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Abstract
The authors investigated semantic neighborhood density effects on visual word processing to
examine the dynamics of activation and competition among semantic representations. Experiment 1
validated feature-based semantic representations as a basis for computing semantic neighborhood
density and suggested that near and distant neighbors have opposite effects on word processing.
Experiment 2 confirmed these results: Word processing was slower for dense near neighborhoods
and faster for dense distant neighborhoods. Analysis of a computational model showed that attractor
dynamics can produce this pattern of neighborhood effects. The authors argue for reconsideration of
traditional models of neighborhood effects in terms of attractor dynamics, which allow both
inhibitory and facilitative effects to emerge.
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Semantic processing is a crucial, yet poorly understood, aspect of language processing. For
example, there is general agreement that as a word is processed, related words and/or words
with similar meanings are partially accessed or activated. However, the term similar
meanings refers to very different relationships in different theories of semantic representation.
The similarity structure of semantic representations goes to the very heart of knowledge and
meaning—how knowledge is organized determines which concepts are similar or related and
which ones are not. There are at least five approaches to semantic representation that propose
strikingly different bases for semantic representations and consequently for the similarity
relations among concepts. Category-based hierarchical approaches (e.g., Anderson, 1991;
Collins & Loftus, 1975) define similarity in terms of category membership and location in a
hierarchy. Embodied cognition approaches (e.g., Barsalou, 1999; Glenberg & Robertson,
2000) define similarity in terms of perceptual or action-based overlap. Association-based
semantic network approaches define similarity in terms of connections defined by subject
report (e.g., empirically collected association norms; Nelson, McEvoy, & Schreiber, 2004) or
expert opinion (e.g., Roget’s Thesaurus, Jarmasz & Szpakowicz, 2003; Steyvers &
Tenenbaum, 2005). Textual co-occurrence-based vector representations (e.g., Landauer &
Dumais, 1997; Lund & Burgess, 1996; Rohde, Gonnerman, & Plaut, 2004) define similarity
in terms of cross-correlations of word co-occurrence. Semantic microfeature-based
representations (e.g., McRae, Cree, Seidenberg, & McNorgan, 2005; Rogers & McClelland,
2004; Vigliocco, Vinson, Lewis, & Garrett, 2004) define similarity in terms of empirically
determined feature overlap.
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Despite concerted efforts over the last few decades, there is surprisingly little empirical basis
for claiming that any one of these approaches captures the nature of human semantic
representations. In part, this is because most studies of the structure of semantic knowledge
have examined pairwise semantic similarity relations using paradigms such as priming,
similarity ratings, and cued recall. This approach provides a measure of the similarity between
any two concepts but risks missing the forest for the trees. An alternative, larger scope approach
is to examine the effects of semantic neighborhood density (SND) or size—the number and/
or proximity of neighboring representations—on word recognition. Analysis of neighborhood
effects shifts the focus from the effect of a single related word on processing of the target word
to the effect of the set of all similar words. Recent studies (Buchanan, Westbury, & Burgess,
2001; Siakaluk, Buchanan, & Westbury, 2003; Yates, Locker, & Simpson, 2003) taking this
approach found that visually presented words in large or dense semantic neighborhoods were
recognized faster than words in small or sparse neighborhoods.

Examinations of the effects of phonological and orthographic neighborhoods have a longer
history. Written words with many orthographic neighbors (e.g., Sears, Hino, & Lupker,
1995) or phonological neighbors (Yates, 2005; Yates, Locker, & Simpson, 2004) are identified
more quickly than words with few neighbors. In contrast, spoken words in dense phonological
neighborhoods are identified more slowly than words in sparse neighborhoods (e.g., Luce,
1986; Luce & Pisoni, 1998). This contrast suggests that neighbors can have both facilitative
and inhibitory effects, reflecting two opposing principles: Perceptual familiarity facilitates
word recognition (i.e., items with many neighbors are more perceptually familiar, thus they
are recognized more quickly), but competitor activation slows word recognition (i.e., items
with many neighbors activate more competitors, and competition slows down recognition).
Because spoken words are ambiguous at onset (e.g., /kæ/ could be the beginning of nearly 800
different words), competitor words with similar onsets can become active and compete for
activation, thus (potentially) accentuating the competitive aspects of neighborhoods. In
contrast, a visual word is presented all at once, so disambiguating information is available from
the beginning, thus (potentially) reducing competition and accentuating the facilitative aspects
of neighborhoods. Preliminary evidence from a study that forces subjects to read words letter-
by-letter suggests that the difference between neighborhood effects in visual and spoken words
results from parallel versus serial experience of words in the two domains (Magnuson, Mirman,
& Strauss, 2007).

For orthographic and phonological neighborhoods, although individual metrics differ, there is
an intuitive consensus that neighbors should be defined in terms of similarity of letters or
phonemes (e.g., Luce & Pisoni, 1998; Sears et al., 1995). In contrast, the different approaches
to semantics cited above give rise to radically different sets of primitives over which semantic
distance can be defined. As a step toward developing a definition of semantic distance,
Buchanan et al. (2001) compared two different measures of SND: one based on number of
associates (derived from human participant generation of single associates to each target word;
Nelson et al., 2004) and one based on mean distance to the 10 nearest neighbors according to
the Hyperspace Analogue to Language (HAL) model (derived from co-occurrence statistics
extracted from a large corpus of text, such that words that occur in similar contexts have similar
representations and are close in semantic space; Lund & Burgess, 1996). Buchanan et al. found
that the HAL-based measure was a better predictor of word recognition than the association-
based measure and that the effect of SND was weaker for high frequency words. These results
suggest that co-occurrence statistics capture neighborhood effects more accurately than
semantic associates do (Balota, Cortese, Sergent-Marshall, Spieler, & Yap, 2004, also found
weak effects of number of semantic associates). However, although association-based and co-
occurrence-based approaches to semantic representation both tell us what concepts are similar
(i.e., neighbors) and provide a measure of similarity, neither reveals why particular concepts
are similar. For example, the associates of car include exemplars (e.g., Toyota), superordinate
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terms (e.g., transportation), other vehicles (truck, train, etc.), interaction-related words
(drive, ride), and various descriptive words (fast, expensive, etc.). It is intuitively clear that
these are all related to car, so association norms are capturing relatedness (in fact, association
norms and co-occurrence statistics provide excellent fits to behavioral word-pair similarity
ratings; e.g., Rohde et al., 2004), but the various associates have radically different relationships
to the target word, and therefore, the underlying similarity structure remains opaque.

In contrast to the opacity of association norms and co-occurrence statistics, representations
based on semantic features explicitly encode the microstructure of semantic representations.
Although feature norms do not capture the full complexity of semantic knowledge, they do
capture a portion of that space at a level of detail that has a more transparent relationship to
underlying similarity structure. Feature-based semantic representations are developed by
asking human participants to generate features of a target concept (e.g., McRae et al., 2005,
had subjects generate up to 10 features for many concepts; see also McRae, de Sa, &
Seidenberg, 1997; Vigliocco et al., 2004). Models that represent semantic knowledge in terms
of features provide powerful accounts of semantic priming (e.g., Cree, McRae, & McNorgan,
1999; Vigliocco et al., 2004), category-specific impairments (e.g., Cree & McRae, 2003),
deterioration of semantic knowledge in progressive semantic dementia (Rogers et al., 2004),
and speech errors and picture–word interference (Vigliocco et al., 2004). In general, feature-
based models of semantic knowledge provide a coherent framework for understanding a very
large set of phenomena (Rogers & McClelland, 2004). Crucially, with feature-based
representations, similarity is defined by feature overlap, thus making the reasons for similarity
explicitly available for analysis.

