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We have developed a rigorous graph-theoretical algorithm for quantifying the shape properties of
mutational lineage trees. We show that information about the dynamics of hypermutation and antigen-
driven clonal selection during the humoral immune response is contained in the shape of mutational
lineage trees deduced from the responding clones. Age and tissue related differences in the selection
process can be studied using this method. Thus, tree shape analysis can be used as a means of
elucidating humoral immune response dynamics in various situations.
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INTRODUCTION

Memory B lymphocyte generation involves affinity

maturation of the cells’ antigen receptors, based on

somatic hypermutation of receptor genes and antigen-

driven selection of the resulting mutants (Kelsoe, 1996;

Wabl et al., 1999; Neuberger et al., 2000; Diaz and Casali,

2002). Hypermutation of immunoglobulin variable region

genes is several orders of magnitude faster than normal

somatic mutation, and there is evidence that hypermuta-

tion is generated by a different mechanism than that of

normal somatic mutation (Winter and Gearhart, 1998;

Neuberger et al., 1998; Cowell and Kepler, 2000). The

exact mechanism of somatic hypermutation is yet

unknown, although it has been shown to depend on

transcription, activation-induced cytidine deaminase

(AID) and DNA mismatch repair mechanisms. It is

thought that the mechanism is related to that of class

switch recombination (Honjo, 2002). Many questions are

still open, such as how somatic hypermutation is triggered

and regulated; whether immune complexes play a role

(Song et al., 1998; 1999) and how the processes of

hypermutation and selection interact to shape the memory

B cell repertoire.

Theoretical approaches utilized so far in the study of

affinity maturation include the analysis of the frequencies

of specific types of mutations (Dunn-Walters et al., 1998;

Dorner et al., 1998; Spencer et al., 1999; Oprea and

Kepler, 1999; Kim et al., 1999; Foster et al., 1999;

Monson et al., 2000; Michael et al., 2002), and

mathematical models exploring the dynamical inter-

actions between somatic hypermutation and clonal

selection (Sulzer et al., 1993; Kepler and Perelson,

1993; Oprea and Perelson, 1997; Shlomchik et al., 1998;

Shannon and Mehr, 1999; Kesmir and de Boer, 1999).

In this study we present a new approach—the analysis of

the shapes of mutational lineage trees.

The generation of “lineage trees” or “dendrograms” to

visualize the lineage relationships of B cell mutants in the

GCs has been used in the past to confirm the role of the GC as

the location of somatic hypermutation (Kocks and Rajewsky,

1988; Manser, 1989; Jacob et al., 1991), to identify lineage

relationships between cells from independent GCs (Vora

et al., 1999) or different tissues (Dunn-Walters et al.,

1997a,b) and from additional processes of diversification

such as gene conversion in the rabbit (Seghal et al., 1998;

Schiaffella et al., 1999; Seghal et al., 2000; Seghal et al.,

2002). The experimentally generated lineage trees reflect

multiple rounds of mutations for each germline V gene that

participated in the primary response. We believe that much

information about the dynamics of antigen-driven clonal

selection during the immune response is contained in the

shape of lineage trees deduced from the final responding

clones (Shannon and Mehr, 1999). For example, trees

generated from clones during the peak of the primary

response are much more “bushy” (Jacob and Kelsoe, 1992),

but trees become less “bushy” as the response progresses

(Jacob et al., 1993). The “pruned” shape of these trees has

been referred to as evidence for the destructive character of

somatic hypermutation. Other examples of lineage trees
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drawn to illustrate various aspects of the germinal centre

reaction, or differences in this reaction under varying

circumstances, abound in the literature. So far, however,

lineage tree classification has been based only on a

qualitative, intuitive assessment of the most obvious shape

characteristics. Hence we set out to explore whether the

information embedded in the mathematical shape charac-

teristics of lineage trees can in any way be quantifiable, and

whether it can be shown to correlate with the dynamics of the

underlying immune response.

