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Neuropeptide signals and specific neuropeptide receptors have been described in the
thymus supporting the concept of a close dialogue between the neuroendocrine and the
immune systems at the level of early T-cell differentiation. In this paper, we review
recent data about neurohypophysial (NHP)-related peptides detected in the thymus
from different species. We suggest that we are dealing in fact with other member(s) of
the NHP hormone family, which seems to exert its activity locally through a novel
model of cell-to-cell signaling, that of cryptocrine communication. This model involves
exchange of signals between thymic epithelial cells and developing thymocytes. The
NHP-related peptides have been shown to trigger thymocyte proliferation and could
induce immune tolerance of this highly conserved neuroendocrine family.
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INTRODUCTION

In the last decade, a number of studies has been
reported indicating that various neuropeptides
could be found in the thymus or in thymic neo-
plasms. Thus, neurotensin (NT) (Sundler et al,,
1978; Herbst et al., 1987), somatostatin (SS)
(Sundler et al., 1978; Geppetti et al., 1987; Fuller
and Verity, 1989; Gomariz et al., 1990), oxytocin
(OT) (Geenen et al., 1986; Ervin et al., 1988;
Argiolas et al., 1990a; Jevremovic et al., 1990),
vasopressin (VP) (Markwick et al., 1986; Geenen
et al., 1987; Giraud et al., 1990), neurophysins
(NPs) (Geenen et al., 1986), tachykinins (TKs)
(Geppetti et al., 1988; Weihe et al., 1989; Ericsson
et al., 1990; Lorton et al., 1990; Piantelli et al.,
1990), neuropeptide Y (NPY) (D’Andrea et al.,,
1989; Weihe et al., 1989; Ericsson et al., 1990),
vasoactive intestinal peptide (VIP) (Felten et al.,
1985; Gomariz et al., 1990; Al-Shawaf et al., 1991),
calcitonin gene-related peptide (CGRP) (Geppetti
et al.,, 1989; Weihe et al., 1989), opioid peptides
(Von Gaudecker et al., 1986; Piantelli et al., 1990),
corticotropin (ACTH) (Herbst et al., 1987), chole-
cystokinin (CCK) (Herbst et al., 1987), and atrial
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natriuretic peptide (ANP) (Vollmar and Schulz,
1990) have been immunologically, biologically,
biochemically, and/or molecularly evidenced.
These neuropeptides were not systematically
located in the thymic structures. However, some
immunoreactive  (ir-) neuropeptides were
localized in nerve fibers: substance P (SP)
(Geppetti et al., 1987, 1988; Weihe et al., 1989;
Lorton et al., 1990), CGRP (Weihe et al., 1989),
VIP (Felten et al., 1985; Al-Shawaf et al., 1991),
NPY (D’Andrea et al., 1989; Weihe et al., 1989).
On the other hand, it was suggested that ANP
could be localized in thymocytes (Vollmar and
Schulz, 1990). Furthermore, NT and SS immuno-
reactivities were found in sparse stromal cells
(Sundler et al.,, 1978), whereas neurokinin A
(NKA) (Ericsson et al., 1990), opioid peptides
(Von Gaudecker et al., 1986; Piantelli et al., 1990),
OT, VP, and NPs (Robert et al.,, 1991) were
localized in thymic epithelial cells (TEC).

It is assumed that the action of neuropeptides
is mediated through specific receptors on the tar-
get cells. The presence of such neuropeptide
receptors in the thymus also was reported. Thus,
binding sites for SP (Shigematsu et al., 1986),
ANP (Kurihara et al., 1987), OT (Elands et al.,
1988a), and VP (Geenen et al., 1988b) have been
reported. Thymic binding sites for SP were found
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associated with the vasculature in the medulla,
where they may control blood flow and vascular
permeability (Shigematsu et al., 1986). On the
other hand, specific binding sites for ANP were
identified on the rat cortical and medullary thy-
mocytes (Kurihara et al., 1987). It was suggested
that they could promote the proliferation and the
maturation of thymocytes. Furthermore, it is
likely that LH-RH and NKA binding sites are
localized on thymocytes because they exert a
mitogenic effect on these cells, although it is not
excluded that this effect could be mediated by
other cell types present in cell cultures (Marchetti
et al., 1989; Soéder and Hellstrém, 1989).

