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Intracellular signal transduction proteins typically utilize
multiple interaction domains for proper targeting, and thus a
broad diversity of distinct signaling complexes may be assem-
bled. Considering the coordination of only two such domains, as
in tandemSrchomology 2 (SH2) domain constructs, gives rise to
a kinetic scheme that is not adequately described by simple
models used routinely to interpret in vitro binding measure-
ments. To analyze the interactions between tandem SH2
domains and bisphosphorylated peptides, we formulated
detailed kinetic models and applied them to the phosphoinosit-
ide 3-kinase p85 regulatory subunit/platelet-derived growth
factor �-receptor system. Data for this system from different
in vitro assay platforms, including surface plasmon resonance,
competition binding, and isothermal titration calorimetry, were
reconciled to estimate the magnitude of the cooperativity char-
acterizing the sequential binding of the high and low affinity
SH2 domains (C-SH2 andN-SH2, respectively). Comparedwith
values based on an effective volume approximation, the esti-
mated cooperativity is 3 orders ofmagnitude lower, indicative of
significant structural constraints. Homodimerization of full-
length p85 was found to be an alternative mechanism for high
avidity binding to phosphorylated platelet-derived growth fac-
tor receptors, which would render the N-SH2 domain dispensa-
ble for receptor binding.

Intracellular signal transduction networks, under the control
of activated cell surface receptors, govern cell functional behav-
iors such as proliferation, migration, differentiation, and pro-
grammed cell death (1). Proper communication between sig-
naling proteins is generally contingent upon noncovalent,
intermolecular interactions, mediated by well conserved pro-
tein domains. A key feature of these domains is their modular
nature, which has facilitated the extensive characterization of
their binding affinities and specificities in vitro, as well as the

construction of “synthetic” signaling proteins with prescribed
function (2). The prototypical and best characterized interac-
tion domains in signaling are the Src homology 2 (SH2)3
domains, which direct interactions of proteins with receptor
tyrosine kinases and other tyrosine-phosphorylated proteins
(3). Receptors of the receptor tyrosine kinase family, which
engage growth factor ligands such as platelet-derived growth
factor (PDGF), are activated through ligand binding, receptor
oligomerization, and autophosphorylation on multiple intra-
cellular residues, which then serve as a scaffold for recruitment
of proteins containing SH2 and analogous domains (4, 5).
Signaling proteins typically contain three or more modular

interaction domains of various types, and therefore the diver-
sity of interactions that might take place in the cell is staggering
(6). Further complicating the problem is the avidity effect,
which tends to promote the cooperative association of different
domains with binding partners in the same multimolecular
complex or subcellular compartment. Other mechanisms of
binding cooperativitymight also depend on themodification of
signaling proteins at multiple sites (7). This context-dependent
diversity of interactions is a prime example of what has been
called combinatorial complexity (8). Although kinetic model-
ing has emerged as a powerful tool in the analysis of signal
transduction networks (9–11), the very large number of poten-
tial state variables that can arise even for combinations of a
handful of proteins has prohibited detailed modeling of signal-
ing interactions. The recent development of rule-based model-
ing tools (12) has enabled modeling of more complex systems;
in previous work, we used this approach to analyze the function
of the protein-tyrosine phosphatase Shp2 (13), demonstrating
the application of rule-based modeling at the level of modular
protein domains.
In this paper, we present mathematical models and analysis

focused on the interactions between tandem SH2 domains
derived from signal transduction proteins and peptides or pro-
teins bearing two phosphotyrosine-binding sites. Such interac-
tions have been characterized in vitro by a variety of biochem-
ical methods (14–18), but the various types of complexes that
can form between multivalent binding partners cannot be
resolved, making the measurements potentially difficult to
interpret. Although dual SH2 domains are found in a number of
signaling proteins, including isoforms of phospholipase C, the
aforementioned Shp2, and the nonreceptor tyrosine kinases
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Syk and ZAP70, we focus in particular on the interactions
between the p85 regulatory subunit of phosphoinositide 3-ki-
nase (PI3K) and sequences derived from the PDGF �-receptor.
PI3Ks are lipid kinases that are strongly activated by PDGF
receptors and by many other cell surface receptors, and they
play pivotal roles in cell migration, survival, and proliferation
pathways (19, 20). The interactions of the p85 SH2 domains are
critical for targeting and allosteric activation of the enzyme in
cells (21–24).
Analysis of the models reconciles various published in vitro

