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Abstract
Intraflagellar transport (IFT) of a ∼17S particle containing at least 16 distinct polypeptides is required
for the assembly and maintenance of cilia and flagella. Although both genetic and biochemical
evidence suggest a role for IFT in vertebrate photoreceptors, the spatial distribution of IFT proteins
within photoreceptors remains poorly defined. We have evaluated the distribution of 4 IFT proteins
using a combination of immunocytochemistry and rod-specific over-expression of GFP tagged IFT
proteins. Endogenous IFT proteins are most highly concentrated within the inner segment, around
the basal body, and within the outer segment IFT proteins are localized in discrete particles along
the entire length of the axoneme. IFT52-GFP and IFT57-GFP mimicked this pattern in transgenic
Xenopus.
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INTRODUCTION
Vertebrate photoreceptors are composed of an inner segment responsible for macromolecular
synthesis and an outer segment involved in phototransduction. The two segments are bridged
by the connecting cilium, which contains a 9 + 0 axoneme that projects through the connecting
cilium and into the outer segment (Besharse & Horst, 1990). The outer segment forms
developmentally by modification of the membrane of the sensory cilium to form the discs of
the outer segment. Initial development of the outer segment requires prodigious
macromolecular transport through the connecting cilium to form these discs. The requirement
for transport continues throughout the life of the cell as ∼ 10% of the distal ends of the outer
segments are shed each day and phagocytosed by the surrounding retinal pigmented epithelium.
Replacement material is synthesized in the inner segment and transported to the outer segment
through the connecting cilium (Young, 1967). In addition to anterograde transport of
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components required for maintenance of the outer segment, proteins involved in
phototransduction such as arrestin and transducin shuttle between the inner and outer segments
in a light-dependent manner (Mendez, Lem, Simon & Chen, 2003, Peterson, Tam, Moritz,
Shelamer, Dugger, McDowell, Hargrave, Papermaster & Smith, 2003, Sokolov, Lyubarsky,
Strissel, Savchenko, Govardovskii, Pugh & Arshavsky, 2002). While the mechanism of
transport between the inner and outer segments is not known in detail, intraflagellar transport
(IFT), which is required for the assembly and maintenance of cilia and flagella in a variety of
systems, is likely to play a significant role.

IFT was first described in the motile flagella of Chlamydomonas (Kozminski, Johnson,
Forscher & Rosenbaum, 1993) and has since been observed in a variety of motile and non-
motile cilia (for reviews, see (Pazour, Baker, Deane, Cole, Dickert, Rosenbaum, Witman &
Besharse, 2002, Scholey, 2003, Sloboda, 2005)). IFT involves the transport of a large complex
of at least 16 polypeptides along the outer doublet microtubules of the axoneme, beneath the
plasma membrane, at rates ranging from 0.7 to 2 μm/sec for anterograde transport and 1 to 3.5
μm/sec for retrograde transport (Rosenbaum & Witman, 2002). Genetic evidence indicates that
both heterotrimeric and homodimeric members of the kinesin 2 family serve as anterograde
transport motors (Cole, Diener, Himelblau, Beech, Fuster & Rosenbaum, 1998, Kozminski,
Beech & Rosenbaum, 1995, Snow, Ou, Gunnarson, Walker, Zhou, Brust-Mascher & Scholey,
2004), while a cytoplasmic dynein based on Dhc1b/2 heavy chain is the motor for transport in
the retrograde direction (Pazour, Wilkerson & Witman, 1998, Signor, Wedaman, Orozco,
Dwyer, Bargmann, Rose & Scholey, 1999) (Pazour, Dickert & Witman, 1999).

Involvement of IFT in photoreceptors is strongly supported by the immunolocalization of
kinesin II and endogenous IFT proteins to the basal body and connecting cilium (Beech, Pagh-
Roehl, Noda, Hirokawa, Burnside & Rosenbaum, 1996, Pazour et al., 2002), and the finding
that bovine photoreceptors contain a ∼17S IFT protein complex similar to that of motile flagella
(Baker, Freeman, Luby-Phelps, Pazour & Besharse, 2003). Furthermore, mice with a deletion
of the kinesin II subunit, Kif3A, or a hypomorphic mutation in the IFT complex protein, IFT88/
polaris, exhibit failed outer segment morphogenesis, and miss-localization of opsin, which
leads to loss of photoreceptors (Jimeno, Feiner, Lillo, Teofilo, Goldstein, Pierce & Williams,
2006, Marszalek, Liu, Roberts, Chui, Marth, Williams & Goldstein, 2000, Pazour et al.,
2002).