In this review, we reconsider the observations
about neurohypophysial (NHP)-related peptide
signals (OT, VP, and associated NPs) as well as
their intrathymic receptors in the context of a
new concept of intercellular dialogue, the cryp-
tocrine communication, which was recently pro-
posed for testicular Sertoli cells and thymic nurse
cells (TNC) (Funder, 1990). Briefly, cryptocrine
signaling differs from the paracrine one in that it
involves exchange of signals between specialized
epithelial cells (Sertoli in the testis, TNC or other
TEC in the thymus) and migratory developing

elements  (spermatids  and

respectively).

thymocytes,

THE NEUROHYPOPHYSIAL PEPTIDE
FAMILY

Ten NHP hormones, naturally occurring in ver-
tebrates, constitute a family of nonapeptides,
highly conserved throughout evolution (Acher
and Chauvet, 1988). They can be arranged in two
lineages corresponding to the OT-like and VP-
like hormones. These peptides all consist of nine
amino acids with cysteine residues in positions
one and six forming a disulfide bridge. Substi-
tutions occur at positions 4 and 8 and, less fre-
quently, at positions 2 and 3 (cf. Table 1). Vaso-
tocin (VT), originally a synthetical hybrid of
oxytocin ring and Arg-vasopressin side chain,
was later found in the brain of all the adult non-
mamimalian vertebrates. It appears to be the most
primitive of the NHP peptides and may be the
common ancestor of all other NHP hormones.
However, this molecule has also been detected
and characterized in fetal mammals (Pavel, 1975;
Smith and McIntosh, 1983; Ervin et al., 1985) as

TABLE 1
Neurohypophysial Hormone Family: Nonapeptides Naturally Occurring in Vertebrates
Oxytocin Lineage
1 2 3 4 5 6 8 9
Cys Tyr Ile GIn Asn Cys Pro Leu Gly-NH2 Oxytocin
(placental mammals)
Cys Tyr Ile Gln Asn Cys Pro Ile Gly-NH2 Mesotocin
(marsupials, birds, reptiles,
amphibians, lungfishes)
Cys Tyr Ile Ser Asn Cys Pro Ile Gly-NH2 Isotocin
(bony fishes)
Cys Tyr Ile Ser Asn Cys Pro Gln Gly-NH2 Glumitocin
(rays)

Cys Tyr Ile Gln Asn Cys Pro Val Gly-NH2 Valit}(’)c'in

(sharks)
Cys Tyr Ile Asn Asn Cys Pro Leu Gly-NH2 Aspargtocin

(sharks)
Vasopressin Lineage
1 2 3 4 5 6 8 9
Cys Tyr Phe GIn Asn Cys Pro Arg Gly-NH2 Arg-Vasopressin

(mammals)
Cys Tyr Phe Gln Asn Cys Pro Lys Gly-NH2 Lys-Vasopressin
(pig, macropodids)
Cys Phe Phe Gln Asn Cys Pro Arg Gly-NH2 Phenypressin
(macropodids)

Cys Tyr Ile Gln Asn Cys Pro Arg Gly-NH2 Vasotocin

(non-mammalian vertebrates)

Aminoacid substitutions in the lineage are indicated in bold characters.
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well as in the mammalian pineal gland (Pavel et
al., 1975; Legros et al., 1976; Nieuwenhuis, 1984).

Most vertebrates usually produce two NHP
peptides: an OT-like hormone, involved in repro-
ductive processes (parturition and lactation), and
a VP-like peptide, engaged in the regulation of
water metabolism. However, a single nonapep-
tide, VT, is found in the lamprey, one of the most
primitive vertebrates (Acher and Chauvet, 1988).
Therefore, it has been assumed that the OT-like
and the VP-like lineages arose from the dupli-
cation of one ancestral gene. Recent observations
have further supported this postulated molecular
mechanism (Morley et al., 1990).

