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Abstract
Leucine-rich amelogenin peptide (LRAP), an alternatively spliced amelogenin protein, possesses a
signaling property shown to induce osteogenic differentiation. In the current study, we detected
LRAP expression during osteogenesis of wild-type (WT) embryonic stem (ES) cells and observed
the absence of LRAP expression in amelogenin-null (KO) ES cells. We explored the signaling effect
of LRAP on wild-type ES cells, and the ability of LRAP to rescue the impaired osteogenesis
phenotype observed in KO ES cells. Our data indicate that LRAP treatment of WT and KO ES cells
induces a significant increase in mineral matrix formation, and significant increases in bone
sialoprotein and osterix gene expression. In addition, the amelogenin KO phenotype is partially
rescued by the addition of exogenous LRAP. These data suggest a unique function of LRAP during
ES cell differentiation along osteogenic lineage.
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INTRODUCTION
The formation of hard tissues such as bone, cartilage and tooth occurs by a process of matrix-
mediated biomineralization in which intracellular and extracellular organic proteins regulate
the initiation, growth and deposition of mineral crystals [1]. In developing enamel matrix, the
majority of the organic extracellular matrix proteins are comprised by a group of highly
conserved, structural proteins called amelogenins [2]. Amelogenins have been identified to
function as cell adhesion molecules and to facilitate nucleation and growth of hydroxyapatite
crystals during the mineralization phase of amelogenesis [3]. As a result of amelogenin mRNA
alternative splicing, different amelogenin isoforms are detected in the developing enamel
matrix [4]. Although the function of amelogenin has been proven indispensable for proper
development of enamel [5], the function of various amelogenin isoforms is not known.

Leucine-rich Amelogenin Peptide (LRAP) is a 59-residue protein translated from exon 2, 3,
5, 6D and 7 of amelogenin mRNA [6]. Failure of LRAP to rescue the amelogenin-null enamel
phenotype indicates that LRAP may have distinctive function(s) outside guiding mineral
crystallite formation [7]. The commercial porcine enamel matrix derivative, known as
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Emdogain, is composed predominantly of amelogenins. Emdogain has the ability to induce
tissue repair by promoting periodontal tissue regeneration. Periodontal tissue repair relies upon
pathways involving enhanced proliferation and differentiation of precursor cells [8], and the
upregulation of bone marker genes [9]. Analyses of the amelogenin constituents of Emdogain
suggest that LRAP functions as a signaling molecule [10]. In the previous studies, LRAP has
been found to induce osteogenesis in various cell types, including rat muscle fibroblasts [10],
mouse cementoblasts [11], and mouse oral mucosal cells [12].

Amelogenin null mice develop hypomineralized enamel lacking normal prism structure, but
are healthy and fertile [5]. However, the amelogenin null mice are smaller than wild-type mice
prior to weaning. The smaller size of amelogenin null mice could potentially be due to the lack
of LRAP expression in some of these tissues, leading to a delay in development [13].

In the current experiment, we studied the effect of exogenous LRAP on ES cell differentiation
to the osteogenic lineage by monitoring changes in gene expression and changes in mineral
deposition in the presence of exogenous LRAP. In addition, we explore the effect of LRAP to
rescue the impaired phenotype observed in osteogenic differentiation of amelogenin-null ES
cells. We propose that LRAP functions as a moonlighting protein [14] outside its original
location in enamel matrix to serve as a signaling molecule in other tissues.

MATERIALS AND METHODS
Mouse embryonic stem cell culture

Mouse ES cells (RW4) were maintained on the irradiated MEF feeder layers in Knockout D-
MEM (Invitrogen) containing 15% FBS (Hyclone) supplemented with murine leukemia
inhibitory factor (LIF; 1000 U/mL; Chemicon), 10 mM HEPES buffer solution, 0.1 mM MEM
non-essential amino acids solution, 0.05 mM 2-mercaptoethanol, 2 mM L-glutamine, penicillin
(50 U/mL) and streptomycin (50 μg/mL). Cells were grown at 37°C in 7.5% CO2 with daily
media changed. Cell passage was achieved by treatment of the cells with 0.05% Trypsin and
reseeded onto a fresh MEF feeder layer. Amelogenin-null (KO) ES cells were generated as
previously described [15] (See supplement and Fig S1) and were maintained in the same
condition as the wild-type ES cells.