The objective of the present study was to develop a

rigorous computer-aided algorithm for extracting the

information contained in lineage trees, using the tools of

mathematical graph theory. The algorithm we developed

is composed of a module that characterizes trees according

to their various graph-theoretical measures, and another

module for finding correlations between these measures

and the dynamical parameters of the GC response that

generated the trees. Note that, for the purpose of our

analysis, we are not interested in the properties of the

individual cells or clones represented by the lineage tree,

but rather in the overall characteristics of the lineage tree

as a graphical entity. We demonstrate in the following that

the information extracted using our algorithm is indeed

valuable in revealing the dynamics of hypermutation and

antigen-driven selection in germinal centres.

RESULTS

Tree Similarity and Size Scaling

Measurement of published lineage trees reveals several

interesting details about our method, even though

published data are too scarce for statistical analyses

(only 1–2 trees are usually published as an illustration).

First, when two trees develop from the same germline

gene under similar conditions (two different GCs in the

same response (Jacob et al., 1991), the trees are indeed

similar in all aspects measured (Fig. 1a,b). While the

profiles of the two trees are similar, it is obvious that most

properties vary with tree size, e.g. tree II is slightly larger

in most measured properties than tree I. In order to

properly compare trees, we must distinguish between two

types of tree properties: those that are independent of tree

size and those that correlate with tree size. Examples of

size-independent properties are: root degree, maximum or

average outgoing degree and maximum or average

distance between a leaf to the nearest split node. Examples

of size-dependent properties are: the number of internal or

pass-through nodes, the maximum or average path length

(from root to leaf), trunk length, etc. We set out to

examine whether scaling these properties by tree size

gives a better measure of tree similarity or difference.

As previously mentioned, there are two different

measures of tree size that could be used to scale the

size-dependent tree properties. The total number of nodes

seems to be the most natural measure. The number of

internal nodes, or the number of pass-through nodes

(which are a subset of all internal nodes), correlates well

with the total number of nodes. Scaling by the number of

leaves is more problematic, as it is highly sensitive to the

sampling process, that is, to the number of cells from any

given clone that were found in the experiment. It is also

highly sensitive to the particular germline gene involved,

as different germline genes differ in their potential for

improvement by mutation (Shannon and Mehr, 1999).

Additionally, as the response progresses, the number of

nodes per leaf may grow, as the tree gets longer by the

addition of mutations, and more “pruned” through the

action of selection (see next section). Hence scaling

should be done with care. However, when two trees are

generated from the same germline gene in the same

response, as in the case shown above, we find that they are

very similar in all their scaled size-dependent properties,

whether scaling is done by total number of nodes or by

number of leaves (Fig. 1c,d). Similar results were obtained

for the two trees published in (Jacob and Kelsoe, 1992).

Trees Grow and are “Pruned” as the Response

Progresses

When trees are taken from a response to the same antigen,

but in different times during the response (Jacob et al.,

1993), the trees seem to gradually change towards a

longer, more pruned, shape. There is a consistent change

in several tree parameters (Fig. 2). For example, the

number of leaves not only does not increase, but actually

decreases with time. This is probably due to the effect of

selection that “prunes” branches corresponding to useless

or lower-affinity mutants. Two measures of tree “bushi-

ness”, which is expected to decrease with time as a result

of selection, also decrease- the maximum and average

(excluding pass-through nodes) outgoing degree of a

node.

On the other hand, trees from the primary response are

very similar in structure to those from the secondary

response, at least in the one published example we

analysed (Vora et al., 1999). Our measurements show that

the two trees are similar in every aspect (Fig. 3).