With respect to exploring neighborhood effects, feature-based measures of SND are potentially
limited because the semantic neighborhood is strongly constrained to the items for which
feature norms have been collected.1 Association-based semantic neighborhoods do not have
this limitation because an associate need not have been normed to be part of the target’s
semantic neighborhood (e.g., type can be an associate of print if a participant produces it,
regardless of whether associates were collected for type; in a feature-based system, type and
print could be neighbors only if feature norms have been collected for both). Co-occurrence-
based semantic neighborhoods are limited by the size of the corpus, but because the corpus is
typically very large (e.g., over 1 billion words), this is a very weak constraint. Thus, feature-
based measures allow a finer-grain analysis of a smaller set of words relative to association-
based and co-occurrence-based measures.

The present work addresses three questions: (a). How well do feature-based, association-based,
and co-occurrence-based measures of SND capture semantic neighborhood effects? (b). Are
SND effects facilitative (as previously demonstrated), inhibitory, or both? (c). Does a simple
attractor model of semantic access capture patterns of neighborhood inhibition and facilitation
consistent with the behavioral data?

In Experiment 1 we tested a large set of words in two word-recognition tasks and evaluated
several measures of SND derived from feature-based, association-based, and co-occurrence-
based semantic representations. The results suggested that, despite their limitations, SND
measures based on feature representations are as good as those based on association norms and
co-occurrence statistics at capturing the effects of semantic neighborhoods. Further, the results
of Experiment 1 suggested a more complex story than simple facilitative or inhibitory effects.
In Experiment 2 we specifically examined the independent effects of near and distant neighbors
on semantic access and found that distant neighbors tend to have facilitative effects on semantic

1Collecting and coding feature norms is a time-consuming task; the 541 item McRae et al. (2005) corpus is the result of a massive
multiyear project and is the largest publicly available feature norm corpus.
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access and near neighbors tend to have inhibitory effects on semantic access. Finally, analyses
of settling rates in a simple attractor model of semantic access (Cree, McNorgan, & McRae,
2006) revealed that distant neighbors have early and transient facilitative effects and near
neighbors have lasting inhibitory effects on settling, consistent with the human data. These
results suggest that neighborhood effects can be understood by considering the specific impact
of neighbors on attractor dynamics.

Experiment 1
The central goal of Experiment 1 was to examine the effects of SND in a relatively global
manner. Specifically, we compared measures of SND derived from feature-based semantic
representations to previously used measures derived from co-occurrence-and association-
based representations. To provide the best basis for examining SND effects, we tested the 532
unique words from McRae et al. (2005) in lexical decision and semantic categorization (living
thing judgment) tasks. In the following sections we first describe the six measures of SND that
we tested and provide simple comparisons of the measures, then we describe the experimental
methods and results, and finally we discuss how the results match and conflict with previous
studies of SND and the implications of these results.

Measures of SND
Measures based on feature norms—The McRae et al. (2005) feature norm corpus
contains 541 concepts (532 unique names) covering a broad range of living and nonliving
concepts used in studies of semantic memory. Thirty participants from McGill University and/
or the University of Western Ontario produced features for each concept. There were 2,526
unique features listed. Thus, each concept can be represented by a 2,526-element binary vector
in which the elements code whether or not each feature was produced for each concept. These
vectors are very sparse, ranging from 6 to 26 features for each concept (M = 13.4, SD = 3.52).

Measures 1–3 comprise our basic set of feature-based measures of SND. The first two measures
are feature-based versions of a discrete number of neighbors measure (like number of
associates) and a graded distance measure (like distance to neighbors in HAL); the third
measure has been previously found to index the tightness of concept clusters (e.g., Cree &
McRae, 2003). We also tested several embellishments of these basic measures (such as word
frequency weighting, feature production frequency weighting, and feature distinctiveness
weighting), but these embellishments did not improve the amount of variance captured by the
measures.

1. Number of Near Neighbors (NumNear) is the number of concepts that have more than
half of the target’s features. The 50% threshold was chosen to balance between lower
thresholds’ tendency to eliminate the distinction between similar concepts and near
neighbors and higher thresholds’ tendency to eliminate all neighbors.2 Note that this
measure is asymmetric: If Concept A is a near neighbor to Concept B, Concept B is
not necessarily a near neighbor of Concept A (i.e., if A has many features and B has
few, and A and B overlap on half of B’s features, the proportion of overlap will be
high for B but lower for A). It is possible that semantic neighborhood relations are in
fact asymmetric, which would be captured by this metric; symmetric similarity would
be captured by another of our measures of SND.

2Because concepts typically have few features, a low threshold will count merely similar items as near neighbors. For example,
cheetah has 13 features; at a threshold of 30% shared features, it has 28 near neighbors—a set that includes most of the mammals in the
corpus, but at a threshold of 50% shared features, the near neighbor set is reduced to just the large predators. In general, as the threshold
increases, the distribution of semantic neighborhood densities collapses towards 0 (i.e., at a sufficiently high threshold all concepts have
no near neighbors).
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2. Mean Cosine (MeanCos) is the mean cosine between target’s feature vector and the
feature vectors for every other item in the corpus. Cosine is a nonlinear measure of
similarity that varies (for binary vectors) from 0 (no shared features) to 1 (identical
feature vectors) and provides a symmetric measure of distance that reflects the
similarity between active features in the target and neighbor.

3. Proportion of significantly correlated feature pairs (Prop-CorrPairs) is the
proportion of feature pairs in the object’s representation that tend to co-occur in the
corpus (i.e., they share at least 6.5% of their variance; see McRae et al., 2005, for
details). Objects with a greater proportion of co-occurring features should have nearer
neighbors because their features tend to come in groups (i.e., they co-occur), and thus
their feature overlap will tend to be greater. These correlations were based on vectors
containing production frequency values (i.e., number of participants [maximum of
30] that produced this feature for this concept) rather than on binary feature vectors,
which were used to compute NumNear and MeanCos. Production frequency feature
vector versions of Num-Near and MeanCos produced virtually identical results, so
the simpler measures are reported here.

Measures based on association norms. The University of South Florida free
association norms (Nelson et al., 2004) contain associates produced for each of 5,019
target words. For each word, an average of 149 participants were asked to write the
first word that came to mind that was meaningfully related or strongly associated to
the presented word. As in previous studies (Balota et al., 2004; Buchanan et al.,
2001; Yates et al., 2003), we defined the set of associates generated for each target
as its semantic neighborhood.

4. Number of Associates (NumAssoc) is the number of associates for each target in the
University of South Florida association norms. Previous studies found that words with
more semantic associates were recognized more quickly (Balota et al., 2004;
Buchanan et al., 2001; Yates et al., 2003). Because 125 of the McRae et al. (2005)
items were missing from the University of South Florida association corpus, we
excluded them from these analyses. Excluding these items from all analyses did not
change the pattern of results, so we included all the McRae et al. items for all other
analyses.

