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ARTICLE

Multifactor Dimensionality Reduction–Phenomics: A Novel
Method to Capture Genetic Heterogeneity with Use
of Phenotypic Variables
H. Mei, M. L. Cuccaro, and E. R. Martin

Complex human diseases do not have a clear inheritance pattern, and it is expected that risk involves multiple genes
with modest effects acting independently or interacting. Major challenges for the identification of genetic effects are
genetic heterogeneity and difficulty in analyzing high-order interactions. To address these challenges, we present MDR-
Phenomics, a novel approach based on the multifactor dimensionality reduction (MDR) method, to detect genetic effects
in pedigree data by integration of phenotypic covariates (PCs) that may reflect genetic heterogeneity. The P value of the
test is calculated using a permutation test adjusted for multiple tests. To validate MDR-Phenomics, we compared it with
two MDR-based methods: (1) traditional MDR pedigree disequilibrium test (PDT) without consideration of PCs (MDR-
PDT) and (2) stratified phenotype (SP) analysis based on PCs, with use of MDR-PDT with a Bonferroni adjustment (SP-
MDR). Using computer simulations, we examined the statistical power and type I error of the different approaches under
several genetic models and sampling scenarios. We conclude that MDR-Phenomics is more powerful than MDR-PDT and
SP-MDR when there is genetic heterogeneity, and the statistical power is affected by sample size and the number of PC
levels. We further compared MDR-Phenomics with conditional logistic regression (CLR) for testing interactions across
single or multiple loci with consideration of PC. The results show that CLR with PC has only slightly smaller power than
does MDR-Phenomics for single-locus analysis but has considerably smaller power for multiple loci. Finally, by applying
MDR-Phenomics to autism, a complex disease in which multiple genes are believed to confer risk, we attempted to
identify multiple gene effects in two candidate genes of interest—the serotonin transporter gene (SLC6A4) and the integrin
beta 3 gene (ITGB3) on chromosome 17. Analyzing four markers in SLC6A4 and four markers in ITGB3 in 117 white
family triads with autism and using sex of the proband as a PC, we found significant interaction between two markers—
rs1042173 in SLC6A4 and rs3809865 in ITGB3.
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Mendelian genetics explains the relationship between
phenotype and genotype in many single-gene disorders,
and these genes can be efficiently detected by linkage and
association analyses.1 However, the majority of human
diseases, including diabetes, ischemic heart disease, and
autism (MIM 209850), are complex with ambiguous in-
heritance patterns, generally accounted for by many loci
of multiple genes, at each of which common alleles typ-
ically have only small or modest individual effects.2 Com-
plex diseases are well known for genetic heterogeneity,3

in which a single disease phenotype is caused by several
different variants within a gene or in multiple genes. In
addition, gene-gene and gene-environment interactions
are believed to play a role in common complex disease.
These complicating factors have made the identification
of disease genes in complex diseases challenging. Suc-
cessful analysis methods must attack the problem of ge-
netic heterogeneity and must evaluate interactions in-
volving multiple genes simultaneously.

Many statistical methods can be used to test for inter-
actions. Standard parametric methods are limited when
testing interactions between many factors (e.g., genetic

markers) because of the large number of parameters to be
estimated; therefore, nonparametric methods, which do
not require specific statistical and genetic models (i.e., es-
timates of parameters or assumption of inheritance pat-
tern), are better suited than are parametric methods to
searching for gene effects in high-dimensional data sets
of complex diseases.4 However, nonparametric methods
and parametric methods still face the challenge of sepa-
rating the signal of a gene effect in high-dimensional data
from increased noise. A common technique applied in
high-dimensional data is dimension reduction. Multifac-
tor dimensionality reduction (MDR), a nonparametric ap-
proach based on this technique, was developed to search
for gene-gene and gene-environment interactions by iden-
tification of a multilocus model for association, with the
use of dichotomous disease status.5–8 Compared with clas-
sic logistic-regression analysis, MDR has greater power for
testing interaction among high-dimensional and corre-
lated predicators.9 Previous studies of sporadic breast can-
cer with 10 polymorphisms showed that MDR successfully
identified significant interaction in the absence of a de-
tectable main effect by logistic regression.5 In an analysis
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of myocardial infarction,10 MDR gave interaction models
consistent with those identified by logistic regression.

MDR reduces dimensionality of multilocus genotype in-
formation to a one-dimensional factor with two levels—
“high-risk” and “low-risk” genotypes. The model for the
effect of high-risk and low-risk genotypes is trained and
validated by cross-validation, and the P value is obtained
using a permutation test. MDR has successfully identified
gene-gene interactions in sporadic breast cancer,5 essential
hypertension,11 atrial fibrillation,12 and type 2 diabetes.13

Further, MDR has been extended to include alternative
statistics and permutation tests (extended MDR [EMDR])14

and the analysis of family data (MDR pedigree disequilib-
rium test [MDR-PDT]).15

Genetic heterogeneity is often expressed as clinical
heterogeneity. Although the effects may be subtle, vari-
ation in particular clinical phenotypic covariates (PCs)
may reflect differences in the underlying genetic causes
of disease. One common approach to attacking genetic
heterogeneity is to stratify a sample on the basis of PCs
and conduct genetic analyses within strata. This approach
poses two challenges. First, definitions of strata may be
ad hoc and based on clinical intuition. Second, such a
stratified analysis requires adjustment for multiple tests
(e.g., Bonferroni correction); however, if there are many
PC levels (resulting in many strata), this correction can
lead to a loss in power.

In this article, we describe MDR-Phenomics, a novel
method for the identification of genetic effects within
triad families (an affected offspring and parents) by in-
tegration of PCs into MDR. MDR-Phenomics integrates
dimensionality reduction with the extended features of
MDR-PDT and EMDR. We conducted simulation studies
to compare the power of MDR-Phenomics with that of
MDR-PDT and stratified phenotype MDR-PDT (SP-MDR).
SP-MDR identifies genetic effects within each PC level by
MDR-PDT and adjusts for multiple tests with the use of a
Bonferroni correction.