p85/phosphopeptide binding studies that have utilized differ-
ent assay platforms, namely surface plasmon resonance (SPR)
and other solid phase binding assays, competition binding, and
isothermal titration calorimetry (ITC). Thus, the consensus
magnitude of the cooperativity parameter characterizing the
sequential association of the two SH2 domains was evaluated
and found to be orders ofmagnitude lower than expected based

on search volume considerations.
We address the implications of this
apparent structural constraint in
the context of PI3K recruitment and
activation in cells.

EXPERIMENTAL PROCEDURES

General Modeling Considerations
and Implementation—Our kinetic
models are executed in the second
generation version of the rule-based
modeling software, BioNetGen (25).
BioNetGen 2 uses a programming
syntax that was described in detail
in the supplemental material of
Barua et al. (13). Graph theoretic
methods are used to automatically
generate a complete set of kinetic
equations (ordinary differential
equations in time) based on a set of
user-specified rules. In this model-
ing framework, molecules and com-
plexes thereof are called species,
and distinct domains/motifs within
the molecules are called compo-
nents. Other nomenclature specific
to the models presented here is as
follows. The phosphopeptide has
two components, Y1 and Y2, which
represent phosphorylated Tyr751
and Tyr740 of the human PDGF
�-receptor, respectively. The tan-
dem SH2 construct also has two
components, C-SH2 and N-SH2,
corresponding to the C-terminal
and more N-terminal SH2 domains
of p85, respectively. The compo-
nents are easily silenced in the
model by removing their corre-
sponding rules to accommodate
peptides with a single phosphoryla-

tion site or p85 constructs with only one of the SH2 domains.
Each of the four combinations of interactions between phos-
photyrosine and SH2 components is assigned a second order
association rate constant kon and a first order dissociation rate
constant koff, which characterize the reversible binding of two
species to form one (Fig. 1A). At equilibrium, it is only the ratio
of these rate constants that matters, with KD � koff/kon given in
units of molar concentration; incidentally, we used the same
realistic value of kon � 1�M�1 s�1 for all interactions andmod-
els, and koff values were specified according to the correspond-
ing KD.

Tandem SH2 domains, such as in the p85 regulatory subunit
of PI3K, engage cognate bisphosphorylated peptides and pro-
teins in a cooperativemanner, with binding of one SH2 domain
facilitating the binding of the other through a ring closure tran-
sition (Fig. 1B). These interactions are characterized by a first
order association rate constant that is the product of the corre-

FIGURE 1. Rule-based model of tandem SH2 binding to bisphosphorylated peptide. A, rules for bimolec-
ular complex formation and associated rate constants. The dashed lines indicate that the remainder of each
species is unknown, potentially subject to context-dependent rules. B, ring closure transitions and associated
rate constants. The cooperativity factor � has units of concentration and applies to all such transitions. C, all 10
of the distinct tandem SH2�phosphopeptide complexes containing one peptide molecule, as in the case where
the peptide is immobilized at low density. Type I complexes contain one tandem SH2 domain molecule that is
singly bound, Type II complexes contain one tandem SH2 domain that is doubly bound forming a ring, and
Type III complexes contain two singly bound tandem SH2 domain molecules. D, classification of chain and ring
structures containing more than one peptide molecule. Type IV complexes are 1:2 chains, whereas Type V
complexes are chains with 2:2 or higher stoichiometry. Type VI complexes are ring structures with 2:2 or higher
stoichiometry. E, examples of complex structures that can form when dimerization of full-length protein, such
as PI3K p85, are considered.
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sponding kon and a cooperativity parameter �, which is the
effective concentration of each free binding sitewithin the same
molecular complex (13, 26), assumed to be the same value for all
ring complexes. If such a site were able to freely search a char-
acteristic volume of 100 nm3 (within a 3-nm radius), that con-
centration would be �20 mM. A more conservative estimate
would account for the flexibility of the peptide and other struc-
tural constraints within the complex (27), and hence we varied
� between 1�M and 1mM and evaluated its effect on the overall
binding avidity and other aspects of complex formation. As the
value of � is increased, the ring closure interactions become
increasingly favorable, and the overall binding avidity of the
complex is enhanced. The reverse, ring opening rate constant is
given by the corresponding koff. The assumption that only the
forward rate constant is modified affects the binding kinetics
but not the equilibrium.
The kinetic equations were integrated numerically for suffi-