In mammals, the neurohormones of OT and VP
are under the control of two independent genes
expressed in magnocellular neurons of the hypo-
thalamus. They are synthesized as large molecu-
lar weight precusors, which are then cleaved dur-
ing axonal transport (Fig. 1). Prooxyphysin (Pro-
OT) is a 16-kD protein containing the OT
sequence at its N-terminus, which is separated
from the OT-associated neurophysin (OT-NP) by
a Gly-Lys-Arg spacer sequence, and which con-
tains an extra C-terminal amino acid (Land et al.,
1983). Propressophysin (Pro-VP) is a 20-kD

glycoprotein that contains the VP sequence at the
N-terminus separated from its associated NP by
the same tripeptide spacer (Gly-Lys-Arg). In
addition, Pro-VP contains a 39 amino acid ter-
minal glycopeptide, the copeptin, which is separ-
ated from VP-NP by a single Arg spacer (Land et
al., 1982).

Neurophysins are small (93-95 residues) acidic
proteins. The central part (residues 10-74), which
is encoded by the second exon, is notably con-
served during the evolutionary history of these
peptides (Ivell and Richter, 1984). This sequence
is nearly identical between the two NPs of a
given species and between various animal
species. Variations between lineages occur in the
N-terminal part (residues 1-9) and in the C-ter-
minal part (residues 76-95) of the NP molecule.
Neurophysins exert a role of carrier for VP and
OT in the NHP system, but their high degree of
conservation throughout evolution suggests
other physiological roles that remain to be
established.

On the basis of both functional and pharmaco-
logical criteria, two types of VP receptors can be
distinguished: V; receptors that mediate pressor
and glycogenic responses to VP, by activating
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FIGURE 1. Structure of oxytocin and vasopressin genes expressed in the hypothalamus (redrawn from Richter and Schmale,

1984).
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phosphoinositide breakdown and elevating the
concentration of intracellular calcium, and V,
renal receptors, leading to the activation of
adenylate cyclase (Michell et al., 1979). Further,
pharmacological studies using peptide binding
assays have led to distinguish two V; receptors
subtypes named V;, and V;;, (Jard et al., 1986).

OT receptors were described in the uterus,
mammary gland, oviduct, and hippocampus.
These receptors seem to be very closely related to
the V, type and also are coupled to phospho-
inositide metabolism (Flint et al., 1986).

EVIDENCE FOR NEUROHYPOPHYSIAL-LIKE
PEPTIDES IN THYMIC EXTRACTS

We have previously demonstrated that ir-OT
could be extracted by acetic acid from human
thymuses as evidenced by specific radioimmuno-
assay (RIA) using antiserum AsO, (Geenen et al.,
1986). On isolated rat uterus, thymic extracts
induced oxytocic contraction and the quantitat-
ive bioactivity was in agreement with the
amounts detected by RIA. Ir-NPs also were
detected in human thymic extracts using the anti-
serum A/5/IV. The molar ratio of ir-OT
(2.2-18.4ng/g) to ir-NPs (24-142ng/g) was
similar to that found in the hypothalamus (1:1),
suggesting a local synthesis by cleavage from a
common precursor. Ir-VP and ir-VP-NP also
were detected in human thymic extracts
(0.01-0.06 ng/g and 34-90ng/g, respectively).
The further finding of positive dot blot hybridiz-
ations of human thymic mRNA with bovine OT
and VP ¢cDNA probes constituted another argu-
ment for in situ synthesis, although this obser-
vation does not establish a conclusive demon-
stration of intrathymic OT and VP gene
expression (Geenen et al., 1987).

Thymic OT was further characterized by gel fil-
tration on G-75 Sephadex: separate peaks of
ir-OT and ir-NP were evidenced at the same pos-
itions as their respective reference preparations.
HPLC analysis of thymus extracts showed a
single peak of ir-OT with a similar elution site as
synthetic OT (Geenen et al., 1986).

Independently, ir-VP has been described in
thymic extracts of rats and mice (Markwick et al.,
1986), and OT-, VP- and VT-like peptides were
reported in ovine thymus (Ervin et al., 1988). The
presence of ir-OT was recently confirmed in fetal

human thymus (Jevremovic et al., 1990) and in
rat thymus (Argiolas et al., 1990a). The finding of
a modulation of rat thymic ir-OT concentrations
after diverse manipulations further supports a
local intrathymic synthesis of an OT-like peptide
(Argiolas et al., 1990b).

