous leak K+ current (Figure 4C). Thus, Cu-Phen

strongly stimulated the inward K+ current at negative potentials

(by ,20-fold at 2140 mV; n = 10, p,0.001). The stimulation of

I227C currents induced by Cu-Phen (including the positive

holding current, Figure 4D, left) could not be reversed by washout

Figure 3. Conductance-voltage relations of WT Kv7.1 and
mutants Q220C, V221C, F222C, S225C, A226C, I227C and
R228C. Curves were fitted to one Boltzmann function. The following
values were obtained: V50 = 224.162.3 mV, s = 16.362.1 mV (WT);
V50 = 218.761.5 mV, s = 19.962.3 mV (Q220C); V50 = 220.563.5 mV,
s = 33.867.1 mV (V221C); V50 = 28.361.3 mV, s = 20.562.2 mV (F222C);
V50 = 21.961.5 mV, s = 13.861.7 mV (S225C); V50 = 218.061.1 mV,
s = 13.461.0 mV (A226C); V50 = 213.661.7 mV, s = 23.763.2 mV
(I227C); V50 = +3.964.1 mV, s = 18.563.5 mV (R228C). n = 6–20.
doi:10.1371/journal.pone.0001935.g003

Table 1. Electrophysiological parameters of WT and mutants
Kv7.1 channels

Kv7.1 construct V50 (mV) Iinst/Imax ratio
Rectification
index

2Cd2+ +Cd2+ 2Cd2+ +Cd2+

WT (12) 224.162.3 0.1160.03 0.106001 0.035 0.022

Q220C (20) 218.760.8 0.1360.01 0.1260.01 0.139 0.132

V221C (5) 220.563.5 0.1260.02 0.1160.02 0.033 0.032

F222C (17) 28.361.3 ** 0.1360.02 0.1160.01 0.146 0.200

S225C (8) 21.961.5 ** 0.2060.02 0.4560.04 # 0.139 0.066

A226C (8) 218.060.4 0.1060.02 0.1260.02 0.077 0.105

I227C (11) 213.661.7 ** 0.1060.01 0.9960.01 ## 0.064 0.481 ##

R228C (9) +3.961.3 ** 0.2260.03 0.7360.03 ## 0.125 0.536 ##

S225C-C136A (10) 28.262.3 ** 0.186002 0.2160.02 0.045 0.046

S225C-C214A (6) 21.762.2 ** 0.2060.01 0.4460.03 # 0.120 0.218

S225C-C331A (6) 24.560.8 ** 0.2160.02 0.4560.04 # 0 0

I227C-C136A (12) 238.563.1 ** 0.1160.01 0.9860.02 ## 0.026 0.506 ##

I227C-C214A (12) 234.263.9 ** 0.1260.02 0.8860.03 ## 0.071 0.722 ##

I227C-C331A (8) 234.160.8 * 0.1060.02 0.9060.03 ## 0.014 0.254 ##

R228C-C136A (7) +12.162.0 ** 0.2160.02 0.2360.02 0.241 0.223

R228C-C214A (7) +14.062.0 ** 0.2360.02 0.7160.04 ## 0.218 0.624 ##

R228C-C331A (7) +8.262.5 ** 0.2260.02 0.7560.04 ## 0.126 0.558 ##

Activation curves were fit to a Boltzmann distribution, G/Gmax = 1/{1+exp[(V50-
V)/s]}, where V50 is the voltage at which the current is half-activated and s is the
slope factor. V50s were determined in the absence of Cd2+. Data are expressed
as mean6SEM and in parentheses are indicated the number of cells.
*, p,0.05
**, p,0.01 vs. WT, (one way ANOVA followed by Dunnett’s Multiple Comparison

Test). To determine the Iinst/Imax ratio and the rectification index, oocytes were
recorded in the absence (2Cd2+) or presence of 100 mM Cd2+ (+Cd2+). The Iinst/
Imax ratio has been calculated by the ratio of the instantaneous current at the
beginning of the pulse at +40 mV (Iinst) that follows the capacitive transient
and the current at the end of the pulse at +40 mV (Imax). The larger is this
ratio, the larger is the instantaneous open component.

#, p,0.05,
##, p,0.01 +Cd2+ versus 2Cd2+ (two-tailed, Student’s paired t test). The

rectification index corresponds to the ratio of the current amplitude
measured at 2140 mV to that measured at 25 mV. The larger is this ratio,
the stronger is the constitutive open leak K+ current component. Due to lack
of space, are shown only the means (without SEMs) of the rectification index
for the same number of tested cells indicated in parentheses.

doi:10.1371/journal.pone.0001935.t001
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using the ND96 buffer, but was fully reversible using ND96

containing 1 mM DTT, a reagent which reduces disulfide bridges

into free sulfhydryl-cysteines (Figure 4D, right). Next, we

examined the state-dependence of disulfide bridge formation.

When oocytes are preincubated for 10 min with Cu-Phen

(100 mM) and subsequently washed out for 5 min with ND96,

all at 280 mV, opening the I227C channels by a step

depolarization to 0 mV produced a time- and voltage-dependent

K+ current (red trace before the arrow) without any instantaneous

component (Figure 4E). In contrast, fast reapplication of Cu-Phen

during depolarization to 0 mV gradually stimulated the current

within second time-scale (Figure 4E, red trace after the arrow).