Localization studies of IFT proteins in photoreceptors are limited to immunofluorescent images
from frozen sections of mature bovine, mouse, or embryonic zebrafish retina (Pazour et al.,
2002, Tsujikawa & Malicki, 2004), and provide only limited insight into the spatial distribution
of IFT proteins within either the inner or outer segment. In the present study we have used
mouse retinas along with the large photoreceptors of Xenopus, which contain axonemes that
are substantially longer than those in mammals, to study the spatial distribution of IFT proteins
in rods. Our data indicate that endogenous IFT proteins are most abundant in the inner segment
and basal body region, and that within the outer segment IFT proteins are found in discrete
particles along the entire length of the axoneme. Our data provide a higher resolution view of
IFT protein distribution and indicate that IFT operates along the entire length the outer segment
rather than just within the connecting cilium.

METHODS
IFT Constructs

RNA was extracted from Xenopus retina using Trizol (Invitrogen, ,Carlsbad, CA, USA).
Reverse transcription was carried out using AMV-RT (Promega, Madison, WI, USA) with an
oligo-dT primer, followed by PCR with two degenerate primers based on the sequences for
known homologs of IFT20: 5'-CTGGACCCCGAGGTGACNCARCARAC-3' and 5'-
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CGCCGATGGCCTTCATYTTYTCRTT-3'. The product was cloned into pCRII-TOPO
(Invitrogen,, Carlsbad, CA, USA) and the full insert was sequenced. The clone was not full
length, but matched a Xenopus EST from Research Genetics (PBX0153F10), which contained
the full-length cDNA (accession number AY048114). For transgenesis, the full-length
sequence obtained by PCR from the Research Genetics EST was subcloned into pEGFP-1 (BD
Biosciences Clontech, Palo Alto, CA, USA) downstream of a 5.5 kb fragment of the
Xenopus rod opsin promoter (Kennedy, Vihtelic, Checkley, Vaughan & Hyde, 2001, Knox,
Schlueter, Sanger, Green & Besharse, 1998). For transfection of tissue culture cells, the
sequence was subcloned into pcDNA3.1/CT-GFP (Invitrogen,, Carlsbad, CA, USA) . The full
coding sequence from mouse cDNAs for mouse IFT88, 57 and 52 (Pazour et al., 2002) were
subcloned into the same vectors as IFT20. LLC-PK1 cells (American Type Culture Collection,
Manassas, VA, USA) were transfected with CMV-IFT20-GFP or IFT88-GFP using
Lipofectamine 2000 (Invitrogen , Carlsbad, CA, USA) according to the manufacturer's
instructions.

Transgenic Animals
Xenopus transgenesis was carried out using a restriction enzyme mediated method as described
previously (Knox et al., 1998). Transgenic embryos were screened at stage 43 for GFP
expression in the eye. Positive animals were euthanized at stage 45 or later, and the eyes were
enucleated. Eyes were dissected to expose the retina and mounted in a balanced salt solution
(Cahill & Besharse, 1991) between two glass coverslips for fluorescence microscopy.
Transgenesis was confirmed by genomic PCR as follows. Tails clipped from euthanized
animals were digested in 0.4 mg/ml proteinase K overnight at 55 °C. DNA was extracted with
24:24:1 phenol:chloroform:isoamyl alcohol, precipitated with isopropanol and resuspended in
an appropriate volume of TE buffer. The inserted gene was detected using primers for EGFP
(5'-CAA GCT GAC CCT GAA GTT CAT CTG-3' and 5'-CGG ATC TTG AAG TTC ACC
TTG ATG-3'). Animal care was in accordance with the US Public Health Service Policy on
Humane Care and Use of Laboratory Animals.

Antibodies
Antibodies against the mouse IFT88, 57, 52 and and 20 proteins were generated in rabbits and
affinity purified as described previously (Pazour et al., 2002). A mouse monoclonal antibody
directed against acetylated alpha-tubulin was purchased from Sigma (St. Louis, MO, USA,
T6793?). Goat anti-rabbit and goat-anti-mouse antibodies coupled to Alexa 488 or Cy3 were
purchased from Molecular Probes (Eugene, OR, USA) or Jackson ImmunoResearch
Laboratories (West Grove, PA, USA). Goat anti-rabbit IgG coupled to horse radish peroxidase
(HRP) was purchased from Amersham Biosciences (Piscataway, NJ, USA, Cat No. NA934).

