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Voluntary participation in public goods games (PGGs) has turned out to be a simple but effective mechanism

for promoting cooperation under full anonymity. Voluntary participation allows individuals to adopt a risk-

aversion strategy, termed loner. A loner refuses to participate in unpromising public enterprises and instead

relies on a small but fixed pay-off. This system leads to a cyclic dominance of three pure strategies, cooperators,

defectors and loners, but at the same time, there remain two considerable restrictions: the addition of loners

cannot stabilize the dynamics and the time average pay-off for each strategy remains equal to the pay-off of

loners. Here, we introduce probabilistic participation in PGGs from the standpoint of diversification of risk,

namely simple mixed strategies with loners, and prove the existence of a dynamical regime in which the

restrictions no longer hold. Considering two kinds of mixed strategies associated with participants

(cooperators or defectors) and non-participants (loners), we can recover all basic evolutionary dynamics of

the two strategies: dominance; coexistence; bistability; and neutrality, as special cases depending on pairs of

probabilities. Of special interest is that the expected pay-off of each mixed strategy exceeds the pay-off of loners

at some interior equilibrium in the coexistence region.

Keywords: evolutionary game theory; public goods games; voluntary participation;

stable interior equilibrium
1. INTRODUCTION

In a free society, voluntary responsibility is, without doubt,

the most important factor allowing people to enjoy public

goods, such as social security, environmental resources and

peace. Human beings are frequently responsible for

unrelated strangers whom they may meet once or not at

all, even when shouldering responsibility is costly for each

individual. The emergence of such altruistic behaviour is

puzzling from an evolutionary viewpoint, since natural

selection works in favour of free-riders, i.e. those who take

advantage of the public goods without contributing.

This puzzle is well known as the Tragedy of the commons

(Hardin 1968).

One of the theoretical and experimental models

(Kagel & Roth 1995) for this situation is the public

goods game (PGG) that represents a natural extension of

the prisoner’s dilemma to an arbitrary number of players

(Boyd & Richerson 1988; Hauert & Szabó 2003). The

game is characterized as follows (Dawes 1980): groups of

cooperators outperform groups of defectors, but defectors

always outperform cooperators in any mixed group. This

situation can be formalized as follows. We consider a large

population of players, where NðR2Þ players are occasion-

ally chosen using random sampling. The strategy of each

player, i.e. whether to contribute (cooperate) or not

(defect), is specified in advance and does not depend on

the composition of a sampled group. The pay-offs Pc for

cooperators (C ) and Pd for defectors (D) in an N-player
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group with n c cooperators are given by

Pc Z rc
nc

N
Kc and ð1:1Þ

Pd Z rc
nc

N
; ð1:2Þ

where r denotes the multiplication factor; c denotes the

cooperative cost; and 1! r!N. For simplicity and

without loss of generality, we set the cost cZ1 for the

rest of this paper. The last inequalities 1!r!N state the

essence of the public goods situation. For these games,

defection is the dominating strategy and classical and

evolutionary game theories conclude that all players

become defectors and their pay-offs reduce to zero.

Most recent studies on the problem of mutual defection

have focused on punishment (Clutton-Brock & Parker

1995; Fehr & Gächter 2000, 2002; Sigmund et al. 2001;

Gürerk et al. 2006) and reputation (Alexander 1987;

Nowak & Sigmund 1998, 2005; Wedekind & Milinski

2000). These mechanisms to suppress defection require a

priori individual identification, in order that defectors may

be punished or lose their reputations. Our main interest is

in a more fundamental model that does not require such

pre-identification. In a previous study, Hauert et al.

(2002a,b) have proposed voluntary PGGs as a simple

extension to the PGG concept. In this extension, players

can decide whether or not to participate in PGGs. Those

unwilling to join PGGs are termed loners (L), and instead

of participating, they prefer to rely on a small but fixed

pay-off s (0!s!rK1) with the result that the members in

a group of cooperators are better off than loners, but loners

are better off than members in a group of defectors. Each

player is sampled a number of times, and obtains an

average pay-off that depends on the player’s own

predetermined strategy, as well as on the composition of
This journal is q 2007 The Royal Society
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the entire population, i.e. the relative frequencies of the

three strategies (C, D and L). In the case that no

co-player participates, it is assumed that the player has

no other option than to play as a loner and thus obtains

pay-off s. Since 1!r!N, the three strategies form a

rock–scissors–paper cycle: if most players cooperate, it

would be profitable to defect; if defectors are prevalent,

it would be better to abstain from the PGG; and if most

players are loners, then small interaction groups form

frequently, and the average pay-off for cooperators will

be higher than that for defectors and loners. However,

defectors always do better than cooperators in any mixed

groups. This is an example of Simpson’s paradox

(Simpson 1951). The evolutionary process is of Red

Queen type: an unending cycle of adjustments (Hauert

et al. 2002a), for which the addition of loners cannot

create an asymptotically stable interior equilibrium at

which cooperators and defectors coexist (Hauert et al.