Using an identical preincubation protocol of Cu-Phen (10 min

preincubation and 5 min wash at 280 mV), a step hyperpolar-

ization to 2140 mV did not produce any inward K+ current

(Figure 4E, lower panel, black trace before the arrow). Similarly,

fast reapplication of Cu-Phen during hyperpolarization to

2140 mV did not generate inward currents (black trace after

the arrow). Altogether, these data suggest an open state-

dependence for disulfide bridge formation in mutant I227C.

Knowing that Cd2+ should be coordinated by at least two

electron-donor lewis bases such as cysteines and that one needs

two cysteines to form a disulfide bridge using Cu-Phen, then

potential contributions of the other cysteines in I227C mutant

channels can be examined. There are two possibilities: (1) the

metal or disulfide bridge formation arises from an interaction

between the engineered cysteine at position 227 in S4 and one of

the three externally accessible endogenous cysteines in Kv7.1,

which are C136 in S1, C214 in S3 and C331 in S6; or (2) the

bridge formation arises from an interaction between the

engineered cysteine at position 227 of two adjacent subunits.

To determine which possibility prevails, we constructed double

mutant channels where an alanine mutation was introduced in

place of one of the three accessible endogenous cysteines in the

background of the I227C mutant. Thus, we checked the impact of

external Cd2+ on the double mutants I227C-C136A, I227C-

Figure 4. Effects of external Cd2+ and Cu-Phen on mutant I227C. (A) Representative traces recorded from an oocyte expressing I227C and
bathed in ND96 without (w/o) prior incubation with 100 mM DTT (1 hour at 20uC) and without Cd2+ or Cu-Phen; Currents were evoked as in Figure 2.
(B) Oocytes expressing I227C channels were first pre-incubated with 100 mM DTT (1 hour at 20uC) and subsequently washed with ND96 in the
absence or presence of 100 mM CdCl2. (C) Same as in B but with 100 mM Cu-Phen. Shown are representative traces and current-voltage relations that
were determined as indicated. (D) Representative traces of an oocyte expressing mutant I227C, bathed in ND96 containing 100 mM Cu-Phen and
subsequently washed with either ND96 (left panel) or ND96 containing 1 mM DTT (right panel). Currents were evoked by a step depolarization from
280 mV to +30 mV. Similar results have been obtained in 6 other cells. (E) Representative traces of an oocyte expressing I227C, preincubated for
10 min with 100 mM Cu-Phen at 280 mV and then washed out for 5 min with ND96 at 280 mV. Currents were then evoked either by a depolarizing
step to 0 mV (red trace) or by a hyperpolarizing step to 2140 mV (black trace), after which a fast re-application of Cu-Phen was applied (red or black
trace after the arrow). Similar results have been obtained in 5 other cells.
doi:10.1371/journal.pone.0001935.g004
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C214A and I227C-C331A (Figure 5). Though activated at more

negative potentials, the three double mutants exhibited similar

characteristics of voltage-dependent outward-rectifying K+ chan-

nels when compared to I227C (Table 1 and Figure 5, traces under

-Cd2+). As shown in Figure 5, external application of 100 mM

Cd2+ switched the slowly activating voltage-dependent conduc-

tance into an instantaneous linear leak K+ current, and none of the

three double mutants was able to suppress or even reduce the

effect of Cd2+. Like I227C, the three double mutants exhibited a

high Iinst/Imax ratio and rectification index, reflecting a strong

constitutive leak K+ current component (Table 1). These results

suggest that, upon depolarization, a disulfide bridge could form

between two I227C of two adjacent VSDs, a process that stabilizes

the channel open state (see model and discussion).

Mutant R228C is stabilized in the open state by Cd2+ and
Cu-phen

In this mutant, the cysteine has been engineered at the first

arginine of S4, producing a slowly activating K+ current when

compared to WT Kv7.1, which is reminiscent of the slow IKS

activation kinetics (at +40 mV, tact = 1,509660 ms for R228C,

compared to tact fast = 8063 ms and tact slow = 736644 ms for

WT Kv7.1, n = 8; p,0.01) (Figure 6). As mentioned above,

mutant R228C is also right-shifted in its voltage dependence of

activation (by ,+28 mV). Like for mutant I227C, we routinely

preincubated the oocytes with 100 mM DTT to keep the mutant

channels in the closed state. Following removal of DTT and

exposure of R228C-expressing oocytes to 100 mM Cd2+ or to

100 mM Cu-Phen, the slowly activating IKS-like K+ current

demonstrated a large instantaneous component with a significant

increase of the Iinst/Imax ratio (Figure 6A and B and Table 1). In

addition, the outwardly-rectifying shape of the R228C current-

voltage relation (I-V) switched to a nearly linear leak character

with a higher rectification index, reflecting a powerful stimulation

of the inward current (by ,14-fold and 16-fold for Cd2+ and Cu-

Phen, respectively; n = 9–18, p,0.001) and a significant enhance-

ment of the outward current (by ,2-fold and 2.4-fold for Cd2+ and

Cu-Phen, respectively; n = 9–18, p,0.001) (Figure 6A and B and

Table 1). While the effects of Cd2+ were reversed upon extensive

washout with ND96, the effects of Cu-Phen could be reversed only

in the presence of 1 mM DTT (see Figure 6D). Figure 6C and D

illustrate the state-dependence of disulfide bridge formation in

R228C by Cu-Phen. When R228C channels were opened by a

train stimulus (60 sweeps to +30 mV for 250 ms at 0.2 Hz), the

slowly developing current did not increase significantly during the

repetitive stimulation (by ,1.2-fold). However, when the same

train protocol was performed in the presence of 100 mM Cu-Phen,

the current markedly increased (by 3.45-fold; n = 6, p,0.01) and

progressively developed an instantaneous component (Figure 6C).