Measures based on co-occurrences. Recently, Rohde et al. (2004) proposed a
semantic representation called the Correlated Occurrence Analogue to Lexical
Semantic (COALS) that is similar to HAL (Lund & Burgess, 1996) in that it is also
based on co-occurrence statistics from a very large corpus (1.2 billion word tokens
representing 2.1 million word types taken from Usenet). COALS differs from HAL
primarily in implementing a normalization technique to reduce the impact of high
frequency closed class and function words and in ignoring negative correlation values
when computing representation vectors (on the intuition that a target word’s meaning
is not informed by words that occur in very different contexts). COALS provides a
better fit to behavioral word-pair similarity ratings and multiple-choice vocabulary
tests (see Rohde et al., 2004), so we used COALS rather than HAL. We calculated
semantic distance based on 500-element vectors (Rohde et al. used singular value
decomposition to reduce the dimensionality of the vectors) using the Rohde et al.
method: square root of the correlation between semantic vectors.3

5. Mean Distance Within Set (COALS) is the mean semantic distance to nearest 10
neighbors (cf. Buchanan et al., 2001) within the McRae et al. (2005) item set. A

3Correlation and cosine vector distance measures are equivalent, though the square root makes this distance measure different from the
one used to compute MeanCos.
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measure based on mean distance to all items in the McRae et al. set produced the same
results, so we report the statistic most similar to the one used by Buchanan et al., who
found that words with closer near neighbors (i.e., denser semantic neighborhoods)
were recognized more quickly. One item (dunebuggy) was missing from the COALS
corpus and was excluded from these analyses.

6. Mean Distance Among All Items (COALS_all) is the mean distance to nearest 10
neighbors within the 100,000 most common words in the COALS corpus.

Initial comparisons of SND measures—Before testing the SND measures, we explored
two related questions about the measures themselves. (a). Were the neighbors identified by the
different measures the same or different? (b). Was there evidence that the limited size of the
feature-norm corpus limits semantic neighborhoods? Table 1 shows partial correlations among
measures of SND after controlling for word frequency (HAL [Lund & Burgess, 1996]
frequency norms, which Balota et al., 2004, found to be the best word frequency predictor of
word recognition in young adults), length (in letters, phonemes, and syllables), bigram
frequency, Coltheart’s N (Coltheart, Davelaar, Jonasson, & Besner, 1977), and number of
features. Computing partial correlations removes correlations among SND measures caused
by control variables (e.g., two SND measures might be correlated because they are both
correlated with word frequency) and allows the similarity between semantic neighborhood
measures qua semantic neighborhoods to emerge. Not surprisingly, SND measures tend to
cluster with measures based on the same underlying representations. One interesting deviation
from this pattern is the strong negative correlation between MeanCos and PropCorrPairs,
though both are positively correlated with NumNear. We examined more closely the
neighborhoods formed by the different measures, separately for distance-based measures
(MeanCos and COALS) and number-based measures (NumNear and NumAssoc).

Semantic neighborhoods defined by COALS_all were very different from semantic
neighborhoods defined by MeanCos: These measures shared on average less than 1 of the 10
nearest neighbors. Semantic distance increased more rapidly across the nearest neighbors for
MeanCos than for COALS_all. That is, according to the COALS_all measure, the second
nearest neighbor was about 8.5% less similar to the target than the nearest neighbor; this
decrease was 16% for MeanCos. For the 10th nearest neighbor (the farthest item included in
the COALS_all neighborhood), this decrease was still only 25% for COALS_all but was 44%
for MeanCos. For example, for sheep, the 10 nearest neighbors according to MeanCos are (with
semantic distance in parentheses) as follows: lamb (0.60), cow (0.47), goat (0.44), skunk (0.32),
squirrel (0.31), fawn (0.30), donkey (0.29), otter (0.29), moose (0.28), and pig (0.28); according
the COALS_all the 10 nearest neighbors are as follows: bleating (0.78), goats (0.75), cows
(0.71), cattle (0.71), herds (0.65), herders (0.64), oxen (0.61), goat (0.60), herd (0.59), and
ruminants (0.59). As this example demonstrates, the faster drop-off in similarity for feature-
based measures could be due simply to neighbors that are missing from the feature norm corpus
(e.g., about half of the COALS_all neighbors for sheep are not in the feature norm corpus);
nonetheless, it demonstrates that feature-based representations are much more sensitive to
differences in semantic similarity than co-occurrence-based measures. The very high positive
correlation between COALS and COALS_all (r = .6) suggests that this is not merely an effect
of the constraints of the McRae et al. (2005) corpus: When a COALS-based SND measure is
computed from just the McRae et al. results, it produces nearly the same result as one computed
based on the 100,000 most frequent words. Rather, it seems that feature-based representations
are intrinsically more sensitive to semantic distance (we discuss possible reasons below).

The number of near neighbors (NumNear: M = 0.9, SD = 2.3) was consistently smaller than
the number of associates (NumAssoc: M = 13.5, SD = 5.0). Only 8 of the items had more near
neighbors than associates, and 273 items had 0 near neighbors (this large proportion of concepts
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with 0 “near neighbors” severely limits the variability of this measure and puts it at a predictive
disadvantage; however, as described below, this measure reveals an interesting and unique
effect of near neighbors, thus validating the use of the relatively strict criterion). Of the 143
items that had both near neighbors and associates, for 43% (62 items) the near neighbors formed
a subset of associates, for 27% (39 items) the near neighbors and associates were
nonoverlapping sets, and for the remaining 30% (42 items) the neighbor–associate overlap
ranged from 10% to 50%. In sum, it seems that for some items, feature-based semantic
neighborhoods are very similar to associate-based semantic neighborhoods, but for other items
the two semantic representations yield very different semantic neighborhoods. As with the
distance-based measures, the smaller number of feature-based neighbors than associates could
be due to neighbors that are missing from the feature-norm corpus and/or to feature-based
measures’ greater sensitivity to semantic similarity.

In addition to corpus size, feature norms also differ in terms of the corpus contents. The McRae
et al. (2005) feature norm database contains only basic-level concepts, such as “dog” and
“chair”; thus the potential neighborhood is limited to other basic-level concepts, such as “cat”
and “table,” respectively. In contrast, association norms and co-occurrence measures can, and
do, produce neighborhoods that include parts (e.g., “legs” for table), features (e.g., “green” for
grass), and categories (e.g., “pet” for cat) as neighbors. If semantic representations are
structured such that basic-level terms have substantially different representations than features,
parts, and so forth, then these different concepts would be distant neighbors, not near neighbors.
This is another way in which feature-based representations may allow a distinction between
near and distant neighbors that is obscured or missing from association-based and co-
occurrence-based semantic representations.

These analyses comprise a preliminary comparison of the semantic neighborhoods defined by
different representations of lexical semantics. They show that association-based, co-
occurrence-based, and feature-based representations produce quite different semantic
neighborhoods and that the limitations of feature-norm corpora may underestimate semantic
neighborhood size and may reflect greater sensitivity to semantic similarity. Experiment 1 was
designed in part to test whether the corpus size limitation undermines the ability of feature-
based representations to capture SND effects.

Method
Participants—All participants were native English speakers and had normal or corrected-
to-normal vision. The semantic categorization task was completed by 17 participants, and the
lexical decision task was completed by 44 participants (22 participants randomly assigned to
each half of the words). All participants were undergraduate students at the University of
Connecticut who received course credit for participating.