Western blotting
Retinas from adult Xenopus laevis were homogenized on ice in 10 mM HEPES, pH 7.2
containing a protease inhibitor cocktail (Sigma, St. Louis, MO, USA, Cat. #P--3840). Nonidet
P-40 was added to a final concentration of 0.05%, the samples were incubated for 15 min on
ice, and clarified at 25 psi in a Beckman airfuge (Beckman Coulter, Fullerton, CA, USA) for
10 min. Samples were boiled in Laemmli buffer and run on an 8% SDS polyacrylamide gel.
Proteins were transferred to PVDF membrane and probed with rabbit antibodies against IFT
proteins at a dilution of 1:1000. Goat anti-rabbit IgG coupled to HRP at a dilution of 1:5000
was used for chemiluminescent detection of polypeptides that cross-reacted with anti-IFT
antibodies.
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Immunocytochemistry and Fluorescence Microscopy
Immunofluorescence localization was carried out on dissociated Xenopus rod outer segments
(ROS) as described previously (Sale, Besharse & Piperno, 1988). The primary antibody was
diluted 1:100 (IFT) or 1:200 (tubulin). Fluorescent secondary antibodies were diluted 1:200.
To view GFP fluorescence in frozen sections, transgenic embryos were embedded in OCT/
sucrose, frozen by immersion in liquid nitrogen, and 10 μm sagittal sections were cut through
the eyes. Fluorescence was viewed by wide-field epifluorescence microscopy on a Nikon
Eclipse TE300 inverted microscope (Nikon Instruments, Inc., Melville, NY, USA). Digital
images were taken using a CoolSnap color camera (Roper Scientific, Tucson, AZ, USA) and
saved as 48-bit raw TIFF images on a Macintosh G4 computer (Apple Computer, Cupertino,
CA, USA). Confocal images were acquired on a TCS SP2 confocal microscope (Leica
Microsystems, Bannockburn, IL, USA) using 40×, 1.25 NA or 60×, 1.32 NA oil immersion
objectives, with the pinhole adjusted to one Airy disk unit. GFP fluorescence was excited with
the 488 nm line of an argon laser. Adobe Photoshop (Adobe Systems, Inc., San Jose, CA, USA)
was used to prepare images for publication. For image analysis regions of interest were defined
interactively and the mean fluorescence intensity was measured using NIH Image 1.63. Mean
background intensity was measured within each image and subtracted from the mean intensity
of each region of interest. Intensity ratios, mean intensity ratios and standard errors were
calculated using a Microsoft Excel worksheet.

Electron Microscopy
The heads of Xenopus embryos that were positive for transgenesis by genomic PCR were fixed
for 90 minutes on ice in 1% osmium tetroxide/1% glutaraldehyde in 0.067 M cacodylate buffer,
pH 7.4 and prepared for thin-section electron microscopy by standard methods. Post-
embedment immunolocalization at the EM level using 10 nm colloidal gold on LR-White
sections was carried out as described previously (Pazour et al., 2002).

RESULTS
Immunogold Localization of IFT88 in Mouse Rods

Data on the spatial distribution of IFT proteins is currently limited to immunofluorescence
images in mouse and bovine retina in which IFT proteins were most abundant around the region
of the basal body, and with lesser labeling of the connecting cilium (Pazour et al., 2002). To
further study IFT proteins in the vicinity of the basal body in the inner segment, we have carried
out immunogold localization. To date this analysis is restricted to the use of IFT88 antibodies
on LR-White sections from 21 day old mouse retina; a control in this anlysis is the 21 day old
Tg737orpk mouse retina in which IFT88 protein is strongly reduced. As expected from the
immunofluorescence analysis (Pazour et al., 2002), IFT88 was most abundant in the region
immediately adjacent to the basal body and accessory centriole (see Figure 1A-D). Although
at lower labeling density, IFT88 was also routinely detected in the connecting cilium (Figure
1E-G), and in the axoneme region adjacent to OS discs (Figure 1J-K). The distribution of IFT88
around the basal body and accessory centriole is consistent with the idea based on immunogold
localization of IFT52 in Chlamydomonas, that transition fibers in this region are the docking
sites for IFT particle assembly (Deane, Cole, Seeley, Diener & Rosenbaum, 2001). An
important feature of our analysis was that the non-specific background staining was extremely
low and that IFT88 appeared to be concentrated in discrete, electron opaque structures that
labeled with multiple gold particles (Figure 1C, H, L, O). The details of these structures were
often obscured by the gold particles and lacked contrast in LR-White sections. However, they
are consistent with the idea that IFT88 is associated with IFT particles and/or vesicle-like
structures in the region surrounding the basal body and accessory centriole. The high abundance
of IFT88 in the vicinity of the basal body in wild type mice was in distinct contrast to the
condition in 21 day old Tg737orpk mice (Figure 1P) where gold particles were extremely
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difficult to find. The paucity of IFT88 in these cells is consistent with our earlier finding that
the greatly reduced expression of IFT88 protein in Tg737orpk mice is associated with
photoreceptor degeneration (Pazour et al., 2002).