This data suggests that disulfide bridge formation by Cu-Phen

produced an accumulation of channel open-state. Like for mutant

I227C, using a preincubation protocol with Cu-Phe (10 min

preincubation and 5 min wash at 280 mV), we found that

opening the R228C channels by a step depolarization to +30 mV

produced a slowly developing time- and voltage-dependent K+

current (red trace before the arrow) without any instantaneous

Figure 5. Effects of external Cd2+ on the double mutants I227C-C136A (A), I227C-C214A (B) and I227C-C331A (C). Oocytes were
bathed in ND96 in the absence and presence of 100 mM CdCl2. Currents were evoked as in Figure 2. Shown are representative traces and current-
voltage relations.
doi:10.1371/journal.pone.0001935.g005

S4 Sensor Constraints in Kv7.1

PLoS ONE | www.plosone.org 5 April 2008 | Volume 3 | Issue 4 | e1935



component. In contrast, fast reapplication of Cu-Phen during

depolarization to +30 mV markedly enhanced the current

(Figure 6D, red trace after the arrow), a feature which was

reversed following exposure to 1 mM DTT. Following 10 min

preincubation with Cu-Phen and 5 min wash at 280 mV, a step

hyperpolarization to 2140 mV did not generate any inward K+

current (Figure 6D, lower panel, black trace before the arrow).

Fast reapplication of Cu-Phen during hyperpolarization to

2140 mV did not induce inward currents (black trace after the

arrow). Similar to I227C, these data suggest an open state-

dependence for disulfide bridge formation in mutant R228C.

Then, we checked the impact of external Cd2+ and Cu-Phen on

the double mutants R228C-C136A, R228C-C214A and R228C-

C331A, where an alanine mutation was introduced in place of one

of the three accessible endogenous cysteines in the background of

the R228C mutation (Figure 7). In the absence of Cd2+ or Cu-

Phen, the three double mutants exhibited gating characteristics

similar to those of R228C. Figure 7C and D shows that external

application of 100 mM Cd2+ to R228C-C214A and R228C-

C331A mutants switched their slow outwardly-rectifying voltage-

dependent conductance into currents which display: (i) large

instantaneous outward and inward components and (ii) I-V

patterns approximating a linear K+ leak with high rectification

index (Table 1). Similar results were obtained with Cu-Phen (not

shown). In contrast, the double mutant R228C-C136A totally

suppressed the ability of Cd2+ and of Cu-Phen to activate the

current both in the outward and inward direction and to induce an

instantaneous component (figure 7A and B and Table 1). Thus,

the current pattern of R228C-C136A in the presence of Cd2+ or

Cu-Phen is similar to that of R228C obtained in the absence of

Cd2+ or Cu-Phen; i.e., time- and voltage-dependent as well as

outwardly-rectifying. This data suggests that following depolariza-

tion, a disulfide bridge could form between R228C in S4 and

C136 in S1, which stabilizes the channel open state (see model and

discussion).

Mutant S225C is stabilized in the closed state by Cd2+

and Cu-phen
Mutant S225C produced a current amplitude lower than that of

WT Kv7.1 (at +40 mV, ,3-fold lower than WT Kv7.1; Figure 8),

with a right-shift of the activation curve (V50 = 21.961.5 mV,

n = 8). In contrast to I227C or R228C, when mutant S225C was

treated with 100 mM Cd2+ or 100 mM Cu-Phen a marked

decrease of the current amplitude was observed with a 46% and

57% decrease, respectively, at +40 mV (Figure 8A and B). The

decrease of S225C currents by Cu-Phen could not be reversed

upon washout, unless using ND96-containing DTT (not shown).

When Cu-Phen (100 mM) was preincubated at 280 mV for

10 min and then washed out for 5 min, opening of S225C

channels by a step depolarization to +30 mV was markedly

Figure 6. Effects of external Cd2+ and Cu-Phen on mutant R228C. Oocytes were bathed in ND96 in the absence and presence of 100 mM
CdCl2 (A) or 100 mM Cu-Phen (B). Shown are representative traces and current-voltage relations were determined as indicated. (C) R228C channels
were opened by depolarization to +30 mV in a train of 60 sweeps at 0.2 Hz, in the absence (black traces) or presence of 100 mM Cu-Phen (red traces).
The increase in current was calculated by the ratio of the amplitude of the 60th sweep to that of the 1st sweep. (D) Representative traces of an oocyte
expressing R228C, preincubated for 10 min with 100 mM Cu-Phen at 280 mV and then washed out for 5 min with ND96 at 280 mV. Currents were
evoked either by a depolarizing step to +30 mV (red trace) or by a hyperpolarizing step to 2140 mV (black trace), after which a fast reapplication of
Cu-Phen was applied (red or black trace after the arrow). Also shown, is the reversal by DTT of the current increase produced by the fast reapplication
of Cu-Phen at +30 mV. Similar results have been obtained in 5 other cells.
doi:10.1371/journal.pone.0001935.g006
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inhibited (black traces), as compared to the same oocyte before