To further test MDR-Phenomics, we analyzed candidate
genes in autism, a complex disease characterized by social
impairments, language difficulties, and unusual or repet-
itive behaviors.16,17 Clinical symptoms of autism vary dra-
matically within these domains. Although many candi-
date genes have been identified by different methods (i.e.,
molecular genetic experiments and linkage and associa-
tion studies), there have been problems with replication.
A major difficulty in identifying disease genes in autism
is genetic heterogeneity, which may be reflected in vari-
able clinical symptoms. We applied MDR-Phenomics to
identify multiple gene effects in autism candidate genes—
the serotonin transporter gene (SLC6A4) and the integrin
beta 3 gene (ITGB3) on chromosome 17.

Material and Methods
MDR-Phenomics

Beginning with the assumption that there are N loci genotyped
in a triad-family data set, MDR-Phenomics identifies genetic ef-

fects by testing whether a significant K-locus model exists. A K-
locus model (where K is an integer, ) refers to a com-K p 1,2,3, …
bination of genotypes at a subset of K loci of the N total loci. The
null hypothesis of MDR-Phenomics is that combinations of ge-
notypes in a K-locus model are randomly transmitted to affected
individuals. A significant K-locus model is identified by exten-
sively searching all K-locus models and applying a permutation
method to estimate the P value. For a triad family with an affected
child, we can generate a matched pair of transmitted (T) and
nontransmitted (U) observations that represent the genotypes
transmitted and not transmitted to the affected child. For ex-
ample, with the assumption of parental genotypes AaBb and
Aabb, if the genotype of the affected child is aaBb, then the
matched pair of observations is and . If aT p aaBb U p AAbb
combination of genotypes of the K loci either directly affect dis-
ease risk or are in linkage disequilibrium (LD) with true disease
loci, then the transmission will be associated with a K-locus
model. MDR-Phenomics includes two procedures, MDR and phe-
nomic analysis, to assess association of a K-locus model with
transmission and the “effect” of PCs on the association—that is,
the different (or heterogeneous) strength of association across PC
levels.

Multilocus analysis considers a subset of K diallelic loci (K �

). There will be genotypes for K loci, and, even if K is small,KN 3
there may still be few observations for each genotype category
(i.e., sparse data). To address this problem, traditional MDR pools
multilocus genotypes into high-risk and low-risk groups, reducing
the genotype predictors from N dimensions to one dimension.5

In traditional MDR, a genotype is labeled “high risk” if the case:
control ratio meets or exceeds some threshold or is labeled “low
risk” otherwise. In the MDR procedure implemented in MDR-
Phenomics, we define the case:control ratio as the ratio of the
number of times that a genotype is transmitted to an affected
child to the number of times that a genotype is not transmitted
to an affected child. Application of the Bayes classifier18 gives a
threshold of 1.0 for a data set composed entirely of triad families;
thus, a genotype is classified as “high risk” if its classification
ratio exceeds 1.0 or as “low risk” otherwise.

By the Bayes classifier, the K-dimensional variable X repre-
senting genotypes from K loci can be transformed to one-dimen-
sional variable G, where codes for high-risk genotype andG p h

for low-risk genotype. We define variable Y as an indicatorG p l
for transmission status of a high-risk or low-risk genotype, where

codes for transmission and for nontransmission;Y p 1 Y p 0
then, the sum of Y is assumed to follow a binomial distribution
for both high-risk and low-risk genotypes. To measure the
strength of association between Y and G, the C statistic is cal-
culated using a form of the goodness-of-fit test statistic, which
tests whether the conditional distribution of Y given (i.e.,G p h

) is equivalent to the marginal distribution of Y (i.e.,P(YFG p h)
). For a triad family, transmitted and nontransmitted statusP(Y)

can always be generated ( ). If G is as-P(Y p 1) p P(Y p 0) p .5
sociated with Y, and areP(Y p 1FG p h) 1 .5 P(Y p 1FG p l) ! .5
expected. Since stronger association between allelic transmission
and disease generally results in a larger C statistic, the C statistic
can be used to measure allelic association. However, the C statistic
may not follow a distribution under the null hypothesis of no2x

allelic association.
In the phenomics procedure, an analysis of variance (ANOVA)

model is applied to test whether the strength of association be-
tween Y and G is the same within PC levels—in other words, the
“effect” of PCs on association between Y and G. With the as-
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sumption that L is the number of PC levels and is the numberni

of families in the ith PC level ( ), the ANOVA modeli p 1,2, … ,L
is

D p m � P � E ,ij i ij

where , , and , where “iid”2i p 1,2, … ,L j p 1,2, … ,n E ∼ iid n(0, j )i ij

means “identically and independently distributed.”
The response variable (as a function of in the ithD YFG p hij

PC level and the jth family) is calculated as the number of times
a high-risk genotype is transmitted minus the number of times
a high-risk genotype is not transmitted. is a measure of as-Dij

sociation, since stronger association between Y and G leads to a
larger expected value of . The parameters m and are unknown,D Pij i

where m is the expected value of when no PC “effect” existsDij

and is the “effect” of the ith PC level on . The standard FP Di ij

statistic for the ANOVA model tests the null hypothesis that
(i.e., , and the mean ofP p (P ,P , … ,P ) p (0,0, … ,0) E(D ) p mH0 1 2 L ij

is m for all P levels). It measures the effect of PC on associationDij

between Y and G (i.e., ). The F statistic is calculated as the ratioDij

of the estimated mean squared error (MSE) between the PC levels
to that within PC levels:

Estimated MSE between PC levels
F p

Estimated MSE within PC levels

2L ¯ ¯(D � D )i� ��� n #i
ip1 L � 1

p ,2L n ¯i (D � D )ij ��� �
ip1 jp1 N � L

where

ni DijD̄ p ,�i� njp1 i

L ni DijD̄ p ,���� Nip1 jp1

and

L

N p n .� i
ip1

A larger F value indicates a bigger difference of mean acrossDij

PC levels. The traditional ANOVA test assumes that the random
errors, , are identically and independently distributed normalEij

random variables, under which the F statistic follows the F dis-
tribution. In MDR-Phenomics, this assumption is not necessary,
since a permutation test is used to estimate the empirical distri-
bution of the F statistic.