cient time to achieve steady state (104 s, typically). All of the
model codes are available upon request.
Model 1: Immobilized Phosphopeptide—In the simplest

model, the bisphosphorylated peptide is immobilized to a sur-
face or solid matrix, and the tandem SH2 construct binds from
solution. It is assumed that the immobilized peptide is present
at a sufficiently low density, such that bound complexes are
comprised of only one peptide and either one or two tandem
SH2molecules. The peptide is present at an arbitrarily low con-
centration (10 pM was used) so that the tandem SH2 domain is
far in excess, with its free concentration approximately equal to
the total. Each of the peptide phosphorylation sites (Y1 or Y2),
if unoccupied, may reversibly bind tandem SH2 from solution
(both SH2 domains must be unoccupied) via C-SH2 or N-SH2;
these four combinations constitute separate rules (Fig. 1A). A
peptide�SH2 complex with Y1 or Y2 unoccupied may engage in
reversible ring closure transitions (four separate rules shown in
Fig. 1B). As a result, there are 12 distinct species in this model,
the two unbound molecules and 10 distinct peptide�SH2 com-
plexes; the complexes are classified as Type I, II, or III depend-
ing on their structure (Fig. 1C).
Model 2: Immobilized Phosphopeptide with Competition—

This model is the same as the previous except that the system
also includes soluble, bisphosphorylated peptide as a competi-
tive inhibitor with respect to tandem SH2 binding to the sur-
face, which allows several types of extended structures to form
(Fig. 1D). Although complexes may contain only one immobi-
lized peptide molecule, any species containing an unoccupied
SH2 domain can combinewith any other having an unoccupied
competitor peptide site, and thus molecular chains with more
than one bisphosphorylated peptide molecule may be formed.
Chains comprised of one tandem SH2 and two peptide mole-
cules are classified asType IV complexes, and chains comprised
of four or more molecules are classified as Type V complexes.
Ring structures containing four or more molecules can also
form; these are classified as Type VI complexes. To simplify
matters, the immobilized peptide is only monophosphorylated
(on Y1, corresponding to Tyr(P)751 of PDGF �-receptor),
matching the conditions of the published experiments (17).
Thus, there are only two rules for C-SH2 or N-SH2 binding to
the surface, four rules for binding of two species containing

unoccupied SH2 and competitor peptide sites, and four rules
for unimolecular ring closure involving unoccupied SH2 and
competitor peptide sites. In BioNetGen 2, it is possible to set the
maximum number of each molecule type in the generated spe-
cies. Thus, cross-linking of immobilized sites was prohibited
here by setting the maximum number of immobilized peptide
molecules in a complex to 1, and the potentially infinite sizes of
the chain and ring structures were truncated at a maximum
number of N molecules each of the tandem SH2 and bisphos-
phorylated competitor peptide per complex. Values of n � 2, 3,
and 4 were used and found to give nearly identical results.
These models vary in complexity as N is increased, yielding 68,
272, and 1,075 distinct species, respectively.
Model 3: Solution Phase Binding—In this model, both the

tandem SH2 construct and bisphosphorylated peptide are in
solution, as in ITC measurements. The binding rules are the
same as in the immobilized phosphopeptide with competition
model, except that the immobilized peptide is absent. Thus, for
the same value of N as described for Model 2, there are corre-
spondingly fewer distinct species in Model 3 (37, 145, and 629
species for n � 2, 3, and 4, respectively). As withModel 2, these
values of N produced nearly identical results.
Model 4: ImmobilizedPhosphopeptidewith p85Dimerization—

This model is a modification of Model 1, in which p85 has an
additional domain that mediates p85 dimerization (Fig. 1E), with
six additional rules. Two of these are for dimerization, one for
when at least one of the p85 molecules binds from solution and
another for when both p85molecules are bound to the same pep-
tide; in the latter case, the � value for dimerization, �dimer, is dis-
tinguished from that of 1:1 ring formation (Type II complex),
called �SH2. To satisfy the principle of detailed balance, �dimer also
applies to the ring closure of peptide-p85-p85 chains via either of
the unoccupied SH2 domains in the second p85 molecule. The
network for this model is comprised of 35 distinct species.