Stimuli—The critical stimuli were the 532 unique orthographic forms in the McRae et al.
(2005) feature norm database. These items were chosen to present the strongest test of feature-
based representations. For the lexical decision test, 532 pronounceable nonwords were created
that were matched in length to the words, and the items were divided into two lists of 532 items
each (266 words, 266 nonwords) to keep the overall number of trials per participant equal for
the two tasks and avoid fatigue effects.

Procedure—Stimuli were presented visually in 18-point black Courier font on a white
computer screen background using E-Prime software (Psychology Software Tools, Inc.,
Pittsburgh, PA). We used a 17 in. (43.18 cm) cathode ray tube monitor with a refresh rate of
100 Hz and a resolution set to 800 × 600 pixels. Each trial began with a central fixation cross
on screen for 1 s, then the stimulus was presented centered horizontally and vertically and
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remained on screen until the participant responded (or until 5 s had elapsed). Each participant
completed either the lexical decision version of the experiment or the semantic categorization
version. These tasks were chosen to examine basic word-recognition accuracy and latency in
one task that requires semantic access (semantic categorization) and one task that, in principle,
does not (lexical decision). The experiment was completed in one session lasting approximately
20 min. Before beginning the critical block, participants completed a 20-trial practice session.
In the lexical decision task, participants were asked to indicate whether each item was a word;
in the semantic categorization task, the participants were asked to indicate whether each word
referred to a living thing or a nonliving thing.

Results
None of the participants correctly identified budgie as a living thing, and only 13% correctly
identified it as a word,4 so this item was excluded from analyses. In addition, trials on which
reaction time (RT) was more than two standard deviations away from the overall mean were
excluded from analyses (3.6% of lexical decision trials and 3.9% of semantic categorization
trials). Overall accuracy was high in both tasks (lexical decision, 95.1% correct; semantic
categorization, 94.0% correct), and mean RTs were 655 ms for lexical decision and 763 ms
for semantic categorization. In the lexical decision task all critical items received “yes”
responses, but in the semantic categorization task critical items included both “yes” (living)
and “no” (non-living) responses; however, there was no difference in RT between “yes” (living)
and “no” (nonliving) responses, Mliving = 761 ms, SDliving = 140 ms; Mnonliving= 764 ms,
SDnonliving = 112 ms; t(530) = 0.3, p = .76; thus, the two types of items were combined in
semantic categorization analyses (separate analyses are reported in Appendix A). Only trials
on which a correct response was provided were included in the RT analyses.

The left section of Table 2 shows independent correlations between error rate and mean RT
and control variables5 (top section) and measures of SND (bottom section). Not surprisingly,
word frequency and length had strong correlations with both error rate and RT, particularly for
the lexical decision task. Number of features (words with more features tend to be recognized
more quickly, presumably because they have more robust semantic representations; see
Pexman, Holyk, & Monfils, 2003) was also strongly correlated with error rate and RT in both
tasks.

When the effects of word frequency, length, and number of features were partialled out,
orthographic neighborhood (Coltheart’s N) no longer had significant correlations with error
rate or RT for either task, and orthographic familiarity (bigram frequency) was significantly
correlated only with lexical decision RT. Measures of SND also had significant correlations
in one or both tasks (Table 3). This finding suggests that when the effects of word frequency
and length are controlled, semantic neighborhoods play at least as large a role in visual word
processing as orthographic neighborhoods do, and semantic neighborhoods are especially
important when the task explicitly requires semantic access (semantic categorization relative
to lexical decision). This conclusion must be tempered by the unique composition of our
stimulus set, though weak or nonsignificant effects of orthographic neighborhood were also
found in experiments testing a very large set of words (Balota et al., 2004).

4Budgie is a nickname for budgerigar, a small parrot that is a popular pet in Canada, where the feature norms were collected, but apparently
unknown to University of Connecticut undergraduates.
5Two other control variables were examined: age of acquisition (AoA) and semantic congruency of orthographic neighbors (Pecher,
Zeelenberg, & Wagenmakers, 2005; Rodd, 2004). Semantic congruency had no significant correlation with any dependent measures after
word frequency was controlled, so it is omitted from analyses reported here. AoA captured unique variance, but it did not affect the
variance captured by measures of SND. AoA measures (Gilhooly & Logie, 1980; Stadthagen-Gonzalez & Davis, 2006) are available for
less than half of the McRae et al. (2005) words, thus including AoA as a control variable in the analyses would undermine the effort to
provide a large-scale examination of SND effects. Because including AoA as a control variable did not affect the amount of variance
captured by measures of SND, those analyses are not reported here.
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The bottom right section of Table 2 shows partial correlations (controlled for word frequency,
number of letters, number of phonemes, number of syllables, bigram frequency, orthographic
neighborhood, and number of features) between error rate and RT and the measures of SND
(analogous semipartial correlation results were virtually identical to partial correlation results).
For the lexical decision task, NumAssoc and NumNear had marginal partial correlations with
accuracy, and NumNear and COALS had reliable correlations with RT. The COALS
correlation was negative, indicating faster word recognition in denser semantic neighborhoods,
which is consistent with previous findings (Balota et al., 2004;Buchanan et al., 2001;Siakaluk
et al., 2003;Yates et al., 2003). In contrast, the NumNear correlation was positive, indicating
slower RT in denser semantic neighborhoods, a result that has not been found previously. For
the semantic categorization task, MeanCos and COALS_all were significantly correlated with
RT. COALS-based measures of SND, NumAssoc, NumNear, and PropCorrPairs were
significantly correlated with semantic categorization error rate.

Discussion
Experiment 1 examined whether feature-based measures of SND can capture the effects of
semantic neighborhoods and whether these effects are facilitative (as previously demonstrated)
or inhibitory. Feature-based measures of SND captured as much RT variance in both lexical
decision and semantic categorization tasks as association-based and co-occurrence-based SND
measures did. Note also that in the case of ambiguous words (e.g., homophones) feature norms
were collected on disambiguated words (e.g., bat—baseball), but association norms and co-
occurrence measures do not make this distinction, just as the tasks used in this experiment did
not disambiguate the stimulus words. Feature-based SND measures predicted unique variance
in lexical decision and semantic categorization data despite this disadvantage and the
limitations of the corpus. In general, the results indicate that feature-based measures of SND
are at least as good as previously used association-based and co-occurrence-based measures
of SND.

In general, SND effects emerged more clearly in RT than in accuracy measures, which is
consistent with the high accuracy and consequently low error rate variability in both tasks.
There was more variability in accuracy for semantic categorization than for lexical decision,
though this variability was largely due to ambiguous items, such as foods. That is, many foods
are ambiguous with respect to their status as a living thing (e.g., corn, potato), although even
relatively unambiguously not-alive foods (e.g., pickle, raisin, bread) and some nonliving but
highly living-related concepts (e.g., beehive, shell are natural kinds that house living things)
also had low semantic categorization accuracy scores. These low semantic categorization
accuracy items did not have systematic SND biases (the low-accuracy item set SND was less
than 0.5 standard deviations from the overall mean SND according to all SND measures), but
these task effects call for caution in interpreting our semantic categorization results. However,
the qualitative similarity between semantic categorization and lexical decision results (e.g.,
significant partial correlations were all in the same direction for each measure) suggests that
the semantic categorization results are not due to possible “living thing” task artifacts.