Expression and localization of endogenous IFT proteins in Xenopus rods
To further examine the spatial distribution of IFT proteins, particularly within the outer
segment, we took advantage of the large rod photoreceptors of Xenopus laevis. To examine
the expression of endogenous IFT proteins, extracts of retinas from adult Xenopus laevis were
Western blotted using affinity purified rabbit antibodies to mouse IFT sequences. Antibodies
to IFT 88, 57 and 52 specifically recognized polypeptides with apparent molecular weights of
∼95, 57 and 50 kDa respectively (Figure 2). Antibodies to mouse IFT20 did not recognize any
proteins in the Xenopus retinal extracts, but labeled photoreceptor outer segments in a manner
similar to the other IFT antibodies (see below). Immunofluorescence on whole mounted outer
segments showed that all four IFT proteins were abundant in the inner segment and were
localized along the full length of the axoneme in a discrete, particulate pattern (Figure 3A-D).
In all cases rod axonemes extended in excess of half the length of the outer segment as
previously reported (Kaplan, Iwata & Sears, 1987,Sale et al., 1988), but in some cases they
extended nearly the entire length of the OS (Figure 3A, B). In both whole mounted outer
segments and confocal Z-series analysis of frozen sections, IFT proteins were highly
concentrated near the basal body. Figure 3E and F illustrates two representative double-labeled
Z-series for IFT57 (Figure 3E) and IFT20 (Figure 3F). Each series begins near the basal body
(large arrows) and extends through an obliquely sectioned outer segment along the axoneme
(red) showing discrete particles labeled with the anti-IFT antibody. A particulate organization
of IFT staining is also apparent in the inner segment in the vicinity of the basal body. Here
both IFT57 (Figure 3E, Slices 1−5) and IFT20 (Figure 3F, Slices 1−5) label particles below
the level of the basal body.

Rod-specific overexpression of IFT Proteins in Xenopus embryos
As an alternative to immunocytochemistry for analysis of spatial distribution, IFT proteins
fused with enhanced GFP were targeted to the rods of transgenic Xenopus embryos using the
Xenopus rod opsin promoter (Knox et al., 1998). Observations of IFT-GFP over-expression
were best made by merging the GFP and the transmitted light image (Figure 4). For example,
IFT52-GFP was found concentrated at the basal body in the inner segment and localized to the
axoneme in the outer segment (Figure 4B-D); occasionally punctate particles were associated
with the axoneme (arrowheads in Figure 4D). Similar observations were made for both IFT52-
GFP (Figure 4 and Figure 5A-B) and IFT57-GFP (Figure 5C-D) in which GFP fusion proteins
mimicked the pattern seen by immunocytochemistry in the outer segment. In addition, diffuse
fluorescence was observed throughout the cytoplasm of the inner segment. Rods in the retinas
of control animals over-expressing enhanced GFP alone sometimes also exhibited spatial
variations in intensity in these regions (Figure 5E). Since GFP does not bind to intracellular
components (Swaminathan, Hoang & Verkman, 1997, Terry, Matthews & Haseloff, 1995,
Yokoe & Meyer, 1996), these variations in intensity reflect variable pathlength and/or
accessible volume (Taylor & Wang, 1980) as was recently demonstrated for Xenopus rods
(Peet, Bragin, Calvert, Nikonov, Mani, Zhao, Besharse, Pierce, Knox & Pugh, 2004, Taylor
& Wang, 1980). Optical sections obtained by confocal microscopy with high NA objectives
are of a uniform thickness that is well within the thickness of the cells, leaving accessible
volume differences as the primary determinant of intensity variations in rods expressing
enhanced GFP alone. Accessible volume in the region of the basal body is highly variable due
to the large number of mitochondria clustered there. In the outer segment, accessible volume
is highly restricted by the dense packing of the disks.
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To rule out the possibility that the apparent localization of IFT52-GFP and IFT57-GFP to the
basal body and axoneme was an artifact of variable accessible volume, we measured the ratio
of fluorescence intensity in these regions to the intensity in immediately adjacent regions of
rods expressing enhanced GFP or IFT52-GFP. The mean intensity ratio for GFP in the basal
body region relative to the adjacent cytoplasm of the inner segment was 1.375 ± 0.145 (n=11),
whereas that for IFT52-GFP was 10.42 ± 1.3 (n=41). The mean intensity ratio for GFP in the
axonemal region relative to adjacent regions of the outer segment was 1.27 ± 0.056 (n=13),
and the corresponding ratio for IFT52-GFP was 18.7 ± 10.14 (n=5). Thus, the degree of
concentration of IFT52-GFP was 7.5 to 15 fold higher than for GFP alone in these regions.