treatment with Cu-Phen (red trace, control) (Figure 8C). This

result suggests that disulfide bridge formation in S225C occurs in

the closed state. Notably, the double mutants S225C-C214A and

S225C-C331A generated currents that were highly sensitive to

inhibition by Cu-Phen (at +40 mV, 50% and 64% inhibition,

respectively; Figure 8E and F). In contrast, mutant S225C-C136A

was totally insensitive to inhibition by Cu-Phen (Figure 8D).

Altogether, the data suggest that a disulfide bridge could form

between S225C in S4 and C136 in S1, in the channel closed state

(see model and discussion).

Discussion

Numerous efforts have been invested to elucidate the nature of

the VSD’s motion using Shaker channels as a template but yet the

gating mechanisms remain controversial mainly because the

structure of the closed state is unknown [8]. A few functional

studies have addressed this key question in other Kv channels to

generalize their gating principles [9]. In particular, no study is

available for Kv7.1 channels which assemble with KCNE1 to

produce the slow IKS current, a major repolarizing K+ conduc-

tance of the cardiac action potential [10]. In this study, a cysteine

scan of Kv7.1 S4 and structural modeling constraints suggest a key

role of the S1 segment in steering S4 motions and interactions

during the gating process.

In the absence of KCNE1, we found that, in the channel closed

state disulfide bridge could form between S225C in S4 and C136

in S1. In the channel open state, our results identify two major

constraints which include an interaction between two I227 of two

adjacent S4 segments as well as between C136 in S1 and R228 in

S4 of two neighboring VSDs (see model below). We showed that

disulfide and metal bridges can form in homomeric I227C

channels only upon depolarization, which locks the channels in

the open state. Notably, none of the three externally accessible

cysteines of Kv7.1 are coordinating ligand partners for I227C as

the three double mutants I227C-C136A, I227C-C214A and

I227C-C331A were unable to suppress or even reduce the

activating effect of Cd2+. The most plausible interpretation of

these data is that the bridge formation arises from the interaction

between engineered I227C from two adjacent subunits. This data

for Kv7.1 is reminiscent of a previous work performed in Shaker

channels showing that cysteines introduced at position L361 of S4

(equivalent to I227 in Kv7.1) can be crosslinked by an intersubunit

disulfide bridge [11,12]. Our results reveal an additional open

state constraint, reflected by the depolarization-dependent forma-

tion of inter-subunit disulfide and metal bridges between R228C in

S4 and C136 in S1, thus locking the channels in the open state.

These experimental data guided us to build a structural model,

using the Kv1.2 crystal structure as a template [13]. We imposed

closing of the channel by: (i) moving each VSD together with the

S4–S5 linker and the lower part of S6 (see methods), and (ii)

bringing S225 in S4 near to C136 in S1 within the same VSD (5.1

Å, between oxygen and sulfur atoms, center to center). As such,

when the channel moves from the open to the closed state, the

VSDs slightly move laterally and downward as shown in Figure 9A.

Since the extracellular S3–S4 loop comprises only three amino

acids, S3 was moved together and around S4, preserving their

Figure 7. Effects of external Cd2+ (A) or Cu-Phen (B) on the double mutant R228C-C136A and of Cd2+ on R228C-C214A (C) and
R228C-C331A (D). Oocytes were bathed in ND96 in the absence and presence of 100 mM CdCl2 or 100 mM Cu-Phen. Shown are representative
traces and current-voltage relations were determined as indicated.
doi:10.1371/journal.pone.0001935.g007
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upper parts close to each other. Both S3 and S4 could move