Finally, we calculate the MDR-Phenomics statistic as the prod-
uct of the statistics C and F; . The M statistic integratesM p C # F
two types of information: (1) the association between transmis-
sion status (Y) and genotype (G), as measured by the C statistic,
and (2) the effect of the PC on association, as measured by the
F statistic.

To test whether there is a significant genetic effect from a K-
locus model, MDR-Phenomics uses a permutation procedure. This
procedure calculates the observed M statistic for each K-locus

model in the observed triad family data. By comparing the ob-
served M statistic of every K-locus model to an empirical distri-
bution of the M statistic based on permuting the data to simulate
the null hypothesis, MDR-Phenomics can identify those K-locus
models with significant P values. The empirical distribution is
generated using the nonfixed permutation test implemented in
EMDR14 and MDR-PDT.15 The nonfixed permutation test ran-
domly shuffles the transmission status in every triad family, with
genotypes and PCs fixed, to generate a large number of permuted
data sets (e.g., 1,000). To adjust for multiple tests, the nonfixed
permutation test selects the largest M statistic among all K-locus
models in every permuted data set as the permuted statistic, to
simulate the empirical distribution of M. The P value of a K-locus
model is the percentage of permuted statistics equal to or larger
than the observed M statistic. A small P value (e.g., ) in-P � .05
dicates significant genetic association between the K-locus model
and transmission status within at least one PC level.

Figure 1 summarizes the MDR-Phenomics algorithm applied in
searching for genetic effects from all one-locus models. The data
set contains N loci and, therefore, N possible one-locus models.
The algorithm begins at step 1, with the selection of a one-locus
model. This is followed by step 2, dimension reduction to classify
high-risk and low-risk genotypes for the selected one-locus model.
As shown in figure 1, genotypes 11 and 12 are classified as “high
risk,” since their classification ratios (130:110 and 119:98, re-
spectively) are 11.0. Genotype 22 is classified as “low risk,” since
the estimated ratio (25:30) is !1.0. In step 3, a contingency table
is created, and a C statistic is calculated (1.616). This statistic
indicates the strength of association between genotypes at the
locus and their transmissions. In step 4, a PC with three levels is
integrated into the analysis with use of an ANOVA model, with
a resulting F statistic (1.698). This step estimates the effect of PCs
on association in step 3. Step 5 involves calculation of the M
statistic by multiplying the C and F statistics. Through repetition
of steps 1–5, M statistics were calculated for all one-locus models.
The nonfixed permutation test in step 6 generates the empirical
distribution of M for a one-locus model while adjusting for N
multiple tests, thus providing an adjusted P value for each of the
one-locus models.

Analysis of Power and Type I Error for One-Locus Models

Type I error and power were estimated using the SIMLA software
program19 to generate simulated data sets. Type I error and power
were estimated as the percentage of simulated data sets with

under the null (H0) and alternative (H1) hypotheses, re-P � .05
spectively. We used SIMLA to generate data sets, assuming one
of three disease models—dominant (fig. 2A), recessive (fig. 2B),
or multiplicative (fig. 2C). Each data set contained four loci and
consisted of two groups of triads, N1 and N2. Genetic hetero-
geneity in the data sets was simulated by mixing triads from group
N1 and group N2. The frequencies of alleles (wild-type [�] and
disease [d]) at locus D in group N1 and group N2 are given in
fig. 2D. In the triads from group N1, locus 1 was simulated with
a genetic effect, and loci 2–4 without any effect (fig. 2E and 2F).
In the triads from group N2, all four loci were simulated without
a genetic effect (fig. 2F). Groups N1 and N2 were differentiated
with different PC values, and every PC level had an exactly equal
number of nuclear families.

Sixteen data sets (table 1), each containing 1,000 replicates,
were generated with different disease models, sample sizes, and
numbers of PC levels. We analyzed every data set with MDR-PDT,
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Figure 1. Step 1, The first locus is selected from N loci for testing. Step 2, Three genotypes—11, 12, and 13—have case:control
ratios for transmission (T) versus nontransmission (U) of 130:110, 119:98, and 25:30, respectively. Therefore, genotypes 11 and 12
were “high-risk,” with the ratio 11.0, and genotype 22 was “low-risk,” with the ratio�1.0. Classification ratios of genotypes are
calculated in each PC level too. Step 3, The C statistic is calculated in a two-by-two table, to evaluate the association of that one-
locus model with transmission. Step 4, The number of families with high-risk genotypes and the sum of the D statistics are listed for
each PC level. F is calculated to estimate the PC “effect” on D. Step 5, The M statistic is calculated by the weighting process. Step 6,
The nonfixed permutation test generates the empirical distribution of the M statistic and the P value of each one-locus model.

SP-MDR, and MDR-Phenomics. MDR-PDT is the extension of
MDR for the analysis of pedigree genotype data with use of the
PDT statistic,20 and it does not consider PCs. The SP-MDR method
applies MDR-PDT to analyze the data set stratified by PCs and
applies a Bonferroni adjustment to correct for the number of
PC levels. The power and type I error are Pr (P � aFalternative

and , respectively. Supposehypothesis) Pr (P � aFnull hypothesis)
a PC has L levels. To keep the experimentwise type I error !0.05,
we select for MDR-PDT and MDR-Phenomics anda p 0.05 a p

for SP-MDR within each PC level corresponding to Bon-0.05/L
ferroni adjustment. Since locus 1 was simulated with a genetic
effect, the percentage of data sets with for this locus esti-P � a

mates power. Similarly, loci 2, 3, and 4 were simulated as unas-
sociated with disease, and the percentage of data sets with P �

estimates type I error.a

Analysis of Multilocus Effect

To test high-order interaction, 100 replicates of data set 1 were
used, and an additional four loci (loci 5–8) were added to generate
two two-locus interactions. The interaction models, interaction
model 121 and interaction model 213 described by Ritchie,7 were
modified to give weak two-locus interaction in the absence of
main effects, by setting the penetrances of genotypes as shown
in table 2. The interaction between loci 5 and 6 and the inter-
action between loci 7 and 8 were simulated in the same data set
with use of the modified interaction models 1 and 2, respectively
(table 2); thus, disease risk in the data set is determined by two
interactions involving loci [5 6] and [7 8] and one main effect at

locus 1. To generate heterogeneity, these genetic effects are sim-
ulated in group N1 but not in group N2. Power and type I error
based on 100 replicate data sets were calculated as above.