LOCALIZATION OF NEUROHYPOPHYSIAL-
LIKE PEPTIDES IN HUMAN THYMUS

By using polyclonal antibodies, we localized
ir-OT and ir-VP in the subcapsular cortex (SCC)
and in the medulla of human thymus, as well as
in mouse lymphoepithelial complexes called thy-
mic nurse cells (TNC) (Wekerle and Ketelsen,
1980; Geenen et al., 1988a). Furthermore, we con-
firmed the presence of ir-OT in human, rat, and
mouse thymuses with O33, a monoclonal anti-
body (Mab) directed to OT specifically recogniz-
ing hypothalamic magnocellular neurons (Fig.
2A). We only observed a labeling of the stromal
component of thymuses; thymocytes and nerve
fibers were never visualized. In human thymus,
033 revealed two immunoreactive areas (Fig.
2B): a monolayer of flattened cells in the SCC and
a dense reticular network of stellate cells in the
medulla, whereas in the inner cortex, very few
scattered stellate cells were labeled. In the mouse
thymus, this antibody mainly labels a homo-
geneous network of cortical reticular cells and
some medullary stromal cells (Fig. 2C). Several
strains of mice (C3H, BALB/c, C57BL/Ka, CBA,
SJL/]) as well as Wistar rats (Fig. 2D) exhibited
the same pattern of reactivity. Moreover, the thy-
mus of Brattleboro rats, which exhibit a deficit of
the hypothalamic VP gene caused by a single
deletion (Richter and Schmale, 1984), also was
stained by O33 (Fig. 2E).

Using double immunofluorescence staining
with A/5/111, a rabbit serum anti-NPs, we found
that the same cells express together ir-OT and
ir-NP (Robert et al., 1991). Among the Mabs to
VP, we found that BER-312 was the brightest
though it labeled thymus sections less intensely
than 033, in accordance with the lower concen-
tration of ir-VP found in human thymuses. The
pattern of reactivity of BER-312 on human thy-
mus was similar to that obtained with O33
(Robert et al., 1991).

Further, in human thymus, we showed that the
stromal cells containing ir-neuropeptides corre-
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spond to a subset of epithelial cells expressing
KL1- and KL4-defined cytokeratins (Robert et al.,
1991). The epithelial nature of the cells contain-
ing NHP-related peptides was confirmed, in rod-
ent thymuses, using an antiserum to human kera-
tins and KL4 (data not shown). However, KL1

only stained a few medullary TEC in rodents
(Nicolas et al., 1989), whereas it strongly labels
cortical and medullary TEC from humans
(Robert et al., 1991), evidencing a certain dispar-
ity between rodent and human TEC.