relatively independently from S1 and S2, owing to a 20-amino

acid long loop sequence residing between the bottom parts of S2

and S3 (see model building in Methods). The open to closed state

transition requires a counterclockwise rotation (,190u) and a

downward translation of S4 (full translation is ,12 Å). This leads

residues E160 in S2 (E283 in Shaker) and R228 in S4 (R362 in

Shaker) to be within atomic proximity (2.7 Å), indicating ion pairing

(Figure 9B). This latter assignment is consistent with previous

experimental studies showing that in Shaker channels, E283 at S2

packs against R362 at S4 [14]. The closed state constraint of C136

in S1 is appealing when considering a recent work performed in

Shaker channels which showed that a histidine mutant of I241

(equivalent of C136 in Kv7.1) generates inward currents at

hyperpolarized potentials (closed state), suggesting that it forms

part of a hydrophobic plug that splits the water-accessible crevices

[15]. At hyperpolarized potentials, it was also found that I241C

(C136 in Kv7.1) can spontaneously form disulfide and metal

bridges with R362C (R228 in Kv7.1). Consistent with these data

in Shaker, our closed state model also predicts that R228 (S4) points

close to C136 (S1) (Figure 9B). These features are in line with a

recent study predicting that in the closed state (down state), S4

contacts S5 along one helical face and S1 on its N-terminal half of

the opposite face [16]. To operate the closed to open transition,

the results and the modeling work suggest a cooperative

interaction between adjacent VSDs, where S4 from the activated

VSD undergoes a clockwise axial rotation (,190u) and an outward

translation (,12 Å). This S4 motion is accompanied by a lateral

and upward movement of the entire VSD and a rocking

movement toward the extracellular tip of the S4 of the resting

adjacent subunit (Figure 9C and D). This rocking motion allows

I227 which resides one helical turn below the tip of the activated

S4 to get close to an adjacent I227 of the neighboring resting S4

when the latter starts to rotate (by ,90u) and move upward (by ,4

Å) (Figure 9C). At this ‘intermediate’ stage, the distance between

the two I227 of the neighboring VSDs is 5.2 Å (between the two

Cd atoms, center to center). Such proximity would enable disulfide

bridging if cysteine is substituted at position 227. Interestingly, this

movement also enables R228 of the activated VSD to come to

atomic proximity with C136 of S1 of the adjacent resting VSD (4.6

Å between NH1 and sulfur atoms, center to center, respectively)

(Figure 9C).

Gating of Kv channels is thought to involve two kinds of VSD

transmembrane motions: an early independent movement of the

four VSDs from a resting to an activated conformation, followed

by a concerted VSD motion underlying the final opening

transition [17–19]. The inter-VSD interactions between two

I227 of adjacent S4s and between R228 in S4 and C136 in S1

of adjacent VSDs provide a ground for cooperative interactions

between subunits. Although our model predicts a different VSD

trajectory for channel gating, the notion of inter-VSD interaction

described here is in agreement with a previous work in Shaker

channels where the extracellular tip of an activated S4 was

suggested to be in close proximity to the extracellular end of the

Figure 8. Effects of external Cd2+ (A) or Cu-Phen (B) on mutant S225C. Oocytes were bathed in ND96 in the absence and presence of 100 mM
CdCl2 or 100 mM Cu-Phen. Shown are representative traces and current-voltage relations were determined as indicated. (C) Shown are representative
traces of an oocyte expressing mutant S225C before (red trace) and after (black trace) 10 min preincubation with Cu-Phen (100 mM) at 280 mV plus
5 min wash at 280 mV with ND96. Currents were evoked by a step depolarization to +30 mV. Similar results have been obtained in 6 other cells.
Effects of Cu-Phen on the double mutants S225C-C136A (D), S225C-C214A (E) and S225C-C331A (F). Currents were evoked as in Figure 2. Current-
voltage relations were determined as indicated.
doi:10.1371/journal.pone.0001935.g008
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resting S4 in the adjacent subunit [11,12]. Compared to other

gating models [4,7,8,15,16,20,21], our model for the closed to

open transition in Kv7.1 can be envisioned as a combination of

two previously described mechanisms with intra- and inter-VSD

motions (Figure 9A and D). While the clockwise axial rotation and

outward translation of S4 is consistent with the ‘helical screw

model’ [8,20], the lateral and upward motion of the entire VSD is

reminiscent of the ‘paddle model’ [7]. In addition, our model

predicts a rocking motion of an activated VSD onto an adjacent

resting VSD, which may account for Kv channel cooperative

activation (Figure 9D). The model is also consistent with recently

described closed state topology of S4 with respect to S1 (down

state) [15,16,20,21], where replacement of the first arginine R362

in Shaker (R228 in Kv7.1) by a histidine or by a small uncharged

amino acid generates a proton or a cation (omega current) pore,

respectively [4,14]. Interestingly, a recent high resolution structure

of the paddle of a Kv2.1-1.2 chimera channel in a membrane-like

environment reveals that negatively charged amino acids in the

VSD are grouped into two clusters: an external and an internal

negative clusters whose residues are highly conserved in Kv7.1

channels [22]. While the external negative cluster is located in an

external aqueous cleft, the internal negative cluster belongs to a

buried network of charged amino acids. Notably, a conserved

phenylalanine (F167 in Kv7.1), positioned near the midpoint of

the membrane, separates these external and internal negative

clusters. In the open conformation, the R4 a carbon (R237 in

Kv7.1) is expected to be located at the level of this phenylalanine

(F167 in Kv7.1). Thus, it was suggested that in the channel open

state a histidine side chain at this R4 location is well positioned to

flip above and below the conserved phenylalanine side chain by

rapid rotamer exchange, allowing protons to be transferred [22]. It

remains to determine whether such proton currents could be

measured in Kv7.1 channels under these conditions. Overall, our

data indicate a crucial role of S1 in funneling S4 motion during

Kv7.1 gating. Furthermore, the large VSD motion that we infer

for Kv7.1 channel gating is in line with the most recent structural

and functional studies [22,23], indicating that the entire voltage

sensing domain moves in a relatively unconstrained environment

within the lipid membrane.

Materials and Methods

Channel expression into Xenopus oocytes
Female Xenopus Laevis frogs were purchased from Xenopus 1

(Dexter, Michigan, USA). The procedures followed for surgery

and maintenance of frogs were approved by the animal research

ethics committee of Tel Aviv University and in accordance with

the Guide for the Care and Use of Laboratory Animals (1996.