Conditional Logistic-Regression (CLR) Analysis of Interaction

CLR can assess the interaction among multiple loci and risk fac-
tors (e.g., an environmental factor or other covariate) by testing
the rate of allelic transmission to exposed probands versus un-
exposed probands. This classic approach was first proposed by
Harley et al.22 It was then successfully applied to extend the
transmission/disequilibrium test (TDT) for testing gene-environ-
ment interactions.23 For each parent in a parent-proband triad, a
matched pair of “case” and “pseudocontrol” is generated. Since
a matched pair has an identical environmental risk factor (i.e.,
equal covariate effect), interaction between a biallelic locus and
a risk factor (RF) can be modeled as

P(transmission)
log [ ]1 � P(transmission)

p a � b (allele M ) � b (allele M # RF) .1 i RF i

Consistent with Maestri’s notation,23 allele and RF are codedMi

as 1 if allele of the locus and risk factor are present, respectively.Mi

Otherwise, they are coded as 0. The coefficients in the CLR model
are estimated by maximizing the likelihood, and rejection of

indicates a significant interaction between the tested lo-b p 0RF

cus and risk factor.
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Figure 2. Disease models and allele frequencies

Table 1. Disease Model, Sample Size, and PC of
Simulated Data

Data
Set

Disease
Modela

No. of
Families in

Possible PC Values of
Proband in

N1 N2 N1 N2

1 1 500 500 1, 2, 3, 4 5, 6, 7, 8
2 1 500 1,000 1, 2, 3, 4 5, 6, 7, 8
3 1 500 2,000 1, 2, 3, 4 5, 6, 7, 8
4 1 500 500 1, 2 3, 4
5 1 500 1,000 1, 2 3, 4
6 1 500 2,000 1, 2 3, 4
7 1 1,000 500 1, 2, 3, 4 5, 6, 7, 8
8 1 2,000 500 1, 2, 3, 4 5, 6, 7, 8
9 1 1,000 500 1, 2 3, 4
10 1 2,000 500 1, 2 3, 4
11 2 500 500 1 2
12 2 1,000 500 1 2
13 2 1,000 1,000 1 2
14 3 500 500 1 2
15 3 500 500 1, 2 3, 4
16 3 500 500 1, 2, 3, 4 5, 6, 7, 8

NOTE.—Each data set contained 1,000 replicates.
a 1 p dominant; 2 p recessive; 3 p multiplicative.

To test interaction among K loci depending on a PC with L
levels, the CLR model above can be extended to include the high-
est-order interaction among them, all lower-order interaction
terms, and K covariates:

P(transmission)
log [ ]1 � P(transmission)

K

p a � b (allele M )� j ji
j�1

kK�L

� b I(PC p t) (allele M )� �t ji[ ]j�1tpK�1

�(all lower interaction terms) .

Allele is 1 if allele is present in the jth locus and is 0M Mji i

otherwise. is 1 if the proband is “exposed” to the tthI(PC p t)
level of the PC. A significant interaction among K loci and the
PC can be tested by comparing the likelihoods with H0:b pK�1

versus H1:at least one is not 0, whereb p … p b p 0 BK�2 K�L t

.t p K � 1,K � 2, … ,K � L
To evaluate the power of CLR for testing interaction under het-

erogeneity, we simulated 100 replicates of data set 1 (table 1),
including a main effect of locus 1, interaction between loci 5 and
6, and interaction between loci 7 and 8 in particular levels of the
PC. The power of CLR is the percentage that have the P value of
an interaction �.05.

Analysis of Autism Data

A number of candidate genes have been implicated in autism.
Two interesting candidates, both on chromosome 17 and related
to serotonin function, are the serotonin transporter (SLC6A4)
and integrin beta 3 (ITGB3) genes. The serotonin transporter en-
coded by SLC6A4 mediates the accumulation of the neurotrans-
mitter serotonin in neurons, platelets, and other cells, which in
turn regulates emotions and responsiveness.24,25 Polymorphisms
in SLC6A4 have been reported to be associated with autism, al-
though these findings have not been consistently replicated.26

ITGB3 encodes glycoprotein IIIa (ITGB3 [MIM 173470]), the beta
subunit of the platelet membrane–adhesive protein receptor com-

plex GPIIb/IIIa. ITGB3 and SLC6A4 were both identified as QTLs
for serotonin levels in male subjects.27 To identify potential ge-
netic effects of these genes on autism, we analyzed 117 white
family triads ascertained by the Duke Center for Human Genetics
and previously genotyped for four markers in SLC6A4 and four
markers in ITGB3 (table 3). We used MDR-Phenomics, with the
sex of the proband as a PC, as well as MDR-PDT and SP-MDR.
Tests of Hardy-Weinberg equilibrium (HWE) and LD were con-
ducted using the GDA28 and GOLD29 software.

In the analysis of autism data, we followed a conditional search-
ing strategy, in which a higher-dimensional locus model is tested
only when no significant lower-dimensional locus model exists.
With this strategy, a significant high-dimensional model suggests
the existence of interaction not from the main effects of the low-
dimensional model. For MDR-Phenomics and MDR-PDT, we set
the threshold of as the significance level. With a Bon-a p 0.05
ferroni adjustment applied, the threshold is for SP-a p 0.025
MDR, since sex as the PC has two levels.
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Table 2. Interaction Models

Model and
Genotype

Penetrance for Genotypes

BB Bb bb

1:
AA .05 .10 .05
Aa .10 .05 .10
aa .05 .10 .05

2:
AA .03 .03 .1
Aa .03 .05 .03
aa .1 .03 .03

NOTE.—Multilocus penetrance functions and allele
frequencies are defined to simulate two-locus inter-
action in the absence of main effects. p and q are the
allelic frequencies of A and B, respectively, where

and .p p .5 q p .5

Table 3. Genes and Markers in
Autism Data

Gene and Marker Locus

SLC6A4:
rs1042173 1
rs140700 2
17P6713SLC6A4 3
5HTTLPR 4

ITGB3:
hcv1709582 5
rs5918 6
rs5919 7
rs3809865 8

NOTE.—All markers are on chromosome 17.