Our results replicate and extend previous studies of semantic neighborhood effects. Two of
our SND measures (COALS and MeanCos) replicate previous findings of facilitative SND
effects (Balota et al., 2004; Buchanan et al., 2001; Siakaluk et al., 2003; Yates et al., 2003).
The COALS semantic representations are based on the same principles as HAL (which has
previously been used to show facilitative SND effects), so this replication indicates that
peculiarities of the items, tasks, or participants we tested cannot account for differences
between our findings and previous studies. Specifically, the inhibitory effects of SND as
measured by NumNear and COALS_all must be due to what those measures index, that is,
differences with regard to which aspects of semantic neighborhoods are captured by the
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different measures. The inhibitory/facilitative difference also cannot be due strictly to
underlying semantic representations because the feature-based MeanCos measure showed
facilitative effects, unlike NumNear (COALS and COALS_all show a similar reversal). One
possible explanation for this reversal is that the NumNear measure captures a different aspect
of semantic neighborhood structure than is captured by MeanCos.

One way that measures of neighborhood density may differ is in the impact of near neighbors
versus distant neighbors. Semantic similarity distributions generally exhibit power law
distributions, that is, concepts tend to have a few very near neighbors and many distant
neighbors. One way to examine whether near or distant neighbors are the primary contributors
to a particular measure of SND is to examine correlations between the measure of SND and
number of neighbors according to the most liberal definition of semantic neighbor possible:
items sharing at least one semantic feature. Because of the overwhelming number of distant
neighbors, this liberal “number of neighbors” (different from NumNear, which is number of
near neighbors) measure primarily reflects the number of distant neighbors. There was a strong
positive correlation between number of neighbors and MeanCos (r = .88, p < .001), suggesting
that the latter primarily reflects the number of distant neighbors. Because MeanCos is computed
over the entire corpus, a concept with many additional (say, 100 more) distant neighbors (which
will have low but nonzero cosine distances) will have a higher neighborhood density than a
concept with a few additional near neighbors (which would have cosine distances of say, .75).

In contrast, a threshold-based measure such as number of near neighbors (NumNear) is not
influenced by distant neighbors (the correlation with number of concepts sharing at least one
feature was not significant, r = .003, p = .95); by definition, NumNear is most sensitive to the
near neighbor structure. In sum, these analyses suggest that MeanCos and NumNear capture
different aspects of semantic neighborhoods; specifically, NumNear reflects near neighbors,
and MeanCos reflects distant neighbors. We found facilitative effects of MeanCos and
inhibitory effects of NumNear, suggesting that near neighbors inhibit processing and distant
neighbors facilitate processing.

For the COALS-based measures the near–distant distinction may also explain the paradoxical
pattern of results. Co-occurrence vectors are defined over a very large corpus, and the McRae
et al. (2005) corpus reflects only a very small sample of that space. Thus, it is possible that
because the COALS measure was restricted to just the 10 nearest neighbors within the McRae
et al. corpus, it captured the effect of relatively distant neighbors (in co-occurrence vector
space), but the COALS_all measure captured the distance to the 10 nearest neighbors in the
entire co-occurrence vector space and was thus more sensitive to near neighbors.

One way to test the hypothesis that near and distant neighbors have opposite effects is to
examine correlations between semantic categorization and lexical decision RT data and number
of near and distant neighbors. This type of analysis requires a continuous measure of similarity,
so we used cosine distance between feature vectors. Defining “near” and “distant” neighbors
requires a threshold, such that near neighbors would be those with cosine greater than the
threshold, and distant neighbors would be those with cosine lower than the threshold but greater
than zero (i.e., sharing some, but not many, features). We tested the correlations between RT
in the two tasks, and near and distant neighborhood size was defined by three thresholds (.25, .
5, and .75). Figure 1 shows that the results were consistent with an inhibitory effect of near
neighbors (positive correlations) and a facilitative effect of distant neighbors (negative
correlations, statistically reliable only in the semantic categorization task). We designed
Experiment 2 to test the hypothesis suggested by these correlational results using a matched
experimental manipulation of near and distant neighborhood size and a semantic task that
avoids the pitfalls of living thing judgments.
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Experiment 2
This experiment was designed to test the hypothesis that near semantic neighbors have an
inhibitory effect and distant semantic neighbors have a facilitative effect on visual word
processing. To test this hypothesis, we selected four sets of items and independently
manipulated the number of near and distant neighbors while matching the items on all other
criteria.

Method
Procedure—Experiment 1 results suggested that SND effects would emerge more strongly
in a semantic task than in a lexical decision task but that items such as foods are ambiguous
with respect to their status as a living thing. To avoid this problem while still using a semantic
task, we used a concreteness judgment task in Experiment 2 (participants were instructed to
indicate whether or not it was possible to touch the thing named on the screen). This task is
less susceptible to ambiguity than the living thing task and all of the critical words referred to
concrete things (see Table 4 for mean concreteness values for each condition; these values are
on a 100–700 scale taken from the MRC Psycholinguistic Database; Wilson, 1988). In addition,
there is some evidence that the use of a broad category makes for a more difficult semantic
decision, thus encouraging more semantic processing and allowing semantic effects to emerge
more clearly (Hino, Pexman, & Lupker, 2006). Consistent with this claim, in Experiment 1 we
found stronger SND effects in the living thing judgment task relative to the lexical decision
task, though the convergent results in the two tasks suggest that semantic neighborhood effects
are relatively robust across tasks. The experiment began with 30 practice trials (with feedback;
15 concrete, 15 abstract trials) to familiarize participants with this task. Stimulus presentation
details were the same as Experiment 1.

Materials—Twenty-five critical items were selected for each of four conditions: 2 (Many or
Few Near Neighbors) × 2 (Many or Few Distant Neighbors). Near neighbors were defined as
having cosine greater than 0.5, distant neighbors were defined as having cosine less than .25
and greater than 0.0. For near neighbors, “many” was defined as at least 2, and “few” was
defined as 0 or 1; for distant neighbors, “many” was defined as more than 200, and “few” was
defined as less than 150. These thresholds were chosen because they divided the corpus of
words into four relatively equal groups with very different neighborhood properties, and each
of the groups was big enough to allow selection of a subset for matching on various control
variables. This manipulation produced items with different near and distant neighborhood sizes
as measured by cosine distance but equivalent semantic neighborhoods as measured by number
of associates and mean COALS semantic density (see Table 4). In addition, conditions were
matched on word frequency, familiarity, AoA (AoA data [Gilhooly & Logie, 1980;Stadthagen-
Gonzalez & Davis, 2006] were available for only 30% of the words), length (in terms of letters,
phonemes, and syllables), orthographic neighborhood (Coltheart’s N), number of semantically
congruent orthographic neighbors, and number of semantic features, with approximately equal
numbers of creatures, fruits and vegetables, and nonliving things in each condition. Control
variables (including number of associates and COALS SND) did not differ reliably between
conditions either in terms of analysis of variance main effects or interactions or in terms of
pairwise comparisons. Condition means for critical and control variables are in Table 4, and
the 25 words in each critical condition are in Appendix B. To balance the critical “yes” trials,
we chose 100 filler words (“no” trials) from the MRC Psycholinguistic Database (Wilson,
1988) based on low (less than 400, values range from 100 to 700) concreteness and imageability
scores (Mconcreteness = 295; Mimageability = 346) and matched to the critical words on length
and frequency.
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Participants—Twenty-two undergraduate students at the University of Connecticut
completed the experiment for course credit. All participants were native speakers of English
and had normal or corrected-to-normal vision.