In contrast to the targeted localization of IFT52-GFP and IFT57-GFP, less than 1% of embryos
that were positive for IFT88-GFP transgenesis by genomic PCR showed any GFP signal by
fluorescence microscopic analysis of the intact animal. Frozen sections of transgenic embryos
in which no GFP fluorescence was detected by screening of the intact animal, revealed at most
one or two cells expressing the GFP construct. In these cells, GFP fluorescence was sometimes
concentrated in a discrete structure, possibly the basal body, at the apical end of the cell (Figure
5F). Light microscopy of one micron thick sections of plastic embedded IFT88-GFP embryos
stained with toluidine blue often showed pyknotic nuclei in the photoreceptor layer and missing
outer segments (Figure 6B, arrowheads); this was not observed in animals expressing GFP
alone (Figure 6A). At the electron microscopic level, pyknotic nuclei (asterisk in Figure 6D)
were often associated with fragments of both inner and outer segment that appeared to have
been phagocytosed by the retinal pigmented epithelium (arrow in Figure 6D). In general, the
rod inner and outer segments of IFT88-GFP animals were shorter and larger in diameter than
those of animals expressing GFP, and sometimes had disorganized outer segments.

When IFT20-GFP was over-expressed in Xenopus rods, large aggregates of GFP accumulated
in both the inner and the outer segments (not shown). There was no apparent localization of
IFT20-GFP at the basal body or along the axonemes. Similar aggregates were observed in
LLC-PK1 cells transiently transfected with CMV-IFT20-GFP (not shown). The finding that
moderate to low expression of IFT20-GFP in stable kidney epithelial cell lines results in
localization of the fusion protein to the Golgi complex and to cilia (Follit, Tuft, Fogarty &
Pazour, 2006), suggests that that the aggregates formed in Xenopus rods and transiently
transfected tissue culture cells are an artifact of strong over-expression of the fusion protein.

DISCUSSION
Importance of IFT in Photoreceptors

Our demonstration of the necessity of IFT88 in photoreceptors (Baker et al., 2003, Pazour et
al., 2002) coupled with work on conditional deletion of the Kif3A subunit of kinesin II motor
(Jimeno et al., 2006, Marszalek et al., 2000) have provided a strong case for the involvement
of IFT in development and maintenance of photoreceptor outer segments. The requirement for
both IFT88 and KIF3A is consistent with the role of kinesin 2 as an anterograde motor for IFT
particles containing IFT88. This along with the demonstration of the photoreceptor expression
of four IFT sub-particle B proteins (Pazour et al., 2002) and the finding that those same four
IFT proteins can be isolated from photoreceptor cytosolic extracts as part of a larger ∼17S IFT
particle (Baker et al., 2003) similar to that from Chlamydomonas (Cole et al., 1998) indicate
that the entire IFT sub-particle B is conserved in photoreceptors and functions in IFT transport
in a manner similar to other cilium based systems. Although the earlier work demonstrated that
IFT proteins were localized to the region of the connecting cilium (Pazour et al., 2002), the
imaging was limited to frozen sections from bovine and mouse retina and did not resolve their
distribution in the distal axoneme or in the periciliary cytoplasm. This raised the important
question of whether IFT in photoreceptors was limited to the connecting cilium region between
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the inner segment and newly assembled basal discs or, alternatively, extended distally into the
outer segment.