Results
Power and Type I Error of the One-Locus Model

The results of studies of type I error and power are listed
in table 4. Power is defined as the percentage of locus 1
detected to be significant ( ) among 1,000 replicates,P ! a

whereas elementwise type I errors Ele-a2, Ele-a3, and Ele-
a4 are the percentages of loci 2, 3, and 4, respectively,
determined to be significant among 1,000 replicates. Type
I error of locus 1, Ele-a1*, was calculated in group N2 too.
The experimentwise type I error, Exp-a, is the percentage
of any of locus 2, 3, or 4 detected to be significant among
1,000 replicates. We first analyzed data sets 1–10 (table 4),
simulated under a dominant disease model. The results
were further validated in the remaining six data sets sim-
ulated under different disease models (table 4). We see that
the elementwise type I errors (Ele-a1, Ele-a2, Ele-a3, and
Ele-a4) for all 16 data sets are much smaller than 0.05
because of the adjustment for multiple tests by nonfixed
permutation. The experimentwise type I errors are, on av-
erage, !0.05. The reason is that the nonfixed permutation
test adjusts for tests of four loci (loci 1–4), but only loci
2–4 are simulated without association, and experiment-
wise type I error (table 4) is calculated as the percentage
of any locus (loci 2–4) that has . Since loci are sim-P � .05
ulated as independent, we expected an elementwise type
I error ∼0.0125 (0.05/4) and an experimentwise type I error
∼0.0375 (0.0125#3); the results are consistent with these
expectations.

The power analysis indicates that MDR-Phenomics has
greater power than both SP-MDR and MDR-PDT in the
majority of the 16 data sets. The only exceptions were
data sets 8 and 10, in which each of the three methods
has power close to 1.0. Data sets 1–3 and 4–6 have un-
changed sample size in group N1 but varying sample size
in group N2. We see that power decreases for all three
methods (SP-MDR, MDR-PDT, and MDR-Phenomics) with
increasing size of group N2. Power decreases more precip-
itously for the MDR-PDT analysis that does not use PC
information to help distinguish groups N1 and N2. Data
sets 1, 7, and 8 and data sets 4, 9, and 10 have increasing

sample size in group N1, whereas sample size is unchanged
in group N2. These results show that power increases as
the size of group N1 increases for each of the three meth-
ods, with the power of MDR-PDT and SP-MDR getting
closer to the power of MDR-Phenomics as group N1 begins
to dominate the sample. We verified these conclusions in
data sets 11, 12, and 13 simulated with the recessive dis-
ease model, where data set 12 has double the sample size
of data set 11 in group N1 and equal sample size in group
N2 and where data set 13 has double the sample size of
data set 12 in group N2 and equal sample size in group
N1.

For MDR-Phenomics and SP-MDR, the number of PC
levels affects power too. Since MDR-PDT does not consid-
er phenotypic information, its power is not affected by
changes in levels of PC. In five pairs of data sets (data sets
1 vs. 4, 2 vs. 5, 3 vs. 6, 7 vs. 9, and 8 vs. 10), both MDR-
Phenomics and SP-MDR had less power when the number
of PC levels was larger; the power of MDR-PDT was gen-
erally unaffected by PC. The effects of PC levels on the
power of MDR-Phenomics were validated again in data
sets 14, 15, and 16 simulated in a multiplicative disease
model.

When the number of PC levels is large (e.g., eight),
MDR-Phenomics has much better power than that of
SP-MDR, which uses Bonferroni adjustment for multiple
tests. In the examples here, MDR-Phenomics shows power
increases over SP-MDR of 80%–400% for those data sets
that have eight PC levels and �1,000 triad families in N1
(data sets 1–4, 7, and 16). When the sample size in group
N2 is much larger than that in group N1, MDR-Phenomics
shows a substantial increase in power over MDR-PDT. For
data sets 3 and 6, which have 500 triad families in group
N1 and 2,000 triad families in group N2, MDR-Phenomics
increases the power of MDR-PDT by 139% and 214%,
respectively.

Power and Type I Error of Multilocus Effects

On the basis of our simulation strategies, there are seven
kinds of locus effects that can be detected in the data sets
from the multilocus disease models, those involving loci
[1], [5 6], [7 8] and their combinations. The power of the
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Table 4. Type I Error and Power of Data Sets
Disease Model, Data
Set, and Method Power Ele-a1* Ele-a2 Ele-a3 Ele-a4 Exp-a

Dominant:
1:

SP-MDR .13 .001 .006 .016 .02 .041
MDR-PDT .41 .013 .006 .024 .009 .039
MDR-Phenomics .508 .012 .009 .025 .014 .048

2:
SP-MDR .118 .009 .01 .018 .025 .052
MDR-PDT .26 .011 .012 .02 .01 .041
MDR-Phenomics .451 .005 .009 .02 .007 .036

3:
SP-MDR .12 .013 .012 .015 .02 .046
MDR-PDT .151 .010 .015 .013 .018 .046
MDR-Phenomics .361 .014 .01 .019 .012 .041

4:
SP-MDR .312 .009 .008 .015 .01 .033
MDR-PDT .408 .014 .007 .025 .009 .041
MDR-Phenomics .595 .012 .01 .029 .016 .052

5:
SP-MDR .301 .015 .003 .012 .006 .021
MDR-PDT .257 .012 .015 .02 .01 .044
MDR-Phenomics .551 .016 .009 .02 .009 .038

6:
SP-MDR .306 .012 .006 .008 .001 .015
MDR-PDT .147 .012 .015 .014 .018 .046
MDR-Phenomics .461 .012 .007 .017 .008 .032

7:
SP-MDR .513 .023 .01 .014 .014 .038
MDR-PDT .891 .014 .012 .017 .009 .038
MDR-Phenomics .900 .012 .009 .014 .013 .036

8:
SP-MDR .943 .023 .011 .018 .011 .040
MDR-PDT .999 .008 .021 .022 .013 .055
MDR-Phenomics .996 .012 .013 .027 .014 .053

9:
SP-MDR .726 .009 .008 .015 .013 .036
MDR-PDT .889 .014 .014 .019 .011 .044
MDR-Phenomics .902 .012 .009 .027 .018 .053