Besides, both in humans and rodents, it

FIGURE 2. Immunostaining with a
Mab to oxytocin (033). (A) Trans-
verse section (25 um thick) through
the hypothalamus of a 3-month-old
female Wistar rat. It was immuno-
stained by successive incubation
with (1) Mab 033 (1:2000); (2) goat
antimouse IgM conjugated with
biotin (1:800); (3) avidin-peroxidase
(1:200); (4) 3,3'-diaminobenzidine
tetrahydrochloride (for detailed pro-
tocol, see Burgeon et al,, 1991). In
the paraventricular nucleus, which
contains oxytocin and vasopressin
magnocellular neurons, neuronal
cell bodies and dendrites are heav-
ily stained by 033. *:third ventricle.
Scale bar: 20 um. (B) Three-year-old
male human thymus section (5 um)
labeled with O33 (1:100) and FITC
goat antimouse Ig (1/40). The SCC
and the medulla are strongly lab-
eled. c: cortex; m: medulla. Scale
bar=40 yum. (C) One-month-old
female C3H mouse thymus section
(5 um) labeled with O33 (1:100) and
FITC goat antimouse Ig (1/40).
Identical fluorescent staining of
both cortical and medullary regions
was observed. However, a network
of labeled cell processes is visible
throughout the cortex, whereas, in
the medulla, largest globular cells
are stained. c: cortex; m: medulla.
Scale bar=20 um. (D) One-month-
old male Wistar rat thymus section
(5 um) labeled with O33 (1:100) and
FITC goat antimouse Ig (1/40). The
staining is similar to that of C3H
mouse but slightly weaker. c: cortex;
m: medulla. Scale bar=20 um. (E)
One-month-old female Brattleboro
rat thymus section (5 um) labeled
with 033 (1:100) and FITC goat anti-
mouse Ig (1/40). Positive labeling
was observed in the thymus of this
mutant rat defective in expression
of hypothalamic vasopressin precur-
sor. ¢: cortex; m: medulla. Scale bar=
20 um.
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appeared that TEC containing ir-neuropeptides
also are labeled by A2B5 (Geenen et al., 1988a;
Robert et al., 1991), which recognizes the thymic
neuroendocrine microenvironment producing
the so-called thymic hormones (Haynes et al,,
1983; Savino and Dardenne, 1984). In human thy-
muses, we found that these TEC also contain
some interleukin-1 (IL-15) immunoreactivity that
was colocalized with ir-OT (Robert et al., 1991). It
is as well possible that they produce other
lymphokines (interleukin-6, colony-stimulating
factors, leukemia inhibitory factor) that were evi-
denced in culture supernatants of human TEC
(Le et al., 1990). Furthermore, we observed that,
in the rat thymus, a subset of O33" TEC also
was labeled by a specific antiserum directed to
NKA, kindly provided by E. Brodin (Karolinska
Institute, Stockholm, Sweden).

THYMIC NEUROHYPOPHYSIAL PEPTIDE
RECEPTORS

Specific OT receptors with a high affinity for OT
were demonstrated in the rat thymus with the
use of a selective, radioiodinated OT antagonist
(Elands et al., 1990). These receptors were
detected in membrane preparations and on both
mature and immature thymocytes, whereas VP
receptors of the V; type were identified on
splenic lymphocytes. Using *H-AVP and °H-OT,
we have found specific binding sites on RL1;-NP,
an immature T-cell line derived from a murine X-
ray-induced thymic lymphoma (Geenen et al.,
1988b), as well as on murine CTL-L, a cytotoxic
T-cell line (Martens et al., in press). Some hetero-
geneity of [PH]-AVP and [PH]-OT binding sites
was confirmed by computer analysis (LIGAND
program). The highest affinity population
(100-1,000 binding sites/cell) displayed a Kd
ranging between 0.15 and 0.1 nM, depending on
the cell line. Displacement curves obtained with
different OT and VP analogs indicated that the
receptors were of the OT and/or the VP V, type.
The functional transduction capacity of these
receptors was demonstrated, on RL12-NP and
CTL-L cells, by the ability of different members
of the NHP peptide family (VP, OT, and VT) to
induce a breakdown of membrane phosphoinosi-
tides together with an increase of cytoplasmic
inositol-triphosphate (Martens et al., in press).
The heterogeneity of the receptor expressed by T

cells was further evidenced by the inhibition of
transduction in RL12-NP cells by a V, antagonist,
while this inhibition was observed in CTL-L by
both OT and V1 antagonists. As a consequence,
these observations establish the expression and
the functionality of NHP peptide receptors on
immature and differentiated T cells. Further-
more, we have observed that OT, VP, and VT
increase [*H]-TdR incorporation by human thym-
ocytes cultured in serum-free medium (Martens
et al,, in press).

IDENTITY OF THYMIC ir-OT AND ir-VP

Altogether, these data establish the intrathymic
synthesis of peptide signal(s) exhibiting very
close analogy with NHP peptides and the
expression of functional cognate receptors by T
cells. However, the presence of a material in TEC
that exhibits immunological similarities with OT
and, to a lesser extent with VP, does not substan-
tiate that we are dealing with authentic OT and
VP. Most data rely upon antibodies to OT, VP,
and NPs that could, as well, detect some related
epitopes. Some molecular differences between
hypothalamic and thymic nonapeptides are obvi-
ous, since our Mabs all recognized OT or VP in
brain slices (Robert et al., 1985; Burgeon et al.,
1991), whereas human thymus sections were only
brightly stained by O33. As O13 does not stain
thymus sections, it could be that the tail part of
OT differs in the thymus and in the brain. In
addition, the coexistence of ir-OT and ir-VP in
TEC provides another conflicting debate. Finally,
classical molecular biological methods failed to
demonstrate the intrathymic expression of
known hypothalamic OT and VP genes. There-
fore, thymic ir-OT and ir-VP appear like
peptide(s) related to, but distinct, from hypothal-
amic OT and VP. The expression of this OT/VP-
like peptide could be under the control of a dif-
ferent gene coding for another natural NHP pep-
tide, like VT, expressed preferentially during
fetal development in peripheral organs. A differ-
ent splicing of known OT and VP mRNA also can
be considered and these questions are under cur-
rent investigation.