Induction of cell differentiation
Mouse ES cells were induced to form embryoid bodies (EBs) in a hanging drop culture
according to a standard protocol [16]. After 2 days, EBs were collected and resuspended in
100 mm petri dishes in knockout D-MEM supplemented with 10-7M all-trans retinoic acids
for additional 3 days with medium change every day.

After 3 days, the EBs were collected, and transferred to gelatinized 6-well tissue culture plates
for osteogenic induction experiments using one of the three media each with different
supplements. The “basal media” was prepared by using MEM-alpha media, supplemented with
15% batch-tested FBS, 10 mM HEPES buffer, 0.1 mM MEM non-essential amino acids
solution, 0.05 mM 2-mercaptoethanol, 2 mM L-glutamine, penicillin (50 U/mL) and
streptomycin (50 μg/mL). The “control media” was prepared by supplementing the basal media
with ascorbic acid (50 μg/mL) and β-glycerophosphate (10mM). The “LRAP media” was
prepared by adding chemically synthesized and purified murine LRAP protein (10ng/mL) to
the control media. The EBs were cultured in one of these media at 37°C in 5.0% CO2 for 15
days with the media changed every other day.
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RNA extraction, cDNA synthesis, and quantitative real-time PCR analysis
RNA was isolated from EB cultures at day-10, and at day-20 (day 0=EB formation) by using
RNAqueous®-4PCR Kit (Ambion) following the manufacturer’s instructions. Synthesis of
cDNA was performed by using RETROscript® Kit (Ambion). For cDNA template preparation,
2 μg of total RNA from each EB sample was used in a 20 μL reaction. For quantitative real-
time PCR analysis, a 25 μL reaction was prepared for each sample. Included in this reaction
volume was 1 μL of the resulting cDNA, iQ™ SYBR® Green Supermix (Bio-Rad) containing
dNTP and iTaq DNA polymerase, and the appropriate primers (Table S1). The resulting
threshold cycle (CT) value from each primer pair was normalized with the CT value for
Gapdh, which served as an internal control.

Analysis of mineral deposition
EBs at day-20 were stained with Alizarin Red. Quantification of calcium concentration was
measured by means of the intensity of blue color at 612 nm (QuantiChrom™ Calcium Assay
kit; BioAssay Systems). The total amount of protein in each sample was used as a standard to
normalize the calcium data.

Statistical analysis
For gene expression analysis and calcium concentration analysis, independent measurements
were performed in triplicate and averaged for control of internal error. Each experiment was
repeated at least three times. Mean and standard deviation from each experiment were used to
statistically analyze the difference between each pair of samples. A P-value less than 0.05 was
considered significant.

RESULTS
Different amelogenin isoforms are expressed during osteogenic differentiation of ES cells

To understand the function of LRAP during the differentiation of mouse ES cells, we first
determined the expression of LRAP during differentiation in both wild-type ES cells and
amelogenin-null ES cells. Mouse ES cells were induced to form EBs (day-0), followed by
subsequent osteogenic induction for 20 days according to an established protocol [16]. At
selected time points, RNA samples were extracted for PCR analyses using a forward primer
in exon 1 and a reverse primer in exon 6D (Supplemental Figure S1) of the amelogenin gene
to detect all possible splicing variants. Our results showed that amelogenin transcripts were
detected only in wild-type ES cells but not in amelogenin-null ES cells (Fig. 1). Only the full-
length M180 isoform (598 bp) was expressed in EBs prior to osteogenic differentiation (Fig.
1 lane 3). LRAP (aka M59; 235 bp) was detected in differentiating cells (Fig. 1 lanes 5, 7, 9),
suggesting its functional implication during osteogenic differentiation. An additional isoform,
M156 (520 bp) was also detected in differentiating cells (Fig. 1 lanes 5, 7, 9).

LRAP enhanced mineral deposition in osteogenic-induced mouse ES cells
To analyze the terminal phenotype, EBs at day-20 were stained with Alizarin red to detect
mineral deposits in the matrix. In both RW4 and KO ES cell differentiation, increased dye-
stained area was evidenced in control group, suggesting that both RW4 and KO ES cells
underwent proper osteogenic cell differentiation (Fig. 2A). The addition of exogenous LRAP
to the control media resulted in a marked increase in mineral deposition, when compared to
outcomes from control media alone, suggesting enhanced mineral formation with LRAP
treatment (Fig. 2A).