10:
SP-MDR .991 .009 .004 .012 .007 .023
MDR-PDT .999 .014 .016 .025 .012 .052
MDR-Phenomics .994 .012 .016 .025 .012 .052

Recessive:
11:

SP-MDR .198 .012 .021 .013 .016 .049
MDR-PDT .178 .012 .017 .012 .009 .038
MDR-Phenomics .273 … .002 .012 .009 .023

12:
SP-MDR .492 .012 .015 .013 .012 .040
MDR-PDT .492 .012 .016 .011 .009 .036
MDR-Phenomics .543 … .014 .014 .014 .042

13:
SP-MDR .447 .017 .021 .014 .013 .047
MDR-PDT .393 .017 .012 .02 .014 .046
MDR-Phenomics .521 … .019 .014 .014 .046

Multiplicative:
14:

SP-MDR .973 .009 .018 .015 .013 .046
MDR-PDT .798 .009 .01 .011 .016 .037
MDR-Phenomics .975 … .013 .013 .01 .036

15:
SP-MDR .84 .024 .018 .013 .013 .043
MDR-PDT .793 .009 .011 .009 .016 .036
MDR-Phenomics .947 .023 .012 .017 .01 .039

16:
SP-MDR .507 .030 .007 .007 .019 .033
MDR-PDT .794 .010 .009 .01 .015 .034
MDR-Phenomics .915 .016 .004 .018 .012 .034

NOTE.—Power, Ele-a2, Ele-a3, Ele-a4, and Exp-a are calculated from
combined data from groups N1 and N2, whereas Ele-a1* is calculated
from group N2 only. Power is the number of times locus 1 is detected
to be significant, divided by 1,000. Ele-a1 *, Ele-a2, Ele-a3, and Ele-
a4 are elementwise type I errors calculated by the number of times
locus 1, 2, 3, or 4, respectively, is detected to be significant, divided
by 1,000. Exp-a is the experimentwise type I error calculated by the
number of times any of loci 1, 2, or 3 is detected to be significant,
divided by 1,000.

successful detection of these effects is listed in table 5. The
results show that, as in the one-locus models, MDR-Phe-
nomics is better than MDR-PDT and SP-MDR with or with-
out Bonferroni adjustment for all locus models. The effects
of loci [1], [5 6], and [7 8] were simulated independently.
However, the power of detecting a combined effect from
them is intermediate to the power of detecting individual
effects. For example, power estimates from [1 5 6], [1 7 8],
and [1 5 6 7 8] are all larger than power from locus 1 but
smaller than power from [5 6], [7 8], and [5 6 7 8], re-
spectively. These results indicate that a larger model from
combined effects washes out an effect in some cases and
enhances it in others.

If the sample is genetically homogeneous or if the cor-
rect PC is not known, the power of MDR-Phenomics will
be affected. To evaluate the power under genetic homo-
geneity, we analyzed group N1 from the first 100 replicates
of data set 1 (table 1) including interactions from loci [5
6] and [7 8] in group N1. We found that MDR-PDT had
generally larger power than MDR-Phenomics (ranging
from a 2% decrease to a 20% increase in power) when
there is homogeneity (details not shown). This shows that
MDR-PDT is still preferable if heterogeneity cannot be well
captured by a PC.

Power of CLR

The results of testing interaction between PC and the loci
with use of CLR are listed in the last column of table 5.
The test of locus 1 shows that the power of CLR (0.49) is
close to the power of MDR-Phenomics (0.52). However,
the power of CLR is much smaller than the power of MDR-
Phenomics for the analysis of interaction from locus pairs
[5 6] and [7 8]. In tests of three-locus effects among [1 5
6] and [1 7 8], the power of CLR is decreased further.
Because of sparseness, the maximum-likelihood estimates
of coefficients fail to converge for testing effects from [5
6 7 8] and [1 5 6 7 8] (indicated by “NA” in table 5). CLR
has less power than all the MDR-based methods consid-
ered (table 5), illustrating a clear advantage of using data
reduction methods.

Analysis of Autism Data

Analysis of allelic frequencies showed that all markers
match HWE expectations except locus 5 (data not shown).
The correlation coefficients ( ) from GOLD output (ta-2r
ble 6) indicate that loci 5 and 6 had moderate correlation
in both affected ( ) and unaffected ( )2 2r p 0.441 r p 0.51
individuals.

Starting with the test of one-locus models, MDR-Phe-
nomics, MDR-PDT, and SP-MDR all identified locus 6 as
the best one-locus model (table 7). Neither this model nor
any of the other one-locus models were statistically sig-
nificant. In the two-locus analysis, MDR-Phenomics found
that the model containing locus pair [1 8] is the best one,
with a statistically significant P value of .033. SP-MDR
detected the model as marginally significant ( ),P p .025
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Table 5. Power of Multilocus Effects

Locus
Model

Power

MDR-
Phenomics

MDR-
PDT

SP-
MDR

SP-
MDR* CLR

[1] .52 .31 .12 .46 .49
[5 6] .79 .51 .29 .57 .22
[7 8] .98 .85 .58 .86 .20
[1 5 6] .56 .26 .13 .35 .12
[1 7 8] .88 .75 .33 .62 .12
[5 6 7 8] .64 .59 .20 .49 NA
[1 5 6 7 8] .57 .14 .13 .31 NA

NOTE.—Power is calculated as the percentage of a locus model with
among 100 replicates. The a for MDR-Phenomics, MDR-PDT, andP ! a

CLR is .05. The a for SP-MDR with Bonferroni adjustment is .05/8. SP-
MDR* does not adjust for multiple tests among eight phenotypic levels
and uses elementwise . NA p not available due to failure ofa p .05
the algorithm to converge.