Furthermore, the pharmacological characteriz-
ation of thymic OT receptors is not selective
enough to assume that the binding peptide is
authentic OT, as it has been shown that OT recep-
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tors from the hippocampus, the uterus and the
mammary gland does not discriminate between
OT, VP, and VT (Maggi et al., 1987; Elands et al.,
1988b).

PHYSIOLOGICAL IMPLICATIONS

The physiological actions of OT- and VP-like
peptides within the thymus remain to be further
defined. They are not secreted in vitro
(unpublished observation) and the classical
model of neurosecretion is therefore questionable
with regard to thymic epithelium-derived NHP
signals. Rather, they seem implicated in thymic
cell-to-cell interactions according to the novel
“cryptocrine” model (Geenen et al.,, 1991a and
1991b). The affinity of T-cell receptors for
OT/VP-like peptides (around 107°M, in best
conditions) provides another argument in favor
of this concept. The biological significance of a
binding to lymphocytes of blood VP and OT neu-
rohormones (concentrations around 107 M)
would be rather irrelevant in any case.

These ir-neuropeptides are localized in areas
(SCC in human thymus, TNC in murine thymus)
where thymocytes divide actively. It was
reported that VP/OT exert a mitogenic effect on
several cell types including rat (Whitfield et al.,
1970) and human (Martens et al., in press) thym-
ocytes, as well as rat bbne marrow cells (Hunt et
al., 1977). On cultured fibroblasts, VI is con-
sidered to deliver an early regulatory signal of
mitogenesis (Rozengurt, 1986); therefore, one can
reasonably consider that thymic VP/OT-related
peptide(s) provides accessory activation signals
for thymocyte proliferation.

Ir-OT/VP are also detected in the medullary
epithelium of thymus from different species and
in cortical epithelium from rodent thymuses.
Tolerogenic properties have been reported for
murine TEC including TNC (Lorenz and Allen,
1989; Marrack et al.,, 1989; Webb and Sprent,
1990), at least for some antigens (Ransom et al.,
1991). Obviously, the tolerance to OT seems par-
ticularly powerful and autoimmune processes
have never been described against OT or OT-pro-
ducing neurones. This is not the case for VP
because some idiopathic digbetes insipidus seem
to be secondary to autoimmune “hypothalamitis”
(Scherbaum and Bottazzo, 1983). Another
indirect argument for the tolerogenic aspect of

OT is derived from published work and from our
personal experience. Indeed, the frequency as
well as titers of antisera are higher for VP than
for OT, and their immunodominant epitope is
generally located in the cyclic part of these non-
apeptides. Their protection from an autoaggres-
sion by the immune system presumes the presen-
tation in the thymus of a peptide (or of a self-
immunodominant epitope) representative of this

family. The tolerogenic properties of NHP-

related peptide(s) and the hypothesis of their
intrathymic presentation by major histocompat-
ibility complex proteins are actually investigated
in our laboratory.

MATERIALS AND METHODS

Antibodies

The antioxytocin serum AsO, was raised in rabbit
against synthetic OT coupled to bovine thyro-
globulin and was previously described (Geenen
et al., 1985). These antibodies react with OT:
100%, VT: 40%, and VP: 0.3%.

The rabbit serum against arginine-vasopressin
used in RIA (AS2) was mainly directed to the
C-terminal linear side chain of the VP molecule
(Smitz et al., 1988).