Localization of IFT Proteins in Photoreceptors
New data presented in this report add important details regarding the spatial distribution of IFT
proteins in photoreceptors that are directly relevant to their function. First, IFT proteins are
concentrated on and around the basal body and accessory centriole, consistent with the view
that IFT particle assembly and docking occurs in this region of the cell (Deane et al., 2001).
Immunogold images show that IFT88 is clustered in particulate structures. Although LR-White
sections do not provide sufficient contrast for easy identification of membranes, many of the
underlying immunogold labeled structures look like membrane vesicles. Since the individual
17S IFT sub-complex B is thought to have a single copy of IFT88 (Lucker, Behal, Qin, Siron,
Taggart, Rosenbaum & Cole, 2005) and IFT88 immunoprecipitates principally with other IFT
proteins (Baker et al., 2003), the clustering of IFT88 suggests that multiple copies of sub-
complex B associate with each other and/or with other particulate structures. The peri-ciliary
region of photoreceptors is known to be enriched in rhodopsin containing vesicles (Besharse
& Pfenninger, 1980, Defoe & Besharse, 1985), which is mis-localized in Tg737orpk mice
(Pazour et al., 2002). This raises the immediate possibility that IFT particles may associate
with rhodopsin containing vesicles in the periciliary region. Multiple lines of evidence suggest
that cilium membrane proteins require IFT for ciliary trafficking (Bae, Qin, Knobel, Hu,
Rosenbaum & Barr, 2006, Follit et al., 2006, Qin, Burnette, Bae, Forscher, Barr & Rosenbaum,
2005) and recent analysis in cell culture suggest that membrane transport complexes assemble
at the base of the cilium (Nachury, Loktev, Zhang, Westlake, Peranen, Merdes, Slusarski,
Scheller, Bazan, Sheffield, Jackson, Miller, Summers, Hansen, Nachury, Lehman, Loktev &
Jackson, 2007). These observations are consistent with work in progress indicating that both
rhodopsin and photoreceptor membrane guanylyl cyclase 1 (GC1, Gucy2D) can be
immunoprecipitated with IFT proteins (Bhowmick & Besharse, 2007).

Our new data also demonstrate that within the outer segment IFT proteins are localized in
particulate structures along the entire length of the axoneme. Furthermore, in some cases the
axoneme extends nearly the entire length (∼50 μm in Xenopus) of the outer segment. This is
expected based on the model from Chlamydomonas flagella in which a primary function of
IFT is to support plus-end assembly/disassembly at the distal tip of the axoneme (Pedersen,
Miller, Geimer, Leitch, Rosenbaum & Cole, 2005, Rosenbaum & Witman, 2002). In addition,
several lines of evidence support the view that axonemal proteins are IFT cargo (Qin, Diener,
Geimer, Cole & Rosenbaum, 2004). Since the axoneme of photoreceptor outer segments
provides a structural backbone for elaboration of the photosensitive membrane discs, failure
of proper outer segment formation in Tg737orpk mice could be an indirect consequence of
impaired transport of axoneme components (Baker, Pazour, Witman & J.C., 2004, Besharse,
Baker, Luby-Phelps & Pazour, 2003). In this regard both conservation of the components of
IFT, and its cytoskeletal cargo would be expected in many types of motile and sensory cilia.

Consistent with the basal body and axoneme localization of endogenous IFT proteins, we have
found that both IFT52-GFP and IFT57-GFP target to basal body and axoneme structures when
over expressed at high levels in rod photoreceptors of transgenic Xenopus. This is consistent
with work showing ciliary trafficking of YFP tagged Che-13 (Haycraft, Schafer, Zhang,
Taulman & Yoder, 2003) and GFP tagged Osm-6 (Orozco, Wedaman, Signor, Brown, Rose
& Scholey, 1999), the C. elegans homologues of IFT57 and IFT52 respectively. In contrast,
IFT20-GFP was expressed at high levels but accumulated in large aggregates. One possible
explanation is that the strong over-expression of IFT20-GFP driven by the opsin promoter may
have caused artifactual intracellular aggregation of IFT20-GFP. In contrast to our results, stable
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kidney epithelial cell lines expressing IFT20-GFP at low levels, the fusion protein targets to
the Golgi-complex and cilium in a manner similar to endogenous IFT20 (Follit et al., 2006).

The low expression of IFT88-GFP in Xenopus photoreceptors was surprising, especially given
the robust expression of the other three constructs, which differ only in the primary sequence
of the insert. The same IFT88-GFP insert was expressed at high levels when transfected into
tissue culture cells using a CMV-driven vector (data not shown). Possible reasons for the low
expression of the IFT88-GFP cDNA in the rods of transgenic animals include the absence of
important untranslated regions of the gene, rapid degradation of the expressed protein, or death
of cells that express the protein at a high level. Light and electron microscopic analysis of
sectioned eyes from animals that were positive for transgenesis by genomic PCR, but negative
for expression of IFT88-GFP, showed pyknotic nuclei and abnormalities in the morphology
of the rods, consistent with the latter possibility. This could result from impaired functionality
of IFT88 due to the presence of the GFP tag, or simply the over-expression of the functional
protein. In this regard, it has already been shown that mouse photoreceptors are particularly
sensitive to IFT88 concentration because the 5−10 fold reduction in IFT88 levels in
Tg737orpk mice results in photoreceptor degeneration (Pazour et al., 2002).