Table 6. LD Analysis of Autism Data

Locus

2r

1 2 3 4 5 6 7 8

1 .086 .299 .074 .002 0 0 0
2 .07 .058 .025 .011 .005 .002 .001
3 .22 .065 .101 .002 0 .002 .001
4 .071 .031 .104 0 0 0 .001
5 0 0 .012 .011 .441 .022 .033
6 .001 .015 .001 .001 .51 .014 .235
7 .007 .002 0 0 .026 .009 .037
8 .006 .007 .004 .004 .046 .259 .035

NOTE.—Values highlighted in bold indicate moderate correlation. 2r
values in the upper triangle are from affected individuals, and values2r
in the lower triangle are from unaffected individuals.

with a threshold of with use of a Bonferronia p 0.025
adjustment, whereas MDR-PDT failed to detect a signifi-
cant two-locus model. The significant result from MDR-
Phenomics and the marginal result from SP-MDR suggest
a joint genetic effect involving SLC6A4 (rs1042173) and
ITGB3 (rs3809865) when sex is taken into account. Anal-
ysis of higher-order interactions by all methods did not
give significant results (results not listed).

Discussion

We have presented a novel approach to test for genetic
effects in triad families while incorporating information
from PCs. This approach integrates dimension reduction
from MDR (i.e., handling high-dimensional data) and new
features from MDR-PDT for processing pedigree data, as
well as the nonfixed permutation test for multiple tests
from EMDR. The M statistic developed in MDR-Phenomics
measures genetic effects from a multilocus model, with
the goal of using PCs to control for genetic heterogeneity.
Although we have focused on PCs, the covariate could be
any categorical covariate that might capture heterogene-
ity, such as ascertainment site or environmental exposure.
Even though detection of a genetic effect is weakened be-
cause of the mixture of data with genetic heterogeneity,
MDR-Phenomics appears capable of detecting a genetic
effect if genetic heterogeneity is expressed as distinct PC
values, as shown in the analysis of autism data.

To evaluate the power of MDR-Phenomics, we compared
it with MDR-PDT without consideration of heterogene-
ity and with SP-MDR with Bonferroni adjustment. Our
goal for power comparison was to illustrate differences
in power between methods that researchers might com-
monly use in practice. The Bonferroni correction is usually
used to avoid permutation testing. However, as the num-
ber of PC levels increases, the power of SP-MDR with the
use of Bonferroni correction decreases drastically. This can

be seen in the analysis of simulation data sets 14, 15, and
16, which have two, four, and eight PC levels, respectively.
Results in table 4 show that the power of SP-MDR de-
creases nearly 50%, whereas the power of MDR-Pheno-
mics has no obvious change. When MDR-Phenomics was
compared with MDR-PDT without analysis of PCs, the re-
sults showed that integration of PCs can capture genetic
heterogeneity and increase the power of detecting a gene
effect under heterogeneity. This conclusion was shown
again in the analysis of multiple loci (table 5).

Standard case-triad approaches with use of the logistic
model can be used to detect high-order interaction with
incorporation of PCs. However, the required number of
parameters increases exponentially with the number of
loci. Too many parameters relative to the sample size can
result in an increase of type I and type II errors.30,31 Under
moderate sample size, it is even impossible to detect a
two-way interaction for 10 loci because as many as 180
parameters need to estimated.5 Our simulation studies
showed that maximum-likelihood estimates of parame-
ters cannot be obtained in the model that includes inter-
action between eight levels of PCs and loci [5 6 7 8] and
[1 5 6 7 8] for a sample with 1,000 triad families. In con-
trast to classic logistic regression, MDR-Phenomics is non-
parametric and assumes no particular genetic model. As
shown by our simulation studies, MDR-Phenomics has
greater power for testing interactions in heterogeneous
genetic data. For testing the main effects of a locus de-
pending on PC, MDR-Phenomics and CLR have similar
power.

In the analysis of SLC6A4 and ITGB3 in the autism data,
we used sex as a PC because autism has a striking sex bias,
which may reflect genetic heterogeneity. MDR-Phenomics
detected a statistically significant two-locus model includ-
ing one marker from each gene. Both loci match HWE
expectations, and no LD exists between the two loci (table
7). In addition, neither loci shows a significant main ef-
fect, as demonstrated by nonsignificant one-locus tests.
Therefore, the result indicates a possible interaction be-
tween locus 1 of SLC6A4 and locus 8 of ITGB3. In addition,
we see that the interaction appears stronger in one sex
but disappears or is weaker in the other sex (i.e., genetic
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Table 7. Models of Autism Data, with Sex
as PC

Model and Loci Statistic P Value

One-locus:
MDR-Phenomics:

[6] 7.008 .332
[5] 2.014 .822
[3] 1.293 .91
[7] 1.279 .911
[8] .763 .969
[1] .708 .973
[4] .246 .996
[2] 0 1

MDR-PDT:
[6] 1.618 .813
[8] 1.568 .825
[1] 1.122 .986
[5] 1.083 .99
[3] .907 .999
[4] .771 .999
[7] .750 1
[2] .665 1

SP-MDR:
[6] 2.179 .413
[7] 1.674 .635
[5] 1.558 .838
[8] 1.439 .755
[3] 1.304 .94
[1] 1.062 .9
[4] .975 .985
[2] .579 1

Two-locus:
MDR-Phenomics:

[1 8] 58.03 .033
[3 6] 24 .323
[4 8] 11.09 .798
[5 6] 9.278 .851

MDR-PDT:
[4 8] 3.755 .139
[1 8] 2.951 .664
[4 6] 2.445 .943
[3 6] 2.241 .983

SP-MDR:
[1 8] 5.095 .025
[3 6] 3.41 .32
[4 8] 2.888 .631
[4 6] 2.555 .865

NOTE.—P values for locus pair [1 8] are highlighted
in bold.

heterogeneity). This was shown by stratified analysis, in
which the P value for model [1 8] in female probands is
.025, whereas the P value in male probands is 1.0 by MDR-
PDT. Heterogeneity of locus effects in the different sexes
could explain such patterns and could cause the result to
weaken when sex is ignored, as in the MDR-PDT analysis,
which fails to find the genetic effect. SP-MDR analysis
gives marginally significant results. However, as the num-
ber of PC levels increase, we would expect the Bonferroni
adjustment to be increasingly conservative.