National Academy of Sciences, Washington D.C.). Frogs were

anaesthetized with 0.15% tricaine (Sigma). Pieces of the ovary

were surgically removed and digested with 1 mg/ml collagenase

(type IA, Sigma) in Ca2+-free ND96 for about one hour, to remove

follicular cells. Stage V and VI oocytes were selected for cRNA

injection and maintained at 18uC in ND96 (in mM: 96 NaCl, 2

KCl, 1.8 mM CaCl2, 1 MgCl2 and 5 HEPES titrated to pH = 7.5

with NaOH), supplemented with 1 mM pyruvate and 50 mg/ml

gentamycin. The human Kv7.1 cDNA (in pGEM vector) was

linearized by Not1. This vector served also as a template to

generate the Kv7.1 mutants, using site-directed mutagenesis

performed by the QuikChange (Stratagene) method. All mutant

sequences were verified by DNA sequencing. Capped comple-

mentary RNA was transcribed by the T7 RNA polymerase, using

the mMessage mMachine transcription kit (Ambion Corp). The

cRNA size and integrity was confirmed by formaldehyde-agarose

gel electrophoresis. Expression of WT and Kv7.1 mutants was

performed by injecting 40 nl per oocyte (5 ng cRNA) using a

Nanoject injector (Drummond, USA).

Electrophysiology
Electrophysiological recording were performed as previously

described [24]. Briefly, standard two-electrode voltage-clamp

measurements were performed at room temperature (22uC–

Figure 9. Plausible structural models accounting for the gating
conformations of the voltage sensor domains of Kv7.1. (A) The
closed (left) and open (right) conformations of Kv7.1 in side view (upper
part) or top view (lower part). Each subunit is colored differently while
alpha helices are shown as cylinders. (B) Top view of a subunit that
reflects the closed state, where R228 becomes close to Glu160 (2.7 Å)
and S255 to Cys136 (5.1 Å) within the same subunit. The indicated side
chains are colored in CPK (grey, blue, red and yellow colors correspond
to carbon, nitrogen, oxygen and sulfur atoms, respectively). (C) Side
view of two adjacent subunits, which represent an intermediate open
state (salmon) and an intermediate closed state (cyan). The two
subunits are viewed from the inner part of the pore in horizontal
outward direction. The inset shows the distance between Ile227 of two
neighboring VSDs (5.2 Å) as well as the distance between R228 and
Cys136 of the adjacent VSD (4.6 Å). (D) Adjacent VSDs in the open state
(green), the intermediate open state (salmon), the intermediate closed
state (cyan) and the closed state (yellow). Note that the VSD of the
intermediate open state (salmon) tilts towards the neighboring VSD to
interact with the S4 of the intermediate closed state (cyan), which
undergoes axial rotation and translation from the closed state (yellow).
doi:10.1371/journal.pone.0001935.g009
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24uC) 2–5 days following cRNA microinjection. Oocytes were

placed into a 100 ml recording chamber and superfused with a

modified ND96 solution (containing 0.1 mM CaCl2) using a fast

perfusion system which operates under controlled N2 pressure

allowing constant perfusion velocity of 3.9–4.2 ml/min. The

exchange of solutions was performed by computer-controlled

pinch valves (ALA-VM8, ALA Scientific Instruments). A home

made manifold having virtually no void volume and very narrow

connecting tubes prevented backward flow upon valve switch. The

bath solution was completely replaced within 1.5 seconds,

allowing a solution exchange time of about 25 ms around the

oocyte. Whole-cell currents were recorded using a GeneClamp

500 amplifier (Axon Instruments). Stimulation of the preparation,

and data acquisition were performed using the pCLAMP 6.02

software (Axon Instruments) and a 586 personal computer

interfaced with a Digidata 1200 interface (Axon Instruments).

Glass microelectrodes (A-M systems, Inc) were filled with 3M KCl

and had tip resistances of 0.2–0.5 MV. Current signals were

digitized at 1 kHz and low pass filtered at 0.2 kHz. Errors

introduced by the series resistance of the oocytes were not

corrected and were minimized by keeping expression of the

currents below 10 mA.

Data Analysis
Conductance (G) obtained from tail current amplitudes or from

steady-state currents (when deactivation was very fast) was

calculated by the following equation G = I/(V- Vrev) where the

calculated reversal potential Vrev was 29862 mV (n = 10).. G

was then, normalized to the maximal conductance value, Gmax.

Activation curves were fitted by a single Boltzmann distribution

G/Gmax = 1/{1+exp[(V50-V)/s], where V50 is the voltage at

which the current is half-activated and s is the slope factor. The

Iinst/Imax ratio has been calculated by the ratio of the

instantaneous current at the beginning of the pulse at +40 mV

(Iinst) that follows the capacitive transient and the current at the

end of the pulse at +40 mV (Imax). The larger is this ratio, the

larger is the instantaneous open component. The rectification

index was calculated as the ratio of the current amplitude

measured at 2140 mV to that measured at 25 mV. The larger is

this ratio, the stronger is the constitutive open leak K+ current

component. All data were expressed as mean6SEM. Statistically

significant differences between paired groups were assessed by a

two-tailed Student’s t-test. Statistically significant differences

between unpaired groups were assessed using one way ANOVA

followed by Dunnett’s Multiple Comparison Test.