2002a,b, 2006a). Moreover, according to the results

stated by these authors, the time averages of the pay-offs

for the three different strategies are equal and reduce to

the pay-off of loners s and thus no one does better or

worse than loners in the long term.

We now address the interesting issue of whether it is

generally the case that systems with loners can neither

stabilize the dynamics nor improve the average pay-off in

the population. In this paper, we extend voluntary PGGs

in a very intuitive way. We consider two mixed strategies:

one is the combination of cooperators and loners and the

other one is of defectors and loners. These strategies

participate in the PGG with some probability and

otherwise act as a loner.

In real life, whether to participate in unpromising

enterprises may not be an all-or-nothing option but rather

‘probabilistically’ changing according to circumstances

and risk orientation of the individual. Let us take

investments in stocks as an example. In this case,

cooperative participants are fair players who keep to

regulations and create equal opportunities for profits as a

common resource in a free market. Defectors, on the

contrary, are unfair players who create opportunities for

unreasonable gains by irregularities such as insider

trading. However, in practice, few people violate

regulations every time they make an investment. One of

the important problems for both types of players is the

asset allocation between high-risk high-return products

such as stock investments and low-risk low-return

investments like bank deposits. Those who prefer safety

and rely entirely on the latter can be viewed as loners.

Rational investors will analyse risk-return trade-offs and

consider diversified investments according to their own

tolerance for risk, employing the maxim ‘Do not put all

your eggs in one basket’. The current extension into mixed

strategies with loners therefore seems worthwhile, in that it

is applicable in practice.

In §2 we analyse the replicator dynamics of the two

mixed strategies and show that this can recover all

the basic evolutionary scenarios and, in particular, result

in a coexistence regime in which the average population

pay-off exceeds the loner’s pay-off. We shall refer to

this extended model as PGGs with ‘probabilistic

participation’.
Proc. R. Soc. B (2007)
2. PROBABILISTIC PARTICIPATION
The two types of mixed strategies considered are defined by

~C Z pxCC ð1K pxÞL and ð2:1Þ
~DZ pyDC ð1K pyÞL; ð2:2Þ

where px and py are continuous-valued parameters in [0,1]

and represent the rate of participation in the PGG. We call ~C
a ‘potential’ cooperator strategy and ~D a ‘potential’ defector

strategy. At first, each sampled player stochastically decides

whether or not toenter the game with his or her participation

rate. Subsequently, if participating, the player actualizes his

or her own potential strategy (C or D) and plays the game,

and if not participating, behaves like a loner. Now let ~x be

the relative frequency of ~C, P ~c and P ~d the expected pay-offs

of ~C and ~D, respectively, and �P the average pay-off in the

population: �PZ ~xP ~cC ð1K ~xÞP ~d , where 1K ~x means the

relative frequency of ~D. Following evolutionary game theory

which assumes that a strategy’s pay-off determines the

growth rate of its frequency within the population (Weibull

1995; Hofbauer & Sigmund 1998), we obtain the following

replicator equations representing the evolution of ~x:

_~xZ ~xðP ~cK �PÞZK~xð1K ~xÞðP ~dKP ~c Þ: ð2:3Þ

Both homogeneous states ( ~xZ0; 1) are trivial equilibria of

the dynamics. In PGGs with probabilistic participation, a

variable z corresponding to the fraction of loners is given by

zð ~xÞZ ð1K pxÞ ~xC ð1K pyÞð1K ~xÞ. The variable z represents

the expected frequency of loner-like behaviour.

Let us denote the average pay-offs of a cooperator and a

defector asPc andPd, respectively. According to Hauert et al.