The P value for the MDR-Phenomics test is estimated
using a permutation test to obtain the empirical distri-
bution of the M statistic. The permutation method ran-

domly shuffles only transmission status with genotypes,
and PC is unchanged among all families. To adjust for
multiple tests, the nonfixed permutation method selects
the largest M statistic among all K-locus models in the
permuted data as the permuted statistic. The number of
K-locus models increases as the number of loci (N) in the
data set increases, which causes an increase in the average
permuted statistic and a decrease in power as more un-
associated loci are added. This represents a potential lim-
itation in the application of MDR-Phenomics to genome-
wide and candidate-gene analysis with an excessive num-
ber of loci to be tested. To restrict the number of loci, we
have considered two basic strategies. First, LD analysis
can help us pick independent loci or tag SNPs, to reduce
the number of loci. The tag SNPs in haplotype blocks can
be identified by searching genomic or chromosomal
regions in data with heuristic methods, such as the dy-
namic programming algorithm,32 or by association anal-
ysis with the use of HapMap data.33–35 Second, we can use
the design-based two-stage approach,36,37 where all mark-
ers are genotyped in stage 1 and the promising markers
are selected for analysis by MDR-Phenomics in stage 2.
Instead of reducing the number of loci, we have made
efforts to prevent overly conservative results due to tra-
ditional adjustments for multiple testing (e.g., the false-
discovery rate [FDR]).38–40 Applied widely in microarray
analysis,40,41 the FDR may have applicability to MDR-Phen-
omics. To apply FDR, the P value, without adjustment for
multiple tests, from the fixed permutation method14 pro-
vided by MDR-Phenomics is used. However, power and
type I error based on the adjusted P value with FDR are
still under investigation.

For consideration of a PC, a common strategy is to strat-
ify analysis at every phenotypic level. However, multiple
tests at every level should be controlled; otherwise, ex-
perimentwise type I error (the probability of getting a ran-
domly significant result at any level) will be high. The
trade-off in controlling for multiple testing is a decrease
in power to detect a particular effect. The optimal method
for controlling for multiple testing is debated. It is well
known that the Bonferroni adjustment, a popular method
applied by SP-MDR, is conservative, which was observed
in our simulation studies. This fact should be considered
when thinking about the power comparisons between SP-
MDR and the other methods. Nevertheless, even when
there is no adjustment for multiple testing, the power of
stratified analysis could be decreased because of small sam-
ple size within a stratum. Such an example was observed
in the test of multilocus effect that exists in the four strata,
where SP-MDR without adjustment for multiple testing at
every stratum has smaller power than that of MDR-Phe-
nomics (table 5). In contrast to stratified analysis, MDR-
Phenomics uses the whole data set for testing gene effects,
and integrated PC analysis does not require additional ad-
justment for multiple testing.

MDR-Phenomics uses a C statistic to measure associa-
tion. Under genetic heterogeneity, the C statistic may un-
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derestimate the signal of association. To magnify the sig-
nal, MDR-Phenomics derives the M statistic by multiply-
ing the C statistic with a multiplicative factor. The mul-
tiplicative factor takes the form of an F statistic from an
ANOVA model. This multiplicative factor was chosen for
three reasons. First, the F statistic measuring different
means of D among phenotypic levels can indicate the level
of heterogeneity; a larger F statistic indicates larger het-
erogeneity. Second, if there is no heterogeneity, it is ex-
pected that homogeneous association exists and that the
sample mean of D in every stratified level of PC should
be the same. The F statistic from the ANOVA model will
be ∼1. Therefore, the M statistic will approximate C under
homogeneity. Last, the F statistic is calculated in every
permuted data set. The empirical distribution of the M
statistic is acquired by integrating the empirical distribu-
tion of the F statistic under the null hypothesis of no
association. By magnifying the statistic for association un-
der heterogeneity, it is expected that MDR-Phenomics will
be more powerful than MDR-PDT, which ignores hetero-
geneity. This was observed in our simulation studies (ta-
bles 4 and 5). Notably, we also found that, despite the
advantages of MDR-Phenomics in a heterogeneous data
set, MDR-PDT is generally more powerful if the data set
is genetically homogeneous or if heterogeneity is not cap-
tured by a measured PC.

Under uncommon cases, the C statistic may approxi-
mate zero even in a heterogeneous sample when geno-
types from associated loci are overtransmitted to the pro-
band in one PC level (i.e., positive association from these
genotypes) but are undertransmitted to the proband in
another PC level (i.e., positive association from comple-
mentary genotypes). For an extremely small C value, a
large F value may still result in an M value close to zero.
To solve this problem, a different method to calculate C
could be used. For example, instead of directly calculating
C in a sample, we can calculate C in the ith level of the
PC (denoted as ) and get C in the whole data as the sumCi

of all from different levels. This calculation of C has theCi

properties that stronger association tends to have a larger
C value and that genetic heterogeneity will not result in
a zero value of C. However, from a small subset generallyCi

has a large variance. When the M statistic comes mainly
from the sum of , the larger variance can result in aCi

decrease in power of MDR-Phenomics too.
A difficulty with MDR-Phenomics, like all high-order

analysis methods, is interpretation of results; determining
biological or clinical relevance on the basis of the analysis
can be challenging. In MDR-Phenomics, it is difficult to
know the biological meaningfulness of what we measure
or define as a PC in complex disease (e.g., repetitive be-
haviors in autism). Additionally, a K-locus model with a
large K may be difficult to dissect. To aid interpretation,
a standard statistical model (e.g., logistic regression) can
be used to describe the effect of individual loci and their
interactions. Although this provides a statistical interpre-
tation, statistical significance of a multilocus model does

not necessarily translate to biological significance. Biolog-
ical significance often requires biochemical experiments
of molecular pathways. However, molecular investigations
of multiple loci acting simultaneously may be difficult to
implement.

Currently, MDR-Phenomics analyzes only discrete PCs.
For continuous PCs, data-mining methods can be used to
cluster and transform a continuous PC to a discrete var-
iable. Alternately, we can consider other models (e.g., a
general linear model) to evaluate the effect of a continuous
PC on the association of a K-locus model with transmis-
sion. MDR-Phenomics analysis may, in fact, give guidance
regarding relevant phenotypic classifications based on the
underlying genetic associations. In summary, MDR-Phen-
omics represents a novel method incorporating pheno-
type information and genetic information, which com-
plements traditional linkage and association analysis to
detect genetic effects in heterogeneous complex disease.
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