Our Analysis can Distinguish between Trees from

Different Sources

Trees from GCs from spleen and Peyer’s patches of

young and old human patients (Banerjee et al., 2002)

were analysed by our algorithm. Data clearly shows that

the trees from the spleen show signs of having been

subject to stronger selective forces. Both the maximum

and average outgoing degree were smaller in the spleen

than in the Peyer’s patches, indicating a more bushy, and

less selected, response in the Peyer’s patch. Similarly,

both the maximum and average distance from last split

node to leaf were increased in the spleen compared to the

Peyer’s patches (Fig. 4). This algorithm also showed

some age-related differences in selection that concurred
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FIGURE 1 Similarity of two trees obtained from two different GCs in the same response. (a) Trees from (Jacob et al., 1991), drawn such that each
mutation is shown as a separate node. (b) A comparison of the “profiles” (selected graphical properties) of the trees. The trees are very similar in all their
scaled size-dependent properties, whether scaling is done by total number of nodes (c) or by number of leaves (d).
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FIGURE 2 Changes in tree shape in the course of the immune response (Jacob et al., 1993). (a) The trees. (b) Scaled path lengths as function of time in
the response. (c) Three measures of tree “bushiness” as function of time in the response.
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with other measures used to analyse the data (Banerjee

et al., 2002).

Analysis of Simulated Trees—“Tree Generator”

The analysis of published trees indicated that graphical

tree parameters may indeed correlate with the biological

parameters of the germinal centre response. However,

there is not enough published data for conclusive analysis.

In order to extract possible correlations between the

graphical parameters describing a tree and the biological

parameters describing the corresponding affinity matu-

ration process, we would have to statistically analyse a

significant number of trees with a priori known biological

parameters. There are only a few tens of trees obtained

experimentally and published, which are not sufficient for

this purpose, and even if their numbers were sufficient, not

all the biological parameters are known for experimental

trees. Hence we decided to define and implement a simple

simulation of the humoral immune response, which will

allow us to control mutation and selection parameters, and

produce lineage trees.

Simulation Parameters and their Effect on Tree Shape

This section summarizes the “biological” parameters

controlling tree generation by our simulation. Varying

these parameters enables us to produce trees correspond-

ing to different values and then analyse the subsequent

change in tree shape. We chose parameter values which

model the affinity maturation process in the most realistic

way, based on experimental data, while keeping the model

as simple as possible. Simulation parameters are given in

Table I.

The mutation mode parameter denotes how the

simulation interprets the mutation rate parameter.

Its values are Bit (the default) and Div. In Bit mode, the

mutation rate is the probability of a single bit in the

receptor string to mutate. In Div mode, the mutation rate is

the fixed percentage of bits that mutate per division.

The selection mode parameter defines the method of

selection, and how the simulation uses the selection

threshold parameter, which denotes the minimum affinity

required for a cell to survive selection. In Abs (absolute)

selection mode, the selection threshold remains constant.

In Rel (relative) selection mode, the selection threshold

FIGURE 3 Comparison (c) between trees from a primary (a) and secondary (b) response (Vora et al., 1999), showing their similarity.
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corresponds to the average affinity in the population;

however, in the first generation the pre-defined selection

threshold is used.

The selection rate parameter defines the probability for

a cell to undergo selection in each generation. That is,

(selection rate)21 denotes the maximal number of

mutations between two consequent selection events.

The selection start parameter defines the time selection

begins to operate (in number of generations since the

simulation started).

The values chosen for each of the above parameters

(Table I) yielded 1920 different parameter sets. Each

different parameter set was used in five different

simulations, with five different random number generator

seeds. Some simulations yielded more than one tree and in

some cases no trees were generated (when all cells died

before the end of the simulation). The total number of

trees generated was 8300. Several features, which

indicated that tree shapes indeed reflect the dynamics of

the response, were observed during simulation develop-

ment and tree generation, as follows.

1. As expected, the relative selection mode is more

effective than absolute selection—in the case of

relative selection, the population contains fewer cells

and their average affinity is higher than in the case of

absolute selection, in which there is no way to develop

nor to kill the cells with relatively low affinity obtained

at the first steps of the simulation. The interesting point

is that this is reflected in tree shapes. Trees obtained in

relative selection mode have fewer branches and their

average length is higher than trees obtained in absolute

selection mode. For example, the average number of

leaves for all 5175 trees obtained in the absolute

selection mode is 4648 ^ 4701; and the average

distance from a leaf back to the last split is only

TABLE I Parameter values in the tree generator simulations

Parameter Values

Number of clones 1 or 5
Initial number of cells 10
Is the population limited? Yes or No
Maximal population size 10,000
Initial amount of antigen 105 units
Mutation mode Bitwise or Div.
Mutation rate 0.002, 0.004, 0.006, 0.008
Selection Mode Abs, Rel
Selection threshold 0.5, 0.6, 0.7, 0.8, 0.9
Selection rate 0.25, 0.3, 0.5, 1.0
Selection start 1, 10

All rates are per a simulation step representing 6 h.