(2002b), the advantage of a defector over a cooperator is

PdKPc Z 1C ðrK1ÞzNK1K
rð1KzN Þ

Nð1KzÞ
eFðzÞ: ð2:4Þ

This advantage depends only on z. In the open interval

(0, 1), F(z) has no roots for r%2 and has exactly one root ẑ

for rO2. In the case of the mixed strategies, the expected

pay-offs P ~c and P ~d are given by P ~cZpxPcC ð1K pxÞs and

P ~dZpyPdC ð1K pyÞs, respectively. We thus obtain the

advantageof a potential defectorover a potential cooperator,

P ~dKP ~c Z ðsðpxK pyÞKðrK1ÞpxÞð1KzNK1Þ

C r
pxpy

1Kz
1K

1KzN

Nð1KzÞ

� �
e ~FðzÞ: ð2:5Þ

The details of the calculation are shown in the electronic

supplementary material. ~FðzÞZ0 is the equilibrium con-

dition. In particular, for pxZpy (z is constant), equation

(2.5) is reduced to ~FðzÞZ ð1KzÞFðzÞ, thus equation (2.3) is

also _~xZK~xð1K ~xÞð1KzÞFðzÞ. This means that when

pxZpy, the evolutionary dynamics of relative frequencies

of potential cooperators and defectors is equivalent to that

of pure cooperators and defectors in voluntary PGGs

restricted in constant z. The straightforward calculation

gives d ~F=d ~xO0 for px!py and d ~F=d ~x!0 for pxOpy (see

electronic supplementary material). The monotonicity

of ~FðzÞ makes it easy to classify the phase diagram on the

parameter space ðpx; pyÞ.
(a) Classification of evolutionary dynamics

Let us define four regions (i)–(iv) covering ðpx; pyÞ-space,

by the pair of signs of ~Fðzð ~xÞÞ at each point of f ~xZ0; ~xZ1g:

(i) ðR0;R0Þ, (ii) ð!0;O0Þ, (iii) ð%0;%0Þ, and (iv) ðO0;!0Þ.
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Figure 1. Phase diagram illustrating the different dynamical
regimes (NZ5, rZ3, sZ1). The solid curves C1 and C2

separate ( px, py)-space into the four regions (i)–(iv) charac-
terized by the different dynamical regimes: (i) dominating
potential defectors, (ii) coexistence, (iii) dominating potential
cooperators, and (iv) bistability, except for the two-point set
(v):{(0, 0), Qð1K ẑ; 1K ẑÞgZC1hC2, where the dynamics
is neutral and ẑ is the unique interior root of F(z). The region
(iii) includes the px- and py-axes. The interior equilibrium
states satisfy �POs in the grey-coloured part of (ii) and (iv)
bounded by C3 (the dashed curve), �P!s in the opposite part
and �PZs on C3.
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Figure 2. Phase diagram illustrating the different dynamical
regimes (NZ2, rZ1.5, sZ0.2). The solid lines C1 and C2

separate ( px, py)-space into the four different dynamical
regimes (i)–(iv). The region (iii) consists of the px- and
py-axes. C1hC2Z fð0; 0Þg. The point Q coincides with the
origin. The interior equilibrium states sastisfy �P!s in (ii)
and �POs in (iv).
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The following features hold (figures 1 and 2; electronic

supplementary material). The region (ii) satisfies px!py
and (iv) satisfies pxOpy. The diagonal pxZpy is covered by

(i) and (iii). For rO2, the two boundaries, C1 : ~Fðzð1ÞÞZ0

and C2 : ~Fðzð0ÞÞZ0 are transversely crossing at

Qð1K ẑ; 1K ẑÞ, where ẑ is the unique interior root of F(z).

The four regions thus exist in any small neighbourhoodofQ.

We specifically denote the set of (0, 0) and Q as (v).

Since ~FðzÞ is monotone, for the regions (ii) and (iv),
~Fðzð ~xÞÞ has a unique interior root ~x�, and for the regions

(i) and (iii), no interior root. The five regions (i)–(v) then

correspond to the five basic scenarios of evolutionary

dynamics (Nowak & Sigmund 2004), which are as follows.

(i) ~D dominates ~C because P ~dOP ~c holds. ~D-homo-

geneous state is globally stable.

(ii) If ~x! ~x�, ~x increases because P ~d!P ~c holds.

Conversely, if ~xO ~x�, ~x decreases because P ~dOP ~c

holds. As a result, ~C and ~D can invade each other and

any mixed state converges to a unique interior

equilibrium ~x�. ~C and ~D coexist at globally stable ~x�.

Both trivial equilibria, ~C-homogeneous state and
~D-homogeneous state, are unstable.

(iii) ~C dominates ~D because P ~d!P ~c holds. ~C-homo-

geneous state is globally stable.

(iv) If ~x! ~x� , ~xdecreases becauseP ~dOP ~c holds and then

converges to ~xZ0. Conversely, if ~xO ~x� , ~x increases

because P ~d!P ~c holds and then converges to ~xZ1.

Both ~C- and ~D-homogeneous states are asymptoti-

cally stable. The basins of attraction of these

equilibria are divided by unstable ~x�. In this bistable
Proc. R. Soc. B (2007)
situation, the evolutionary fate of the system depends

on the initial configuration.