RESULTS

Cooperativity of Tandem SH2/Phosphopeptide Binding as a
KeyDeterminant of Complex Avidity, Stoichiometry, and Equil-
ibration Time—The simplest model is one in which the phos-
phopeptide is immobilized, such that complexes contain only
one peptide molecule (Model 1) (Fig. 2). This scenario simu-
lates SPR and other solid phase binding assays and is analogous
to p85 recruitment to the plasmamembrane. For simplicity, the
two phosphotyrosine sites are assumed here to be equivalent,
and the C-SH2 and N-SH2 domains are assigned single-site KD
values characteristic of PI3K p85 (50 nM and 1.5 �M, respec-
tively) (16–18, 28). Each SH2 domain by itself exhibits the
expected hyperbolic binding isotherm, with half-maximal
binding at a SH2 concentration equal to itsKD and a stoichiom-
etry of 2:1 SH2molecules/peptide at saturation. By comparison,
the binding isotherm of the tandem construct is altered relative
to that of the higher affinityC-SH2, depending on the value of�.
As expected, the change is dramatic when � � �10 �M or
greater, exceeding the KD of the low affinity N-SH2 domain
(Fig. 2A). At tandem SH2 concentrations below the C-SH2 KD,
overall binding isenhancedbecauseof thecooperativityof theSH2
domains in forming stable, Type II ring structures (Fig. 1C), the
effectiveKD for these structures being given by Equation 1.
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KD eff �
1

�� 1

KD,C1KD,N2
�

1

KD,C2KD,N1
��1

(Eq. 1)

Effective KD values for p85 tandem SH2 binding to the
Tyr(P)740/Tyr(P)751 bisphosphorylated peptide have been

reported to lie in the vicinity of 1 nM (16, 18); for the single-site
KD values assumed here, an order of magnitude estimate of � �
�30 �M is obtained. A somewhat lower estimate (� � �10 �M)
is obtained if KD,C1 and KD,C2 are allowed to adopt different
values spanning the range of 10–100 nM.

In contrast, at tandem SH2 concentrations above the KD of
C-SH2, overall binding is diminished because the ring structure
reduces the overall stoichiometry of SH2binding. Indeed, as the
value of � is increased, there is an apparent saturation of bind-
ing at 1:1 stoichiometry, and increasingly higher tandem SH2
concentrations are needed to shift the equilibrium from
Type II rings to Type III chain structures with 2:1 stoichiom-
etry (Fig. 2B).
Another consequence of cooperative tandem SH2 binding

is slower binding kinetics (Fig. 2C). For a simple receptor/
ligand system with 1:1 binding stoichiometry, it is well
known that the characteristic time constant for approaching
equilibrium is the inverse of koff(1 � [L]/KD), where koff is the
dissociation rate constant, and [L] is the free ligand concen-
tration (29). Formation of the Type II ring structure effec-
tively increases the dwell time of the tandem SH2 molecule
on the peptide, thus reducing the overall off rate and slowing
the approach to steady state. Indeed, with the highest values
of � the t1⁄2 for approaching steady state at low concentra-
tions is greater than 5 min, compared with t1⁄2 � ln 2/koff �
14 s for C-SH2 alone.
Analysis of Tandem SH2/Phosphopeptide Interactions in

Competition Binding Experiments Establishes a Lower Limit on
the Cooperativity Parameter �—To further characterize the
cooperativity of tandem SH2/phosphopeptide binding, we ana-
lyzed the data of Harpur and colleagues (17), who assessed the
ability of Tyr(P)740, Tyr(P)751, andTyr(P)740/Tyr(P)751 peptides
to inhibit the binding of various p85 constructs (C-SH2, tan-
demSH2, as well as full-length) to a SPR chip bearing Tyr(P)751;
this experiment is recapitulated in our Model 2 (Fig. 3). In the
relatively simple case of C-SH2 and monophosphorylated pep-
tide as the competitor, the fractional occupancy of the immo-
bilized peptide sites, assumed to be small in number compared
with the SH2 molecules, is given by Equations 2–5.