FIGURE 4 Comparison (c) between trees isolated from the germinal centres of human spleen (a) and Peyer’s patches (b) (Banerjee et al., 2002).
The p values for the differences between the two tissues in maximum and average outgoing degree and maximum and average distance from leaf to split
node are 0.04, 0.04, 0.07 and 0.07, respectively.
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1:85 ^ 0:55 nodes, while for the 3125 trees obtained

in the relative selection mode, the average number of

leaves is 584 ^ 911 and the average distance from a

leaf back to the last split is 2:25 ^ 4:50: The trees are

larger than published experimental trees because

(i) here we have the full tree and not just a sample of

it in each case and (ii) not all parameter sets reflect

biologically relevant parameter regimes. However, the

fact that the standard deviations in the number of

nodes (and the leaf to last split distance in the relative

selection mode) are much larger than the means shows

that the means were at the lower end of the range, that

is, there were many more smaller trees than larger

trees. The majority of trees having non-zero and long

trunks were obtained in relative selection mode as

well: there were 3787 trees with no trunk among the

trees obtained in the absolute selection mode, and

none among the trees obtained in the relative selection

mode; there were only 1201 out of 5175 trees with

trunk length $3 in the absolute selection mode,

compared with 2056 out of the 3125 trees obtained in

the relative selection mode.

2. In the case of “effective” (relative mode) selection,

population size is relatively small throughout the

simulation, and therefore antigen consumption is

lower. Thus, in most cases of absolute selection, the

antigen was totally exhausted before the simulation

has reached 90 time steps, while in most cases of

relative selection, the simulation stopped on the 90th

step with a certain amount of remaining antigen.

3. The probability of getting no tree (all cells dying by

the end of the simulation) grows with mutation rate.

For a mutation rate of 0.008 (4 bits flipped per

generation), all cells died regardless of the values of all

other parameters. For a mutation rate of 0.002 (1 bit

flipped per generation), almost every simulation

yielded at least one tree. Hence higher values probably

reflect unrealistic mutation rates.

4. In those simulations where 5 clones were allowed to

develop in parallel, at least one clone always died out.

In most cases, only one or two trees (out of 5 initial

clones) were generated. This is an expected result of

interclonal competition.

5. In most cases, population size upon simulation

completion was below 10000 cells even when an

upper limit was not used (only in 0.6% of cases did the

population exceed 20000 cells). In cases where the

population did exceed 20000, selection was weak, and

in most such cases selection mode was absolute.

Correlations between Biological and Graphical

Parameters

We proceeded to search for correlations between

biological parameters and graphical ones, beginning by

looking for simple (linear) one-to-one correlations

between each biological parameter and each graphical

one. We have found a surprisingly large number of

correlations that were significant, though most of them

had low correlation coefficients, most likely because of the

high variability between trees in almost all parameters

measured. Table II gives the one-to-one linear correlation

coefficients and their p-values for all graphical parameters

measured. It is evident that most graphical parameters

correlated only with the mutation rate and with the

selection threshold. The number of initial clones (1 or 5),

the rate of selection (number of mutation rounds between

two rounds of selection) and the time of starting the

selection (in the beginning of the simulation or 10

generations later), in the ranges used in our simulations,

did not correlate strongly ðjRj # 0:1Þ with any of the

graphical parameters.

Similar results were obtained with the scaled graphical

parameters, whether they were scaled by the number of

leaves or by the number of nodes (data not shown).