Photoreceptors as a Model System for IFT
The importance of IFT in ciliated cells is underscored by the large number of recent studies
showing that IFT is required for both development and function of cilia in multiple cell types.
Many conserved features of IFT such as IFT sub-complexes A and B and the dynein and kinesin
2 motor are likely to be common to multiple cell types and rapid progress on these features of
IFT is likely to take place in simple model organisms. Nonetheless, photoreceptors represent
an ideal model system for analysis of key features such as IFT cargo, IFT motors, and IFT
signaling. For example, a critical question related to photoreceptor specific IFT is whether it
is simply required to build the axonemal backbone of the outer segment as in other cilium
types, or whether outer segment specific phototransduction proteins are transported by IFT.
Both rhodopsin and arrestin are miss-localized in photoreceptors deficient in Kif3A and
rhodopsin is mislocalized in Tg737orpk mice (Pazour et al., 2002), which has led to the
suggestion that both are transported by kinesin 2 (Marszalek et al., 2000). Nonetheless, miss-
localization of rhodopsin occurs secondary to a variety stressful insults to photoreceptors.
Furthermore, available data on the kinetics, magnitude, and ATP dependence of arrestin
movement in light suggest that diffusion coupled with light regulation of binding sites could
account for its movement to the outer segment (Calvert, Strissel, Schiesser, Pugh & Arshavsky,
2006, Nair, Hanson, Mendez, Gurevich, Kennedy, Shestopalov, Vishnivetskiy, Chen, Hurley,
Gurevich & Slepak, 2005). On the other hand, substantial evidence has emerged linking cilium
membrane protein trafficking to IFT, including recent data showing IFT dependent
translocation of TRPV channels within the cilium (Qin et al., 2005). In photoreceptors we think
that the strongest current case for outer segment specific IFT cargo is for membrane guanylyl
cyclase 1 (GC1) and rhodopsin, which co-immuprecipitate with IFT proteins and the kinesin
II motor (Bhowmick & Besharse, 2007). Furthermore, deletion of both GC1 and GC2 causes
miss-localization of additional membrane associated outer segment proteins, which has led to
the suggestion that those proteins may normally be co-transported with membrane guanylyl
cyclase (Baehr, Karan, Maeda, Luo, Li, Bronson, Watt, Yau, Frederick & Palczewski, 2007).

Classically, kinesin II and cytoplasmic dynein heavy chain 1b (Dhc1b) have been described
as the anterograde and retrograde IFT motors. However, emerging data in C. elegans suggest
that both kinesin II and an accessory IFT kinesin called Osm-3 serve as IFT kinesins with
different roles depending on the sensory cilium type (Evans, Snow, Gunnarson, Ou, Stahlberg,
McDonald & Scholey, 2006, Snow et al., 2004). In particular, it has been proposed that Osm-3,
a homodimeric kinesin, is required in amphid channel cilia whose doublet microtubules give
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way to singlet microtubules in the distal segment. Although a comparable role for the Osm-3
homologue, Kif17, in vertebrates has not been identified, distal segments of photoreceptor
outer segments are known to contain singlet microtubules (Roof, Adamian, Jacobs & Hayes,
1991, Steinberg & Wood, 1975). Recently, we found that Kif17 is co-localized with IFT
proteins in zebrafish photoreceptors and that antisense knockdown of Kif17 in embryos caused
a failure of outer segment formation. Under the same conditions, cilium elongation in kidney
epithelial cells occurs normally (Insinna & Besharse, 2007). These results suggest that Kif17
is not essential for kidney cilium elongation, but is essential in photoreceptors.