Bound fraction �
Sfree

KD,C1 � Sfree
(Eq. 2)

Sfree �
b � �b2 � 4c�1/ 2

2
(Eq. 3)

b � ST � KD,Ci � CT (Eq. 4)

c � KD,CiST (Eq. 5)

Equations 2–5 show that the free SH2 concentration, Sfree,
depends on the total concentrations of both SH2 (ST) and the
peptide competitor (CT) and the KD of C-SH2 binding to the
competitor site (i � 1 for Tyr(P)751, i � 2 for Tyr(P)740). It was
assumed that ST was chosen to yield �50% surface occupancy
in the absence of competitor. Hence, good agreement with the
C-SH2 inhibition datawere foundwith ST �KD,C1 � 10 nM and
KD,C2 � 75 nM (Fig. 3A), and those parameter values were kept
the same in Fig. 3B, described below.

FIGURE 2. Binding properties of tandem SH2 constructs to immobi-
lized, bisphosphorylated peptides. Calculations were performed using
Model 1, assuming SH2 domain KD values characteristic of PI3K p85. Con-
stant parameter values were kon,C1 � kon,C2 � kon,N1 � kon,N2 � 1 �M

�1 s�1,
KD,C1 � KD,C2 � 50 nM, KD,N1 � KD,N2 � 1.5 �M. A, equilibrium binding
isotherms. The value of � was varied as indicated. B, structure types of
complexes formed with � � 100 �M (refer to Fig. 1C). C, tandem SH2
binding as a function of time (� � 100 �M), with t � 100, 200, 500, and
1,000 s.
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The experiments also showed that whereas each of the
monophosphorylated competitor peptides inhibits C-SH2 and
tandem SH2 binding with roughly the same potency, the
bisphosphorylated competitor peptide is more potent toward
tandem SH2 and full-length p85 binding, indicative of the
cooperative formation of ring structures; the inhibition curve
also exhibited amuch steeper dose response (17). Those results
are matched nicely by the Model 2 calculations when the value
of � is much greater than the N-SH2 affinity (� � �10 �M or
greater; Fig. 3B). Interestingly, the shape of the inhibition curve
is not attributable to the multivalent nature of the competitor
binding but rather to the near stoichiometric avidity of the
interaction. When the binding avidity is arbitrarily high, the
fractional occupancy of immobilized peptide (Equations 2–5) is
closely approximated by taking Sfree � ST � CT, or Sfree � 0
when the competitor is in excess (CT � ST), which produces the
characteristic steepness of the inhibition curve. A dramatic
reduction of ST, to a value well below the effective KD of ring
formation (Equation 1), eliminates this feature (results not
shown); however, doing so would reduce the fractional occu-

pancy on the surface in the absence of competitor, perhaps to
an unacceptably low level for SPR detection.
Analysis of Tandem SH2/Phosphopeptide Interactions in ITC

Measurements Establishes an Upper Limit on the Cooperativity
Parameter �—ITC experiments provide information about
molecular interactions throughmeasurements of heat liberated
upon serial injections of one solution into another (30). O’Brien
and colleagues (18) performed such experiments with full-
length p85, injecting increasing amounts of bisphosphorylated
Tyr(P)740/Tyr(P)751 peptide into the calorimeter; the net
energy change required tomaintain the systemat constant tem-
perature with each injection was plotted as a function of the
increasing molar ratio of peptide/p85. Two distinct changes in
the heat/injection were observed, one starting at a molar ratio
of �0.5 and another, more dramatic reduction induced at a
molar ratio of�1.0; at amolar ratio of 2.0, the heat releasedwas
near 0, indicating saturation of the SH2 domains. Based on
those molar ratios, a conceptual model was proposed in which
the predominant complex at lower peptide concentrations is
the 2:1 chain (Type III complex), whereas a 1:1 complex
(depicted as a Type II ring) dominates for molar ratios
approaching 1.0 (18).
Our calculated results (Model 3), which allow us to resolve