Results
The word level (few near, few distant neighbors) was judged by all participants not to be
concrete, so it was excluded from analyses.6 Accuracy was high, and there were no significant
effects of number of near and distant neighbors (means and standard errors are in Table 5; all
ps > .25). Only trials on which a correct response was provided were included in the RT
analyses. In addition, trials on which RT was more than two standard deviations away from
the overall mean were excluded from analyses (4.1% of trials).

Figure 2 shows the RT results for the four critical conditions. As predicted, words with many
near neighbors were categorized more slowly than words with few near neighbors (24 ms),
F1(1, 21) = 17.3, p < .001, partial η2 = 0.45; F2(1, 95) = 4.6, p < .05, partial η2 = 0.05, and
words with many distant neighbors were categorized more quickly than words with few distant
neighbors (11 ms), F1(1, 21) = 5.2, p < .05, partial η2 = 0.20; F2 < 1. There was no significant
interaction between number of near and number of distant neighbors (F1 < 1; F2 < 1). The
condition effects are within-subjects but between-items, and thus the items analyses have less
power. We found no apparent outlier items (item means are in Appendix B), suggesting that
the subjects effects (F1) were not driven by a few outlier items and that the weaker effects by
items (F2) were indeed due to differences in statistical power.

Discussion
As in Experiment 1, our results replicate previous findings of facilitative effects of SND and
provide new data casting those findings as part of a more complex pattern of SND effects. Our
results suggest that previous findings of facilitative SND effects were primarily driven by
distant neighbors. The fine grain of feature-based semantic representations revealed a novel
finding: Near neighbors exert inhibitory effects on semantic access.

Traditional views of neighborhood density effects cannot account for these results because
these results do not simply reflect competition (inhibitory effects) or familiarity (facilitative
effects). Rather, the results reveal a complex interplay of neighbor distance and number such
that inhibitory and facilitative effects occur simultaneously. We interpret these results in terms
of an attractor model of semantic processing. The results suggest that distant neighbors create
a gradient or gravitational force for faster settling into attractor basins, and near neighbors
create conflicting subbasins and increase the likelihood of hitting a saddle point, which slows
the completion of the settling process. In the following section we analyze an attractor-based
computational model to test whether inhibitory effects of near neighbors and facilitative effects
of distant neighbors could indeed be due to attractor dynamics.

Analysis of a Computational Model
To test the hypothesis that the inhibitory effects of near neighbors and the facilitative effects
of distant neighbors could be due to attractor dynamics, we examined the settling patterns in

6In the McRae et al. (2005) feature norm collection study, all target items were concrete objects, which would encourage participants to
list features for the concrete meaning of level. In the context of our concreteness judgment task, the abstract meaning, which is perhaps
more common for college students, was activated. Because all participants responded that level was not concrete, including it in the
analyses would merely distort the accuracy data, it would have no effect on the RT data because only correct response RTs are included.
We also note that the conditions are equally well-matched on control variables (frequency, length, etc.) if level is removed from the list.
Level was included in model analyses because this ambiguity does not affect model performance, though excluding it had no qualitative
effect on model behavior.
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an attractor model of semantic access (settling patterns were from the model reported by
O’Connor, McRae, & Cree, 2006; see Cree et al., 2006, for model architecture and training
details). O’Connor et al. (2006) trained the model to activate the appropriate semantic features
for each of the 541 basic level concepts in the McRae et al. (2005) norms and for 20
superordinate category names (see O’Connor et al., 2006, for details). The input layer
represented arbitrary “orthographic” input patterns (3 random units turned on among the 30
input units) and was fully connected to a semantic layer. The semantic layer consisted of one
unit for each semantic feature, and each of the semantic units was connected to all other
semantic units (with no self-connections). To compute a word’s meaning, its word form was
presented at the input layer, and activation propagated to the semantic layer for 20 ticks. To
put the network in a neutral starting state that is generally consistent with most units being
turned off (on average only 0.5% of feature units should be active), before a word form was
presented, semantic unit activations were set to a random value between 0.15 and 0.25. At each
tick, error was computed using the cross-entropy measure.

We tested the effect of near and distant neighbors on settling by examining the correlations
between number of near and distant neighbors and cross-entropy error (CEE) at each tick.
Model settling corresponds to decreasing error, thus, at every tick a positive correlation with
neighborhood indicates that the neighbors are having an inhibitory effect (i.e., having more
neighbors is associated with higher error), and a negative correlation indicates a facilitative
effect of neighborhood (i.e., having more neighbors is associated with lower error). We
computed correlations between normalized CEE7 and number of distant and near neighbors
across all 541 concepts (similar to the analysis of Experiment 1 data, see Figure 1) at each tick.
As for the behavioral data in Experiment 1, we used three definitions of “near” and “distant”
neighbors based on cosine similarity thresholds. Near neighbors were defined as having
minimum cosine thresholds .25, .5, or .75; distant neighbors were defined as having nonzero
cosine less than .25, .5, or .75.

The results (Figure 3) showed a strong positive correlation with number of near neighbors that
tends to increase over processing, consistent with an inhibitory effect of near neighbors (more
near neighbors was associated with higher CEE). The correlation with distant neighbors was
generally around 0 and not reliable, except for a clear dip to the negative side around tick 10
(reliable only with the stricter .25 maximum cosine threshold, which was used in Experiment
2). This dip is consistent with a transient facilitative effect of distant neighbors (more distant
neighbors was associated with lower CEE) at an intermediate point in processing.

As a second test of the model, we examined model RTs for the words tested in Experiment 2.
For behavioral tests it was critical to match the words on a variety of control variables such as
word frequency, length, and so forth. However, this basic model is not sensitive to those
properties, so we also tested the full set of words divided into the four design cells according
to the thresholds used in Experiment 2 to define near versus distant neighbors and many versus
few neighbors. The four sets of items were matched on the two factors that would impact model
performance: number of features and concept familiarity. This approach produced 39 words
with many near and many distant neighbors, 60 words with many near and few distant
neighbors, 60 words with few near and many distant neighbors, and 92 words with few near
and few distant neighbors, thus increasing the critical item set from 100 words to 251 words.
Because the model analyses are restricted to the weaker by-items analysis (in Experiment 2
by-subjects analyses were stronger than by-items analyses), this increase in number of items
is an important increase in power.

7Normalization (dividing raw CEE by the maximum CEE for each item) removes the effects of model starting state. Conceptually,
normalized CEE corresponds to proportion of the distance from the target state (activation of all and only the correct features) to the
starting state of the model.
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We assume that behavioral response probability is some monotonic function of cognitive states
related to cross-entropy error, that is, that participants respond when they have come
sufficiently close in semantic space to the representation of the presented word. This was
operationalized by setting a CEE response threshold and computing the number of ticks
required for the model to come within the threshold normalized CEE level (this approach is
typical for measuring RTs in attractor models [e.g., Cree et al., 1999], and more dynamic
measures, such as minimum CEE reached and number of ticks required to reach minimum
CEE, produced exactly the same pattern of results). We set the threshold at 0.2, but the model
behavior is quite orderly, and a relatively large range of thresholds would produce the same
qualitative pattern. The results for the Experiment 2 items are shown in the left panel of Figure
4 and the results for the full set of words are shown in the right panel of Figure 4. The model
was consistent with the behavioral data: The model responded faster to words with fewer near
neighbors (triangles lower than squares), Experiment 2 set, F(1, 96) = 2.3, p = .13; full set, F
(1, 247) = 25.8, p < .001, partial η2 = 0.094; and to words with more distant neighbors (lines
angle up from left to right), Experiment 2 set, F(1, 96) = 1.9, p = .17; full set, F(1, 247) = 4.1,
p < .05, partial η2 = 0.016. There was no interaction (both Fs < 1) between number of near and
distant neighbors in the model data.