DISCUSSION

The objective of the present study was to develop a

rigorous algorithm for extracting the information con-

tained in mutational lineage trees, which so far were only

used as an illustration of the dynamics of the humoral

immune response. The algorithm we developed is

composed of a module that characterizes trees according

to their various graph-theoretical measures, and another

module for finding correlations between these measures

and the dynamical parameters of the GC response which

generated the trees. The measurement module alone is

useful in analysis of trees from different experimental

sources, in that it can show which tree properties are

significantly different between trees from different

experimental groups [Banerjee et al., 2002]. Analysis of

additional data will possibly enable us to hone this method

further (see appendix).

Our statistical analysis validates our basic premise, that

the shapes of lineage trees contain biological information

on the dynamics of the germinal centre response that

generated the trees. One may ask whether methods based

on non-linear functions might have been more successful

in prediction of the biological parameters from the

graphical ones. We have attempted to improve our

predictions by using a co-evolutionary algorithm, which

allowed a population of proposed solutions (general

polynomial functions of the graphical parameters) to co-

evolve with a population of test cases (from the data

analysed above). However, this method has not yielded

better results than straightforward linear stepwise

regression. We presume that the high variability of the

trees in our simulated tree database—and possibly of

experimentally-generated trees as well—precludes better

prediction of biological parameters from the graphical

ones, at least using regression methods.

Several more questions may be raised with respect to

tree shape analysis. For example, there is the question of

GRAPH-THEORETICAL ANALYSIS OF LINEAGE TREES 239



the reliability of the data itself, not only due to PCR errors,

but also because of the way trees are generated. As far as

we know, all tree generation algorithms assume that if a

mutation is shared by two different cells, then it must have

occurred in a common ancestor of both cells. Thus, these

algorithms do not allow for the possibility of identical

mutations occurring in parallel in different “branches” of

the tree. As there is no way to tell which shared mutations

have indeed occurred in a common ancestor, and which

shared mutations actually occurred independently, we

must take the trees as they are and analyse them as such,

assuming that the tree generation algorithms are at least

consistent in all cases.

METHODS

Tree Notation and Representation

A lineage tree is a rooted tree where nodes correspond to

B cell receptor genes. For two nodes u and v, we say that v

is a daughter of u if the cell corresponding to v is a mutant

of the cell corresponding to u, which differs from u by

TABLE II Linear correlations between graphical and “biological” (simulation) parameters

Graphical parameter Number of clones Mutation rate Selection threshold Selection rate Selection start