(v) The fractions of ~C and ~D are unchanged because

P ~c hP ~d . The evolutionary dynamics is neutral.

A similar classification has been achieved by using the

concepts of synergy and discounting for describing how

benefits accumulate when multiple cooperators exist in an

interaction group (Hauert et al. 2006b). Interestingly, these

two models share almost the same arrangement of different

dynamical regimes as is illustrated by the phase diagram

(fig. 2 in Hauert et al. 2006b).

(b) Average pay-off at equilibrium

Given an interior equilibrium state, we evaluate the average

population pay-off �P�
in each moment, which is thus equal

to the time average. �P�Zs defines a curveC3 in ( px, py).C3

is included in the regions (ii) and (iv) and go through Q. C3

divides each of (ii) and (iv) into two subregions, which are

characterized by �P�
Os and �P�

!s (figure 1; electronic

supplementary material). Therefore, for rO2, these four

types of subregions exist in any small neighbourhood of Q.

But, for r%2, the subregions �P�
Os in (ii) and �P�

!s in

(iv) do not appear. We note that for NZ2 (figure 2;

electronic supplementary material), there is no chance of

rO2 owing to the precondition of the PGG 1!r!N. In the

case of both ~C- and ~D-homogeneous states (except for the

case that all members are actually pure loners), �P�
Os and

�P�
!s hold, respectively.
3. SUMMARY AND DISCUSSION
Voluntary participation in PGGs (Hauert et al. 2002a,b),

introducing the non-participating loners, results in oscil-

latory persistence of cooperation under full anonymity

without requiring any cognitive abilities. However, this

model also shows that the dynamics is unstable and in the
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long run the average effect on the individual’s pay-off is just

the same as if all of the population were loners.

In this paper, we have discovered that these restrictions

no longer hold for the probabilistic-participation strategies

under suitable conditions. We consider two types of mixed

strategies: potential cooperators and potential defectors who

join the PGG with their own probabilities (participation

rates) and otherwise act as loners. These strategies lead to

very rich evolutionary dynamics including coexistence,

depending on fixed pairs of participation rates. In the

coexistence regime, stabilized cooperation (and defection)

exactly arises in the form of a mixed strategy with loners.

Moreover, when NR3, rO2 and some appropriate partici-

pation rates are given, this stable interior equilibriumenables

the mixed strategies receive an average pay-off greater than

the loner’s pay-off every moment, which thus remains

unchanged in the long run.

Interestingly, when NZ2, no coexistence state results in

an average population pay-off greater than the loner’s pay-

off. For pairwise interactions, any coexistence state is thus

taken over a homogeneous state of pure loners, and social

interactions vanish, even supposing probabilistic partici-

pation. This outcome is equivalent to the results of previous

research on the evolutionary Prisoner’s Dilemma with

voluntary participation (Hauert et al. 2002b; Hauert &

Szabó 2005). However, if interacting groups are open to

three or more players, a robust coexistence state against

pure loners is possible. The openness to a third player is

therefore a fundamental condition that makes freedom of

participation to stabilize responsibility and to provide a

stable pay-off, which is at least greater than the pay-off of a

loner. Although it is uncertain whether the third player will

sit down at the gaming table and what kind of participant

(cooperator or defector) he or she might be, the vacant

place has to be set to allow for the possibility of continuing

social interactions.

Furthermore, it is also interesting to adopt other

selection dynamics instead of considering the replicator

dynamics. For example, the best-reply dynamics (Hauert

et al. 2002a) would lead to convergence to oscillations

between two points different in the dominating strategies,

for the coexistence regime in the case of the replicator

dynamics.

The most fascinating extension must be to introduce the

process of mutation for the participation rate. The two

mixed strategies occurring in this model contain the three

pure strategies (C, D and L) corresponding to extreme

values of the participation rate. Therefore, the addition of a

mutation mechanism would bring about an intriguing

question as to which kind of states would be adaptive, the

rock–scissors–paper cycle or the stable coexistence state. In

coevolution of more than one species, it has been much

interesting to characterize the properties of fixed points at

which there is no further phenotypic evolution (Marrow

et al. 1996). Previous studies on two-species system have

mainly dealt with examples of a discrete set of fixed points,

but our model has a fixed ‘curve’, C3 (figure 1), where

mutational pressure on both px and py vanishes. Character-

izing the properties of this curve would substantially

contribute to solving of the above question.

We would like to thank Karl Sigmund, Ichiro Takahashi, Nils
Chr. Stenseth and anonymous reviewers for their valuable
comments.
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