Since many cilia including photoreceptor outer segments are sensory organelles, the
requirement for IFT in cilium assembly places it upstream of a wide array of biologically
significant signaling pathways including phototransduction (Pan, Wang & Snell, 2005).
Perhaps more important for photoreceptor biology, however, is the question of whether
reciprocal IFT between the outer and inner segment could play a direct and more immediate
signaling role. For example, in rod cells both transducin subunits (Gtα and Gtβ) and arrestin
are known to translocate in opposite directions between the segments in the light and dark, and
physiological analysis has shown that movement to the inner segment reduces visual sensitivity
in bright light (Calvert et al., 2006, Sokolov et al., 2002). Clearly, this means that the
translocation event itself is one component of sensory adaptation. The question that arises is
whether IFT plays a role in Gtα and Gtβ or arrestin translocation. An answer to this question
is not yet available and would require an understanding of how those proteins regulate their
association with the IFT machinery. Nonetheless, the current debate pits molecular motors
against simple diffusion. In the case of light driven translocation of arrestin and Gtα, data on
the kinetics and magnitude of the event favor a diffusional mechanism (Calvert et al., 2006).
The reversal of those movements during dark adaptation, however, occurs more slowly and is
compatible with molecular motor driven pathways.
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Figure 1.
Immunogold localization of IFT88 in mouse rods using 10 nanometer colloidal gold. A-P is a
panel of images taken in the vicinity of the basal body (BB) and connecting cilium (CC); A-
O are from wildtype mice and P is from a Tg737orpk retina prepared at 21 postnatal days. Note
that Tg737orpk mice carry a hypomorphic mutation in IFT88 and express WT protein at 5−10
fold lower levels than WT. Positive staining for IFT88 was seen at the basal body (BB),
accessory centriole (AC), the connecting cilium (CC), the axoneme region adjacent to discs
(OS, see J and K), and in particulate, vesicle-like (VL) structures in the inner segment. Bars in
the lower right of each image are 1 μm in length.
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Figure 2.
Western blot of IFT proteins in adult Xenopus retina. Retina extracts from adult Xenopus
laevis were probed with rabbit antibodies to mouse IFT88, 57, 52 and 20. Bands of the
approximate molecular weight for IFT88, 57 and 52 were detected as indicated. Bands were
not detected by the antibody against IFT20.
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Figure 3.
Immunofluorescence localization of IFT proteins in Xenopus leavis photoreceptors. A-D.
Dissociated rod outer segments with attached inner segments were double labeled with
antibodies to acetylated-alpha-tubulin (red) and IFT proteins (green); IFT88 (A), IFT57 (B)
IFT52 (C), andIFT20 (D). Axonemes are rooted in the brightly fluorescent ellipsoids of the
inner segment below and extend distally into the outer segment. IFT proteins are localized
within the ellipsoid region and along the axoneme (arrows), often in discrete particles. The
insets are 2× enlargements of the axoneme segment between the two arrows, which more
clearly reveal of particulate nature of IFT staining. E. Confocal Z-series (1−7) of a frozen
section double labeled with antibodies to acetylated alpha-tubulin (red) and IFT57 (green)
showing the extensive accumulation of IFT protein at the base of the axoneme in the vicinity
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of the basal body (large arrow) and particulate staining along the axoneme (small arrows). F.
Confocal Z-series similar to E but labeled with an antibody to IFT20 (green); large arrow
indicates the base of the axoneme and small arrows indicate particles on axoneme.
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Figure 4.
Expression of IFT52-GFP in Xenopus rods. Isolated retinas from transgenic animals were
viewed by confocal microscopy. A. Diagram illustrating the general design of the IFT-GFP
constructs driven by the Xenopus opsin promotor as described previously (Knox et al., 1998).
B. GFP image of a rod. C. Same GFP image as in B merged with a transmitted light image
showing the position of the rod inner (RIS) and outer segments (ROS). C. Similar merged
imaged showing IFT52-GFP extending along the axoneme (arrow) with occasional particles
(small arrows). Scale bars: 5 μm.

Luby-Phelps et al. Page 17

Vision Res. Author manuscript; available in PMC 2009 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Localization of over-expressed IFT-GFP constructs in transgenic Xenopus rods. The green
GFP fluorescence image is superimposed on the transmitted light image as in Figure 4. A-B.
A low and higher power image of IFT52-GFP. C-D. A low and higher power image of IFT57-
GFP. E: Image showing free GFP. F. Frozen section from an eye expressing IFT88-GFP
showing localization of fluorescence at the basal body (arrowhead). Note that for both IFT52
and IFT57 fluorescence appeared concentrated at the basal body (A and C, arrowheads) and
extended into the ROS along an axoneme-like structure (B & D). Fluorescence in rods
expressing GFP alone was diffuse throughout the cell and spatial variations in intensity were
due to differences in accessible volume (E). Abbreviations: ROS, rod outer segment; RIS, rod
inner segment; RPE, retina pigment epithelium. Scale bars: 5 μm A-E; 20 μm F.
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Figure 6.
Light and electron microscopic morphology of retinas of Xenopus tadpoles whose rods were
expressing either GFP alone or IFT88-GFP. A & C: Retinas from stage 45 control animals
transgenic for GFP alone. B & D: Retinas from stage 45 animals transgenic for IFT88-GFP.
At the light microscopic level, pyknotic nuclei (B, arrowheads) and missing outer segments
were observed in retinas expressing IFT88-GFP. By electron microscopy, fragments of inner
segment were frequently observed embedded in the retinal pigmented epithelium (D,
arrowhead) in association with pyknotic nuclei (D, asterisk). In general, the rods in retinas
expressing IFT88-GFP were shorter and broader than in control retinas. Abbreviations: RPE,
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retinal pigmented epithelium; ROS, rod outer segment; RIS, rod inner segment. Scale bars: 10
μm A and B; 5 μm C and D.
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