In sum, the model results demonstrate that an attractor model exhibits the contrasting inhibitory
effect of near neighbors and facilitative effect of distant neighbors. These results suggest that
the effect of neighbors on processing depends on their specific influence on an attractor surface
that must be traversed in order to reach the target attractor, providing further support to
attractor-based models as a promising approach to understanding semantic processing.

General Discussion
In Experiment 1 we found that feature-based SND measures capture unique variance (i.e.,
beyond seven control factors such as word frequency and length) in lexical decision and
semantic categorization accuracy and latency. Despite the comparatively limited corpus for
which feature norms are available, our feature-based measures performed as well as measures
based on association norms and co-occurrence statistics did. Although each of the three
approaches to semantic representation has strengths and weaknesses, feature-based
representations provide a set of primitives, namely semantic microfeatures, for further
exploration of the structure of semantic knowledge and the most transparent (albeit limited)
theoretical link to the basis of semantic similarity.

The results of Experiment 1 showed an intriguing partial conflict with previous studies of SND:
Some measures captured a facilitative effect of SND, consistent with previous results, but other
measures captured an inhibitory effect of SND. Post-hoc correlational analyses suggested
inhibitory effects of near neighbors and facilitative effects of distant neighbors. We tested this
hypothesis directly in Experiment 2, in which near and distant neighborhood sizes were
manipulated independently. The results of Experiment 2 confirmed that near neighbors tend
to slow word processing and distant neighbors tend to speed word processing. We proposed
that this complex pattern arises due to the consequences of near and distant neighbors on
attractor dynamics: Distant neighbors create a gradient that facilitates settling to the correct
attractor, and near neighbors are competitor attractors that delay word recognition.

As a test of this proposal, we analyzed the settling patterns of a simple attractor model of
semantics trained on the 541 concept feature norm corpus. The results showed a relatively early
transient facilitative effect of distant neighbors and a persistent and increasing inhibitory effect
of near neighbors. This is precisely the pattern that would be predicted from the general attractor
dynamics perspective that we proposed. Independent manipulation of near and distant
neighborhood size revealed that the model does exhibit the inhibitory effect of near neighbors
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and the facilitative effect of distant neighbors. These results suggest that attractor dynamics
are a promising approach to understanding how neighborhood structure impacts word
recognition because they capture the opposite effects of near and distant neighbors.

The opposite effects of near and distant neighbors mirror the opposing forces of familiarity
facilitation and competitor inhibition and should apply to phonological and orthographic
processing in addition to semantic processing. In speech perception researchers have also found
both types of effects (Luce & Large, 2001), but they have attributed them to different processes
or levels (Vitevitch & Luce 1999; see also Lipinski & Gupta, 2005). Specifically, Vitevitch
and Luce (1999; also Luce & Large, 2001) argued that the inhibitory lexical neighborhood
effects are due to competition at the lexical level and the facilitative phonotactic effects are
due to sublexical benefits of familiarity. Both lexical neighborhood density and phonotactic
probability capture aspects of phonological neighborhood density, but the measures are slightly
different (though highly correlated) and seem to capture opposite effects, much like our
different SND measures. Our analyses of semantic neighborhood effects suggest that both
facilitative and inhibitory effects may arise from the same level depending on how distant and
near neighbors impact attractor structure. Based on these results, we hypothesize that
phonotactic probability measures may be capturing a facilitative influence of distant
phonological neighbors, and lexical neighborhood density may be capturing an inhibitory
influence of near phonological neighbors.

Orthographic neighborhood effects are generally thought to be facilitative (e.g., Sears et al.,
1995), but there is at least one example of inhibitory orthographic neighbor effects: inhibition
due to transposed-letter neighbors (e.g., Andrews, 1996). Words such as salt, which have a
transposed-letter neighbor (slat) are processed more slowly than carefully matched words
(sand). The standard definition of an orthographic neighbor is a word that differs from the
target word by a single letter (e.g., Sears et al., 1995). The contrasting effects of transposed-
letter neighbors and replaced-letter neighbors are consistent with the near/distant neighbor
distinction under the hypothesis that transposed-letter neighbors (e.g., salt—slat) are nearer in
orthographic representational space than replaced-letter neighbors (e.g., salt—sale). Future
research will test this hypothesis directly.

The feature norm corpus used in the present experiments contained only concrete basic-level
concepts, but the feature-based approach to semantic representation is not limited to just these
types of words. For example, Vigliocco et al. (2004) developed a single feature-based semantic
representational space for objects and actions, including both action verbs (e.g., to scream) and
action nouns (e.g., the trade). Their key assumption was that the semantic representations of
even relatively abstract words are grounded in our interactions with the environment and in
partly modality-specific representations (see also Barsalou, 1999, for a comprehensive theory
of grounding semantic knowledge in perceptual processes). Abstraction is correlated with a
variety of semantic factors that affect neighborhood structure (e.g., number of features [Pexman
et al., 2003], hierarchical structure [e.g., Breedin, Saffran, & Schwartz, 1998], and cross-
correlation of feature pairs). These factors suggest that abstract concept representations are
more sparsely distributed in semantic space, suggesting that facilitative distant neighbor effects
should dominate. However, it is possible that because abstract concepts have vaguer
representations (fewer features, possibly broader attractors), there is more potential for near
neighbor interactions. Behavioral and computational tests are required to adjudicate between
these conflicting hypotheses.

In sum, our results support two related points. First, among the different theories of semantic
processing, those that can be cast as nonlinear dynamical systems characterized by attractor
dynamics will be best able to capture the effects of neighborhood density, particularly the
opposite effects of near and distant neighbors. In attractor models such as the one we analyzed
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(Cree et al., 2006; O’Connor et al., 2006), these effects emerge naturally in the course of the
settling process. It may also be possible to build the opposite effects of near and distant
neighbors into models that do not have intrinsic nonlinear dynamic attractor properties (e.g.,
semantic networks based on association norms or categorical hierarchies), though we see this
approach as ad-hoc and less parsimonious. Our results suggest that inhibitory effects of near
neighbors and facilitative effects of distant neighbors are a property of attractor dynamics and
would emerge in attractor-based models regardless of the underlying representation. Thus, we
do not rule out association norms (or other semantic representations) as possible
characterizations of semantic knowledge; rather we argue that these representations must be
recast in attractor-dynamic terms in order to account for the present data. Second, traditional
formulations of neighborhood effects—be they phonological, orthographic, or semantic—must
be reconsidered in terms of nonlinear dynamic attractors, which allow both inhibitory and
facilitative neighborhood effects to emerge without assigning them to different levels of
processing.
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Appendix A

Supplemental Analyses of Experiment 1 Data
To examine differences in semantic neighborhood density (SND) effects for living and
nonliving things, which received “yes” and “no” responses, respectively, in the semantic
categorization, we computed separate partial correlations for living (199 concepts) and
nonliving (332 concepts) things (see Table A1). The pattern of results closely corresponds to
the overall data (see Table 2), but SND effects are much stronger for living things than for
nonliving things (note also that statistical power is reduced by choosing smaller subsets of
items; thus, some correlations that were reliable in the overall analysis are not reliable here).
The difference in SND effects between living and nonliving things is generally not due to
differences in SND variability—the standard deviation for each SND measure is very similar
(±30%) for living and nonliving things (the one exception is NumNear [number of near
neighbors], for which the standard deviation is more than five times greater for nonliving things
than for living things). Critically, the opposing pattern of facilitative SND effects based on
some measures (MeanCos [mean cosine] and COALS [Correlated Occurrence Analogue to
Lexical Semantic, mean distance within set]) and inhibitory SND effects based on other
measures (NumNear and COALS_all [mean distance among all items]) emerges here as well,
although these effects appear to be largely driven by the living things.