the various types of complexes, shed additional light on those
conclusions and provide further evidence for the magnitude of
� (Fig. 4). Based on a concentration of 10 �M p85 in the calo-
rimeter initially and given that 1.5 nmol of peptide was intro-
duced per injection, achieving amolar ratio of 2.0 after 16 injec-
tions of 15 �l each (18), the total concentrations of p85 and
peptide after each injection were determined. Thus, the total
peptide concentration increases from 1.2 �M after the first
injection up to 16.7 �M at the end; the p85 is diluted in the
process, with a final concentration of 8.3 �M. Based on those
concentrations, and using the same default KD values from Fig.
2, we determined the net changes in the amounts of complexes
after each injection. Changes in these amounts are related to
changes in enthalpy and thus the amount of energy required to
maintain constant temperature after each injection. For the
sake of simplicity, we adopt a thermodynamic model in which
the enthalpy change (	H) is a weighted sum of the numbers of
bonds formed with C-SH2 and N-SH2 (nCSH2 and nNSH2,
respectively), regardless of the structures of the complexes
formed.

	H � 	HCSH2nCSH2 � 	HNSH2nNSH2 (Eq. 6)

This is equivalent to assuming that the induced proximity effect
that distinguishes ring closure from chain extension equilibria
is attributed to a difference in conformational entropy.
At lower values of � (1 and 10�M), the calculated numbers of

high affinity C-SH2 bonds formed with each injection show the
characteristic plateau at lowmolar ratios, thereafter yielding to
formation ofN-SH2 interactions, whereas for higher values of�
(100 �M and 1mM), the plateau is absent (Fig. 4A). Using Equa-
tion 6 to calculate the heat release/injection and varying the
ratio of specific enthalpies (	HNSH2/	HCSH2), only � �
�10–30 �M correctly recapitulates the experimentally
observed hump in the heat/injection at molar ratios between

FIGURE 3. Evaluation of competition binding experiments. The calcula-
tions were performed using Model 2 (see “Experimental Procedures”). A, inhi-
bition of monovalent p85 C-SH2 domain binding to Tyr(P)751 of PDGF �-re-
ceptor by different competitor peptides as indicated. Fig. 6A of Ref. 17 was
recapitulated with ST � KD,C1 � 10 nM and KD,C2 � 75 nM, where ST is the total
concentration of C-SH2. B, inhibition of p85 tandem SH2 construct by differ-
ent competitor peptides as indicated. In the case of the bisphosphorylated
competitor, the value of � is varied as indicated. Fig. 6 (B and C) of Ref. 17
compares favorably with these results when � � 10 �M.
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0.5 and 1.0 (Fig. 4B and supplemental Fig. S1). Allowing the
individual KD parameters to adopt various values within
the reported ranges yielded similar results (supplemental
Fig. S1).
Further analysis of the complexes formed revealed that when

the molar ratio is between 0.5 and 1, � � 1 �M produces a
mixture of extended chain structures, whereas � � 10 �M leads
predominantly to the formation of ring structures. In both
cases, there is a shift to 1:2 (Type IV) chains as themolar ratio is
increased above 1.0. In contrast, with� � 100�M, the shift from
Type III chains to Type II rings proceeds steadily for molar
ratios up to 1.0, and with � � 1mM, the Type II ring structure
dominates throughout the hypothetical ITC run (supple-
mental Fig. S2). Taking the results of this and the previous
sections together, it is suggested that the order of magnitude
value of �, characterizing the cooperativity of both SH2
domains of PI3K p85 engaging bisphosphorylated peptides
derived from PDGF �-receptor, is 10 �M.
To What Extent Can Dimerization of p85 Stabilize p85

Binding to Bisphosphorylated Peptide?—It has been shown
that purified PI3K p85 dimerizes in vitro via a Src homology
3 (SH3) domain/proline-rich sequence interaction, esti-
mated to be of micromolar affinity, perhaps aided by a sec-
ond, lower affinity interaction (17, 31, 32). These domains
are not present in truncated, p85-derived tandem SH2 con-
structs, but in the context of full-length p85, we were curious
as to how p85 dimerization might affect p85 interactions
with the bisphosphorylated Tyr(P)740/Tyr(P)751 peptide
(Fig. 5). In the corresponding model, Model 4, p85 dimeriza-
tion is treated as a single interaction with KD � 1 �M in
solution. As inModel 1, the phosphopeptide is assumed to be
immobilized at low density. Here, the structural constraints