Number of leaves 0.00215 2 0.22681 0.66992 0.00662 20.0162
p 0.845 < 0.0001 < 0.0001 0.5468 0.1401
Trunk length 20.04733 0.26044 2 0.51446 20.01583 0.02102
p , .0001 , 0.0001 < 0.0001 0.1495 0.0555
Root degree 0.00928 2 0.27867 0.78982 0.01528 20.025
p 0.3979 < 0.0001 < 0.0001 0.1641 0.0228
Number of internal nodes 20.00654 2 0.21114 0.57521 20.00123 20.01645
p 0.5516 < 0.0001 < 0.0001 0.9109 0.1341
Number of pass-through nodes 20.00892 2 0.19937 0.53121 20.00253 20.01612
p 0.4166 < 0.0001 < 0.0001 0.8175 0.142
Total number of nodes 20.00399 2 0.22163 0.62006 0.00119 20.01681
p 0.7161 < 0.0001 < 0.0001 0.9135 0.1258
Min outgoing degree 0.00406 0.02308 20.02837 20.00367 0.00382
p 0.7116 0.0355 0.0098 0.7385 0.7277
Max outgoing degree 0.00664 2 0.23985 0.64914 0.01083 20.02137
p 0.5455 < 0.0001 < 0.0001 0.3238 0.0516
Avg outgoing degree 0.03002 2 0.25499 0.56362 0.01949 20.02061
p 0.0062 < 0.0001 < 0.0001 0.0758 0.0605
Avg outgoing degree (no 1’s) 0.02435 2 0.16547 0.44563 0.01518 20.01438
p 0.0266 < 0.0001 < 0.0001 0.1668 0.1902
Min path length 20.0246 0.24389 2 0.57483 20.01529 0.01353
p 0.025 < 0.0001 < 0.0001 0.1638 0.2178
Max path length 20.02103 0.12281 2 0.36184 20.0145 0.00858
p 0.0554 ,0001 < 0.0001 0.1867 0.4344
Avg path length 20.02072 0.14458 2 0.43682 20.01055 0.00595
p 0.0591 ,0.0001 < 0.0001 0.3364 0.5879
Min dist between adjacent split nodes 0.00198 0.07449 20.06054 20.00742 0.02944
p 0.8568 ,0.0001 ,0.0001 0.4991 0.0073
Max dist between adjacent split nodes 0.00473 0.05858 20.19647 20.0069 0.00239
p 0.6664 ,0.0001 ,0.0001 0.5299 0.8279
Avg dist between adjacent split nodes 20.02032 0.19893 2 0.39286 20.00829 0.02496
p 0.0642 < 0.0001 < 0.0001 0.4501 0.023
Min dist—root to a split node 20.0446 0.2737 2 0.49169 20.02017 0.0257
p , .0001 < 0.0001 < 0.0001 0.0662 0.0192
Max dist—root to a split node 20.00168 0.20198 2 0.24517 20.01897 0.01233
p 0.8781 < 0.0001 < 0.0001 0.084 0.2614
Avg dist—root to a split node 20.03627 0.27154 2 0.46267 20.02348 0.02474
p 0.001 < 0.0001 < 0.0001 0.0324 0.0242
Min dist—root to the max split node 20.01082 0.17919 2 0.34624 20.00836 0.02102
p 0.3242 ,0.0001 < 0.0001 0.4466 0.0555
Max dist—root to the max split node 0.00424 0.01456 0.01553 20.00165 0.01453
p 0.6995 0.1848 0.1571 0.8808 0.1856
Avg dist—root to the max split node 20.00261 0.08673 20.14565 20.00579 0.01751
p 0.8119 ,0.0001 ,0.0001 0.5978 0.1107
Min dist—leaf to the last split node 0.02556 0.15199 20.081 20.01642 0.01401
p 0.0199 ,0.0001 ,0.0001 0.1348 0.2019
Max dist—leaf to the last split node 0.00902 20.02375 0.00217 20.00539 20.00693
p 0.4115 0.0305 0.8432 0.6234 0.5281
Avg dist—leaf to the last split node 20.01325 0.19104 20.23714 20.01523 0.02352
p 0.2274 ,0.0001 ,0.0001 0.1654 0.0321

Linear one-to-one correlations between each graphical parameter and each “biological” (simulation) parameter; correlation coefficients and their p-values for all graphical
parameters measured are shown.
Shown in bold letters are all significant correlations with jRj . 0.2.
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only one mutation, and is one mutation further than u away

from the original (germline) gene. Two B cells with

identical receptors will correspond to the same node.

A lineage tree describes the maturation process of a B cell

at a certain moment of observation—it consists only of the

cells that were sampled at that moment and their ancestors

back to the root. The ancestors are not necessarily sampled

at the time of observation. We distinguish between three

kinds of nodes (Fig. 5a):

. Root—representing the original B cell (node 0).

. Leaves—representing mutant B cells, which were alive

at the time of sampling and had no daughters at the

time of observation (nodes 6, 11, 12, 13 and 14).

. Internal nodes—representing B cells that were

produced during the maturation process, which may

have been killed by selection but have a live offspring.

There are two types of internal nodes: Split nodes—

those with more than one daughter (node 3 and 10); and

Pass-Through nodes—those with exactly one daughter

(nodes 1, 2, 4, 5, 7, 8 and 9).

Since trees may come from different external sources

(published experimental data, simulations, etc.), we faced

the need to define a universal format for tree

representation. For this purpose we chose the adjacency

list format. Each node in a tree has a unique identification

(id) number, satisfying the following two conditions:

idðRootÞ ¼ 0

and

idðDaughterÞ . idðParentÞ

Hence a tree is represented by a text file, where each

line contains a node id followed by its daughters’ id’s,

delimited by space(s). Lines starting with a “#” sign are

considered to be comments and thus ignored by the

measurement algorithm (described below). A sample file

containing the adjacency-list presentation of the tree from

the previous example is shown in Fig. 5b.