Appendix B
Critical Words and Mean Reaction Times for Experiment 2

Many near neighbors Few near neighbors

Many distant neighbors Few distant neighbors Many distant neighbors Few distant neighbors

buffalo 599 guppy 872 rooster 655 hyena 796
chicken 530 squid 632 calf 655 coyote 655
fox 566 otter 688 pony 707 chimp 691
goose 630 owl 636 raccoon 615 dolphin 566
gopher 716 beaver 697 cow 621 cat 566
minnow 781 hawk 602 turkey 596 crown 645
moose 668 swan 632 rabbit 595 tripod 791
parakeet 737 dove 702 worm 676 saddle 695
pelican 642 cod 712 spider 566 axe 704
couch 644 church 739 rocket 675 raft 737
boat 668 bottle 618 cannon 684 level NA
dagger 712 mittens 710 cigar 655 gown 781
gun 629 shawl 829 barrel 676 guitar 625
jet 636 jacket 657 barn 609 helmet 636
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Many near neighbors Few near neighbors

Many distant neighbors Few distant neighbors Many distant neighbors Few distant neighbors

peg 747 shovel 705 cage 678 rope 666
pistol 603 sweater 635 tractor 689 basket 614
revolver 801 blender 751 sled 718 brick 593
sword 647 shoes 652 bridge 678 candle 678
tongs 734 coat 614 box 585 skirt 633
fridge 804 van 734 desk 660 closet 706
bucket 644 broccoli 641 olive 663 carpet 619
pin 757 cantaloupe 690 oak 609 lemon 627
nectarine 736 spinach 669 pumpkin 644 carrot 574
peas 666 orange 621 mushroom 654 pepper 637
plum 646 yam 667 garlic 632 corn 613
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Figure 1.
Experiment 1 correlations between reaction time (RT) and number of near (black symbols)
and distant (white symbols) neighbors based on three thresholds. Circles indicate results for
the semantic (living thing) categorization (SC) task, triangles indicate results for the lexical
decision (LD) task. *p < .05.
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Figure 2.
Experiment 2 reaction time (RT) results. RTs were slower for words with many near semantic
neighbors (squares relative to triangles) and faster for words with many distant semantic
neighbors. Error bars are one standard error.
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Figure 3.
Correlations at each tick between cross-entropy error (CEE) and number of near neighbors
(solid lines, black symbols) and number of distant neighbors (dotted lines, white symbols)
across all concepts in the corpus. Correlations greater than ± .09 are statistically reliable (p < .
05). The correlations were computed for three levels of threshold defining near and distant
neighbors. In the legend, “near = 0.25” indicates that near neighbors were defined as having
minimum cosine 0.25 and “distant = 0.25” indicates that distant neighbors were defined as
having maximum cosine 0.25 (for distant neighbors the minimum cosine was always 0).
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Figure 4.
Model response times (RTs; in ticks) to each of the four conditions tested in Experiment 2.
The left panel shows RTs for the word sets used in Experiment 2. The right panel shows RTs
for the full set of words based on the same threshold definitions of near and distant neighbors.
Error bars are one standard error.
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Table 3
Partial Correlations for Measures of Orthographic and Semantic Neighborhood Controlling for Word Frequency,
Length, and Number of Features

Error RT

Measure LD SC LD SC

Orthographic measure
 Bigram f .01 .03 −.11** .03
 Coltheart’s N −.02 .02 −.03 .06
Semantic measure
 NumNear .08 .08* .08** .03
 MeanCos .01 −.03 .04 −.09**
 PropCorrPairs .03 .10** .03 .06
 NumAssoc .08* .10** −.04 .01
 COALS −.01 .11** −.09** .00
 COALS_all .06 .19*** −.04 .10**

Note. RT = reaction time; LD = lexical decision; SC = semantic categorization; NumNear = number of near neighbors; MeanCos = mean cosine;
PropCorrPairs = proportion of significantly correlated feature pairs; NumAssoc = number of associates; COALS = Correlated Occurrence Analogue to
Lexical Semantic, mean distance within set; COAL-S_all = mean distance among all items.

*
p < .10.

**
p < .05.

***
p < .01.
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Table 4
Experiment 2 Critical Item Condition Means (and SDs) for Critical and Control Variables

Many near neighbors Few near neighbors

Variable Many distant Few distant Many distant Few distant

No. near neighbors 4.5 (3.0) 3.9 (3.1) 0.0 (0.0) 0.2 (0.4)
No. distant neighbors 227 (26.5) 109 (28.3) 249 (39.2) 113 (23.9)
No. associates 14.8 (5.2) 13.6 (2.8) 14.7 (6.3) 13.0 (5.2)
COALS_all 0.73 (0.072) 0.76 (0.11) 0.72 (0.08) 0.75 (0.078)
Ln(frequency) 1.8 (1.6) 1.9 (1.6) 2.3 (1.3) 2.5 (1.3)
Familiarity 5.0 (1.9) 5.6 (2.2) 5.8 (1.5) 5.9 (2.1)
Age of acquisitiona 293.5 (63.9) 275.8 (61.2) 290.8 (77.2) 286.3 (31.0)
No. letters 5.4 (1.7) 5.4 (1.7) 5.2 (1.5) 5.2 (1.0)
No. phonemes 4.4 (1.6) 4.3 (1.6) 4.4 (1.4) 4.5 (1.1)
No. syllables 1.6 (0.8) 1.6 (0.6) 1.6 (0.5) 1.7 (0.6)
Coltheart’s N 3.7 (4.3) 3.4 (4.4) 3.2 (4.1) 3.4 (5.0)
Congruent N 2.3 (2.8) 1.7 (2.8) 1.8 (2.5) 1.7 (3.1)
No. features 14.2 (3.9) 13.0 (3.4) 14.8 (3.2) 13.7 (3.9)
Concreteness 598.1 (26.0) 603.0 (17.2) 607.3 (19.0) 598.4 (16.9)
No. creatures 9 9 9 5
No. fruits/vegetables 3 5 5 4
No. nonliving 13 11 11 16

Note. There were 25 words in each condition. COALS_all = Correlated Occurrence Analogue to Lexical Semantic, mean distance among all items.

a
Note that age of acquisition data were available for only 30% of items (24%–36% for each condition).
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Table 5
Experiment 2 Mean (and SE) Percent Correct Responses for the Four Critical Conditions

No. near neighbors

No. distant neighbors Many Few

Many 96.9 (1.0) 98.0 (0.6)
Few 97.3 (0.7) 97.6 (0.9)
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