governing the formation of Type II rings are distinguished
from those governing ring formation via dimerization of p85
molecules attached to the same peptide chain, characterized
by distinct values of � (�SH2 and �dimer, respectively). The
principle of detailed balance dictates that �dimer also applies
to the cyclization of ring structures via one of the two unoc-
cupied SH2 domains of a p85 molecule already dimerized
with another, peptide-bound p85 molecule.
Assuming a value of �SH2 � 10 �M, consistent with the anal-

ysis in the previous sections, the calculations show that p85
dimerization can improve binding avidity at low nanomolar
concentrations, but only when rings involving dimers are not
subject to significant constraints; �dimermust be in themillimo-
lar range (Fig. 5A). With low values of �dimer, comparable with
�SH2, the binding avidity is not substantially enhanced beyond
what is achieved through Type II ring formation (compare
with Fig. 2A). Ring structures with dimerized p85 molecules
are found in proportion to the free p85 concentration
squared, which is manifested in the steepness of the binding
isotherm at low p85 concentrations. At p85 concentrations
that are far in excess of the dimerization KD, complexes with
stoichiometry approaching 4:1 (two p85 dimers/peptide) are
found. This model was also adapted to examine the binding
of a p85 variant with the N-SH2 domain deleted (Fig. 5B).
Here, the only ring structure that can form is the 2:1 complex
with the p85 molecules dimerized. Comparing the isotherm
with that of wild-type p85 in Fig. 5A, it is apparent that such
rings are the predominant structure at low concentrations of
p85 if �dimer is sufficiently high. Under those conditions, the
N-SH2 domain is dispensable for binding to the bisphospho-
rylated motif.

FIGURE 4. Evaluation of ITC experiments. The calculations were performed using the solution phase binding model (Model 3). In ITC experiments performed
by O’Brien et al. (18), 16 aliquots of bisphosphorylated Tyr(P)751/Tyr(P)740 peptide were added sequentially to a fixed amount of p85 in solution, eventually
reaching a molar ratio of 2.0 peptide molecules/p85. Total p85 and peptide concentrations were determined as described in the main text, and single-site KD
values are as assumed in Fig. 2. The value of � is given above each set of panels. A, net change in the numbers of C-SH2 and N-SH2 bonds formed with each
injection of peptide. B, hypothetical enthalpy change with each injection of peptide, with 	HCSH2 � �60 kJ/mol for C-SH2 bonds, and various ratios of
	HNSH2/	HCSH2; the curves in gray are with 	HNSH2/	HCSH2 � 0.2, 0.4, 0.6, and 0.8.
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DISCUSSION

In vitromeasurements using purified components are pred-
icated on the notion that they are indicative of interactions in
cells, and they afford obvious advantages. However, when an
interaction involvesmore than one discrete step, and especially
when complexes of varying stoichiometry can form, the inter-
pretation of the measurements can be challenging and perhaps
misleading. Reconciling data obtained using different assay
designs and platforms only adds to that challenge; here, we used
kinetic, rule-basedmodels to accomplish this goal. Interactions
between the tandem SH2 domains of PI3K p85 regulatory sub-
unit and its bisphosphorylated binding site in PDGF�-receptor
were analyzed in detail, and the cooperativity of the SH2
domains in forming a high avidity ring complex was evaluated
in terms of the concentration factor, �. Analysis of SPR and ITC
measurements, which differ with respect to peptide configura-
tion (immobilized versus soluble) and species concentrations

(nanomolar versus micromolar), yielded a consistent order of
magnitude estimate of � � �10 �M. Significantly lower values
do not yield the effective KD values reported for tandem SH2
binding to Tyr(P)740/Tyr(P)751 (16, 18), nor do they give the
extent of inhibition observed in competition binding assays
(17). Significantly higher values promote ring formation even
when one of the components is in micromolar excess, in clear
disagreement with ITC measurements (18).
The estimate of � obtained for p85 tandem SH2 binding is 3