Tree Measurement

In this section we define the graphical parameters to be

measured on the tree. A priori we measured all the

graphical properties we could define on the trees, as we

did not know for certain which measure would best

correlate with biological parameters. We show in the

“results” section which of the parameters seem to express

some information of interest. Note that, for quite a few of

these properties, the maximum, minimum and average

values per tree may be measured; while it is obvious that

minimum values are often trivial, we have again measured

all possible properties and then looked for the ones which

best correlate with biological parameters. The complete

list of parameters measured is the following.

. Number of nodes—total number of nodes, number of

leaves, internal nodes, pass-through nodes.

. Path length (root-to-leaf distance)—min, max, average

(over all leaves in the tree).

. Outgoing degree (number of daughters per node)—

min, max, average, average excluding pass-through

nodes, root’s degree.

. Distance from root to the first split node (trunk length)—

if root’s degree is 1; otherwise this distance equals zero.

. Distance between leaf and the nearest split node—min,

max, average.

. Distance between leaf and the first (closest to the root)

split node—min, max, average.

. Distance from root to split node (on each path to a leaf,

not considering the root itself)—min, max, average.

. Distance from root to the maximal (in terms of outgoing

degree) split node—min, max, average.

. Distance between two adjacent split nodes—min, max,

average.

We developed a computer program that reads a tree in

the format described above and measures the graphical

parameters, creating a text report. As stated above, a

lineage tree describes the process at the specific moment

of observation. Thus, in an experimentally obtained tree,

only those cells that were sampled are represented.

Usually the percentage of the germinal centre cells that are
FIGURE 5 A sample tree (a), with the nodes marked by their “id”
numbers; the adjacency list that corresponds to the tree is shown in (b).
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sampled is not very high. In order to neutralize the effects

of sampling, the above parameters have to be additionally

scaled (divided) by number of nodes (total) or by the

number of leaves. In the results section we further discuss

this issue with respect to experimental tree measurement.

For the time being it will suffice to note that for most of the

properties given in the list above, three values were

measured—unscaled, scaled by number of nodes (total)

and scaled by number of leaves.

Simulation of Germinal Centre Lineage Trees

The model of the affinity process implemented by our

simulation (“tree generator”) is very simple, yet it captures

the main features of the process (Fig. 6). Our model

considers a single population of B cells consisting of

several clones (cells with different antigen receptors). A B

cell’s receptor is represented by a 512-bit string. A certain

amount of antigen is available at the beginning of the

simulation, where the antigenic epitope is represented by a

512-bit string as well. The affinity of a B cell is given by a

(normalised) number of non-coinciding bits in the cell’s

receptor and the antigen (actually computed by applying

the logical function XOR to the two strings bitwise).

In every simulated “time step”, each cell in the population

can divide into two daughter cells, each one of which may

undergo mutation according to the mutation parameters.

The probability of the cell to divide and mutate depends on

the affinity of its receptor to the antigen, population size

(relatively to the maximum allowed population size) and

the amount of available antigen. A newborn cell can either

immediately die due to lethal mutation, divide and mutate

again, or undergo selection, whichever should happen

according to the simulation parameters. As a result of

selection, a cell either dies, or survives. This decision is

taken according to the cell’s affinity and selection

parameters. Each successful selection event consumes

one antigen unit. The process stops whenever the antigen

is exhausted or after a specified number of time steps.

Several clones may develop simultaneously in the

simulation. Each clone originates from a different B cell

in the initial population. A lineage tree is produced for

each clone that survives to the end of the simulation.
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APPENDIX: THE FORMAT OF TREES FOR

ANALYSIS

The tree analysis program is under development, and will

be available upon request when completed. In the

meantime we are willing to analyse data. Updates will

be posted on our web site: http://repertoire.ls.biu.ac.il/

TREES/, which also contains some demonstrations of the

method and instructions on the format in which the data

should be submitted.
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