Model building
The open state. As a first step, the sequence of the pore

domain (S5-pore helix-S6 segment) of the human Kv7.1 (KCNQ1)

channel (257IHR…VQQ357; SWISS-PROT entry P51787) was

submitted for searching a homologous template in the SWISS-

MODEL repository, a database for theoretical protein models

(http://swissmodel.expasy.org/SWISS-MODEL.html). The

search for homologous sequences of known 3D structure scored

the mammalian Kv1.2 potassium channel (PDB ID code 2A79)

with the highest probability to match as a structural template. The

Kv7.1 sequence 257IHR…VQQ357 was therefore aligned with the
323ASM…YHR419 sequence of Kv1.2 using the program T-

COFFEE, implemented in SWISS-MODEL. (Figure S1), and the

alignment was submitted to automated comparative protein

modeling via the SWISS-PROT alignment interface, as

performed by Gibor et al [25]. The root mean square difference

(rmsd) between the Kv7.1 structural model and the template

(Kv1.2) was 0.11 Å for 96 Ca atoms of the aligned amino acids

(0.27 Å for 384 backbone atoms). Note that this superposition does

not include amino acids 290–294 as they form an extra loop

structure in the turret region.

The same procedure was used for each of the sequences
120TRPF-PHE139 (S1), 153THR-SER177 (S2), 198ILE-LYS218 (S3)

and 222PHE-PHE256 (S4 and the S4–S5 linker) of Kv7.1,

according to the alignments presented in Figure S1. The resulting

modeled segments fitted perfectly in three dimensions to their

homologous backbone atoms in Kv1.2 and therefore the C-

terminus of the S4–S5 linker (PHE256) could readily be fused to

the N-terminal amino acid of the pore domain (ILE257). Four

identical subunit models were organized around the axis of K+

conduction by superposition of 188 backbone atoms of amino

acids THR311-GLN357 onto the segment THR373-ARG419 of

Kv1.2. Energy minimization of the tetrameric Kv7.1 model was

performed with the GROMOS96. No clashes within the

individual subunits or at the subunit interfaces have been

observed.

The closed state. To obtain the closed state, we first aligned

the Kv7.1 open-state model with KcsA (PDB ID code 1K4C) by

superposing the selectivity filter and the pore helix of the two

structures, as performed by Long et al [13]. Then, the VSD (S1,

S2, S3, S4 and the S4–S5 linker) and the lower part of S6

(ALA344-GLN356) were moved together using the bent around

His258 (i.e., between S5 and the S4–S5 linker) as a pivot, until the

lower part of the Kv7.1 S6 (ALA344-GLN356) aligned three-

dimensionally with its homologous segment in KcsA (THR107-

GLN119) (52 backbone atoms giving RMS value of 0.39 Å). At

this stage, the VSDs adopted an excessively low topology and

therefore they were manually tilted and lifted while preserving

interactions between S6 and the S4–S5 linker to keep the bottom-

pore constriction, closed. The latter step takes into account

previous inferences about gating charges of S4 that move through

a narrow pathway between open internal and external vestibules

[21,26,27]. The S4 was rotated around its longitudinal axis by

,190 degrees and was translated downward by ,12 Å so as to

account for the experimental results showing that, in the closed

state, Cys substituted at position 225 interacts with Cys136 of the

same subunit. This rotation-translational motion allows the first

arginine of S4 (Arg228) to pass near Cys136 of the same VSD and

to become, at the end of the movement, sufficiently close to

Glu160 (in S2) to enable ion pairing. Such proximities were shown

to take place between the homologous positions in other voltage-

dependent K+ channels [14]. The C-terminus of S3 and the N-

terminus of S4 (i.e., their most extracellular parts) are separated by

only three amino acids. Hence, S3 was moved together and

around S4 keeping their upper parts close to each other. Both S3

and S4 could move relatively far from S1 and S2, owing to a 20-

amino acid long loop sequence residing between the bottom parts

of S2 and S3.

The intermediate state. A major constraint that guided us

to introduce the conformational changes in order to obtain the

intermediate state relates to the open-state stabilizing interactions

between two neighboring VSDs. Of particular importance is the

observation that position 227 of one VSD gets very close to

position 227 of an adjacent VSD. This is feasible only if a VSD

moves upward during activation to the intermediate state where it

can tilt toward- and interacts with a neighboring VSD that is still

down in its closed-state conformation (resting state). For that

purpose, we have used the flexible loop between S4 and S4–S5

helical linker (244QGG) as a pivoting hinge. The S4 of the closed-

state conformation was rotated clockwise by ,90–100 degrees and

translated upward by ,4 Å. In this intermediate transition, the

side chains of two Ile227 of neighboring VSDs get close to each

S4 Sensor Constraints in Kv7.1
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other, while R228 of S4 of the upper-tilted activated VSD interacts

with the Cys136 in S1 of the neighboring VSD, as shown in

Figure 9C. Note that energy was minimized in the closed and

intermediate state models and no clashes take place in these two

models, as well.

Supporting Information

Figure S1

Found at: doi:10.1371/journal.pone.0001935.s001 (0.62 MB

PDF)

Author Contributions

Conceived and designed the experiments: BA. Performed the experiments:

IY EM YH HS AP YP LS. Analyzed the data: BA IY EM YH HS AP LS.