orders of magnitude lower than the value anticipated based on
simple search volume considerations, indicating significant
structural constraints. Consistent with this conclusion, a
worm-like chain model of peptide binding shows that consid-
eration of the peptide flexibility alone can yield � values in the
low micromolar range (27). However, in experiments in which
the length of the peptide spacer sequence between Tyr(P) sites
was varied, peptide stimulation of PI3K kinase activity in vitro
was apparently able to tolerate a reduction of the spacing to 6
residues (33); based on this assertion, the worm-like chain
model produces a significantly higher estimate of � � �10 mM
(27). It seems clear that factors other than peptide flexibility,
such as the conformational dynamics of the tandem SH2 con-
struct (34) and the nature of the peptide residues flanking the
Tyr(P) sites (35) and other peptide residues, must contribute to
the structural constraints of the interaction.
Although still sufficient to enhance the binding of the tan-

dem SH2 construct, the cooperativity of bisphosphorylated
peptide recognition is deemed to be relatively weak, which has
a number of implications for PI3K interactions with PDGF
receptors in cells. Absent from experiments with receptor-de-
rived peptides are the activities of the receptor tyrosine kinase
and nonreceptor tyrosine kinases that associate with activated
receptors. That is significant because p85 is tyrosine-phospho-
rylated in cells stimulated with PDGF, on a site that engages the
N-SH2 domain (36, 37). Although it is presently unclear
whether or not that interaction is intramolecular (which might
lend further insights into the conformational dynamics of the
p85 SH2 domains), what is clear is that the role of the interac-
tion is to relieve the autoinhibition of PI3K catalytic activity. In
our previous analysis of Shp2, which is regulated by its N-SH2
domain in a related fashion, it was shown that Shp2 phospho-
rylation and intramolecular N-SH2 binding gives rise to a
receptor binding avidity that lies between two extremes; one of
these is the case in which phosphorylation does not occur, and
the other is the case where the N-SH2 is completely buffered
from receptor binding (13). The modest value of � for p85/
receptor binding might represent a compromise between a
need for selective recognition of activated PDGF receptors, as
PI3K is recruited from the cytosol, and a need for displacement
of N-SH2 from the receptor after p85 is phosphorylated.
If the above is true, then the implication is that the N-SH2

domain does not contribute to PDGF receptor binding in cells
to the same extent as it does to binding of bisphosphorylated
peptide in vitro. Indeed, it has been shown that removing the
N-SH2 domain of p85 does not alter its binding to PDGF recep-
tors, but intriguingly, neither doesmutation of the phosphoryl-
ation site (36, 37), suggesting that the N-SH2 domain is dispen-
sable for receptor binding. PI3K and PDGF receptor bind

FIGURE 5. Effect of p85 dimerization on binding to immobilized, bisphos-
phorylated peptides. The calculations were performed using the immobi-
lized phosphopeptide with p85 dimerization model (Model 4). Self-associa-
tion of the dimerization domain in solution is characterized by a dissociation
constant KD,dimer � 1 �M, and formation of Type II rings (Fig. 1C) is distin-
guished from other ring closure transitions by assignment of distinct � values,
�SH2 and �dimer, respectively (as explained in the text). KD values for the C-SH2
and N-SH2 domains are the same as in Figs. 2 and 4. A, equilibrium binding
isotherm of full-length p85, relative to C-SH2 or N-SH2 alone, with �SH2 � 10
�M and �dimer varied as indicated. B, same as A, but with N-SH2 deleted from
p85; the value of �dimer is varied as indicated.
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extraordinarily tightly (38), and PI3K signaling stimulated by
PDGF is saturated at much lower concentrations than is PDGF
receptor phosphorylation (39, 40), suggesting that interactions
other than C-SH2 binding to the receptor are required to sta-
bilize the complex. Our model calculations show that p85
dimerization, whether by SH3 domain/proline-rich sequence
or N-SH2/phosphotyrosine interactions, could carry out this
function, in a manner that renders the N-SH2 domain dispen-
sable. In the context of PDGF receptor binding in cells, it is
important to consider also the dimerization of PDGF receptors.
This configuration might contribute parallel binding sites for
the C-SH2 domains of two dimerized p85 molecules, such that
the complex is less structurally constrained than in the case of
binding to a single peptide or receptor molecule. Of course,
interactions of the SH3 and proline-richmotifs with othermol-
ecules (31), not to mention those of the catalytic subunit with
substrate and possibly other binding partners, could also con-
tribute to the stability of PI3K recruitment in cells.
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