Rabbit antisera to bovine NPs (A/5/1Il,
A/5/1V) were previously shown to recognize the
central part of the molecule that is common to
OT-NP and to VP-NP and is well conserved
through mammals (Legros, 1975).

To characterize VP-NP, we used a specific rab-
bit antiserum that did not recognize OT-NP,
neither OT or VP (Legros and Ansseau, 1989).

The characterization of Mabs to oxytocin was
published in detail elsewhere (Burgeon et al.,
1991). One Mab (O13) is very specific for OT as it
discriminates OT from isotocin (IT) or VP either
conjugated to ovalbumin or as free peptides. It
does not label the suprachiasmatic nucleus
(claimed to contain only VP) and is absorbed by
OT- but not by VP-coated beads. As its binding to
["®I]-OT is inhibited by OT but not by analogs
differing at position 8, we conclude that the
C-terminal linear chain of the OT molecule is
included in the epitope recognized by O13. We
also characterized two Mabs (022 and O33) that
are not so strictly specific for OT as they recog-
nize not only OT but also IT and VP conjugates.
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They label the rat suprachiasmatic nucleus and
their immunoreactivity is as well absorbed by
OT- as by VP-coated beads. As they do not bind
to ['®I]-OT, we assume that they react with the
cyclic part of OT and probably recognize
determinant(s) shared by several natural pep-
tides. However, some differences between 022
and O33 were observed: O22 recognizes IT better
than VP and it labels nerve fibers more strongly
than O13 and O33 (Burgeon et al., 1991). O13 and
022 belong to the IgG; subclass, whereas O33 is
an IgM.

The production and characterization of Mabs
to vasopressin were previously reported (Robert
et al.,, 1985). Briefly, seven hybridomas (IgG;)
reacting with VP-thyroglobulin complexes but
not with thyroglobulin alone were established.
All Mabs bound [**I]-VP and stained Long Evans
but not Brattleboro (a VP defective mutant) rat
neurohypophysis. These antibodies seem to be
strictly directed to the cyclic moiety of the VP
molecule. However, BER-312 and BER-624, but
not CLA-223, were able to detect frog NHP pep-
tides (vasotocin and/or mesotocin), suggesting
that they recognize a slightly different epitope.

To further characterize stromal cells, we used
commercially available Mabs to human cytokera-
tins (KL1 and KL4; Immunotech, Marseille,
France) as well as a rabbit antiserum directed
against human cytokeratins (A-575, Dako,
Copenhagen, Denmark). Mouse hybridoma A2B5
(ATCC HB-29) was grown in our lab and used as
undiluted supernatants. Antibodies to IL-13 were
produced by Medgenix Diagnostics (Fleurus,
Belgium).

Immunohistochemistry

Thymus fragments were obtained from children
undergoing corrective cardiovascular surgery or
from 1-month-old mice (C3H, BALB/c,
C57BL/Ka, CBA, SJL/]) and rats (Wistar and
Brattleboro). These fragments were embedded in
Tissue-tek, immediately frozen in dry ice and
then stored at —70°C. Frozen sections (5 um)
were cut on a cryostat, air dried, and postfixed
with picric acid /formaldehyde.

Sections were incubated for 30 min, at room
temperature, with 10%_normal goat serum. First-
step antibodies were incubated overnight at
+4 °C (antineuropeptides) or 30 min at room tem-
perature. Fluoresceine- or rhodamine-conjugated

goat antisera to mouse IgG or IgM (Fc specific) or
to rabbit Ig (Nordic, Tilburg, Netherlands) were
used as second-step reagent for 30 min at room

temperature. The double-staining procedure
involved sequential incubations of tissue
sections.

No specific staining was observed in the thy-
mus when dilution buffer, normal rabbit serum
(NRS; Dako, Copenhagen, Denmark), or anti-BSA
or anti-OVA control ascites (IgG, or IgM) were
used in place of the primary antibodies. Pre-
adsorption of O33 and BER-312 monoclonal anti-
bodies with homologous synthetic peptides, OT
and VP, respectively, coupled to CNBr-activated
sepharose-4B (Pharmacia, Sweden), abolished the
immunostaining. We also checked that our Mabs
to neuropeptides did not detect a cross-reacting
antigen in epidermal epithelium.
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