Contributed reagents/materials/analysis tools: IY HS YP LS. Wrote the

paper: BA.

References

1. Hille B (2001) Ionic Channels of Excitable Membranes, third edition.

Sunderland, MA: Sinauer Associates Inc.

2. Aggarwal S, MacKinnon R (1996) Contribution of the S4 segment to gating

charge in the Shaker K+ channel. Neuron 16: 1169–1177.

3. Seoh S, Sigg D, Papazian D, Bezanilla F (1996) Voltage-sensing residues in the

S2 and S4 segments of the Shaker K+ channel. Neuron 16: 1159–1167.

4. Starace DM, Bezanilla F (2004) A proton pore in a potassium channel voltage

sensor reveals a focused electric field. Nature 427: 548–553.

5. Ahern CA, Horn R (2004) Stirring up controversy with a voltage sensor paddle.

Trends in Neurosciences 27: 303–307.

6. Gandhi CS, Isacoff EY (2002) Molecular Models of Voltage Sensing. J Gen

Physiol 120: 455–463.

7. Ruta V, Chen J, MacKinnon R (2005) Calibrated measurement of gating-charge

arginine displacement in the KvAP voltage-dependent K+ channel. Cell 123:

463–475.

8. Tombola F, Pathak MM, Isacoff EY (2006) How does voltage open an ion

channel? Annu Rev Cell Dev Biol 22: 23–52.

9. Phillips LR, Milescu M, Li-Smerin Y, Mindell JA, Kim JI, et al. (2005) Voltage-

sensor activation with a tarantula toxin as cargo. Nature 436: 857–860.

10. Nerbonne JM, Kass RS (2005) Molecular physiology of cardiac repolarization.

Physiological Reviews 85: 1205–1253.

11. Aziz QH, Partridge CJ, Munsey TS, Sivaprasadarao A (2002) Depolarization

induces intersubunit cross-linking in a S4 cysteine mutant of the Shaker

potassium channel. J Biol Chem 277: 42719–42725.

12. Elliott DJ, Neale EJ, Aziz Q, Dunham JP, Munsey TS, et al. (2004) Molecular

mechanism of voltage sensor movements in a potassium channel. Embo J 23:

4717–4726.

13. Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian

voltage-dependent Shaker family K+ channel. Science 309: 897–903.

14. Tombola F, Pathak MM, Isacoff EY (2005) Voltage-sensing arginines in a

potassium channel permeate and occlude cation-selective pores. Neuron 45:

379–388.

15. Campos FV, Chanda B, Roux B, Bezanilla F (2007) Two atomic constraints
unambiguously position the S4 segment relative to S1 and S2 segments in the

closed state of Shaker K channel. Proc Natl Acad Sci U S A 104: 7904–7909.
16. Grabe M, Lai HC, Jain M, Nung Jan Y, Yeh Jan L (2007) Structure prediction

for the down state of a potassium channel voltage sensor. Nature 445: 550–553.

17. Ledwell JL, Aldrich RW (1999) Mutations in the S4 region isolate the final
voltage-dependent cooperative step in potassium channel activation. J Gen

Physiol 113: 389–414.
18. Mannuzzu LM, Isacoff EY (2000) Independence and cooperativity in

rearrangements of a potassium channel voltage sensor revealed by single

subunit fluorescence. J Gen Physiol 115: 257–268.
19. Pathak M, Kurtz L, Tombola F, Isacoff E (2005) The cooperative voltage sensor

motion that gates a potassium channel. J Gen Physiol 125: 57–69.
20. Tombola F, Pathak MM, Gorostiza P, Isacoff EY (2007) The twisted ion-

permeation pathway of a resting voltage-sensing domain. Nature 445: 546–549.

21. Yarov-Yarovoy V, Baker D, Catterall WA (2006) Voltage sensor conformations
in the open and closed states in ROSETTA structural models of K(+) channels.

Proc Natl Acad Sci U S A 103: 7292–7297.
22. Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a

voltage-dependent K+ channel in a lipid membrane-like environment. Nature
450: 376–382.

23. Alabi AA, Bahamonde MI, Jung HJ, Kim JI, Swartz KJ (2007) Portability of

paddle motif function and pharmacology in voltage sensors. Nature 450:
370–375.

24. Gibor G, Yakubovich D, Peretz A, Attali B (2004) External barium affects the
gating of KCNQ1 potassium channels and produces a pore block via two

discrete sites. J Gen Physiol 124: 83–102.

25. Gibor G, Yakubovich D, Rosenhouse-Dantsker A, Peretz A, Schottelndreier H,
et al. (2007) An inactivation gate in the selectivity filter of KCNQ1 potassium

channels. Biophys J 93: 4159–4172.
26. Nguyen TP, Horn R (2002) Movement and crevices around a sodium channel

S3 segment. J Gen Physiol 120: 419–436.
27. Yang N, George AL, Jr., Horn R (1997) Probing the outer vestibule of a sodium

channel voltage sensor. Biophys J 73: 2260–2268.

S4 Sensor Constraints in Kv7.1

PLoS ONE | www.plosone.org 11 April 2008 | Volume 3 | Issue 4 | e1935