Quantification of the calcium accumulation in the matrix was achieved using the
QuantiChrom™ calcium assay kit to measure the amount of free calcium. In accordance with
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the visual record from Alizarin red staining, the calcium concentration in the control group
was significantly higher than the basal group. And the calcium accumulation in the LRAP-
treated group was significantly higher than the control group in both RW4 and KO ES cells
(Fig. 2B). Comparing RW4 and KO ES cells, a significant decreased level of calcium
accumulation was observed in the basal, control, and LRAP-treated groups. Noticeably, LRAP
could partially rescue the reduced level of calcium deposited in the matrix created by the KO
ES cells (Fig. 2B, Supplemental Table S2).

LRAP induces the expression of bone marker genes in osteogenic-induced ES cells
To explore the effect of LRAP on osteogenic gene expression, RNA from osteogenic-induced
RW4 EB culture at day-10 and day-20 was collected to represent the EBs at early and late
stages of differentiation, respectively. Gene expression was analyzed by quantitative real-time
RT-PCR. At day-10, the expression of two osteogenic marker genes, bone sialoprotein (BSP)
and osterix (Osx), in the control group was markedly increased. Analyses of the effect of LRAP
on gene expression revealed significant enhancement in the expression of BSP (Fig. 3A) and
Osx (Fig. 3C). At day-20, the EBs in the control group expressed increased level of BSP, but
not Osx. The addition of LRAP in the media resulted in marked increase in both BSP (Fig. 3B)
and Osx expression (Fig. 3D).

DISCUSSION
In the current study, we provide data supporting the function of LRAP as a signaling molecule
that enhances osteoblastic cell differentiation in mouse ES cells. This conclusion is supported
by our findings that LRAP increases mineral matrix formation and increases calcium
accumulation in the matrix from both wild-type ES cells and amelogenin-null ES cells. In
addition, we show that the osteogenic effect of LRAP results in increased expression of BSP
and Osx at both early- and late-stage of osteogenic differentiation. These results suggest a
unique role for LRAP during osteogenesis of mouse embryonic stem cell, and support the
previously reported osteogenic functions of LRAP in other cell types [10;11;17].

A previous study of the effects of BMP-2 on osteogenic differentiation of mouse ES cells
suggested that in embryoid body cultures for 20 days, BMP-2 enhances mineral formation and
increases osteocalcin expression by approximately 4-fold as analyzed by semi-quantitative RT-
PCR [16]. Here, we demonstrate that LRAP increases as much as 4000-fold for BSP expression,
5-fold for Osx expression, and 6-fold for calcium accumulation in LRAP-treated EBs at the
20th day of culture. This dramatic increase in gene expression and calcium accumulation
suggests that LRAP exerts an important role as an osteo-inductive molecule that is equal to or
more potent than BMP-2 [18] during osteogenic differentiation of mouse ES cells.

However, other investigators suggest that the ability of LRAP to induce osteogenesis is
dependent upon the cell types, the stage of differentiation and the local environment at the site
of action [19]. Previous in vitro studies on the effect of LRAP on expression of bone marker
genes in several progenitor cell types demonstrated that LRAP enhances osteogenesis. In
mouse muscle fibroblast, LRAP treatment caused an immediate upregulation of Runx2, but
the expression of Runx2 was diminished after 48 hours [10]. In mouse cementoblasts, LRAP
increased expression of osteopontin in 72 hours, but had no effect on Runx2 or BSP expression
[11]. Runx2 expression is critical for early osteoblast differentiation and osteoblastic cell
lineage commitment [20]. Based on these observations, one may predict that Runx2 expression
is more susceptible to modulation in less differentiated cells, such as fibroblasts, when
compared to more differentiated cells, such as cementoblasts. However, in the case of
pluripotent ES cells, we observed little change in Runx2 expression for embryoid bodies at
day-10 and at day-20 of culture. On the other hand, we detected a substantial increase in
expression of BSP and Osx, two markers for bone development detected in more fully
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differentiated osteoblasts [21;22]. In our study, we selected two time points of EB culture that
represent the early (EB day-10) and the late stage of ES cell differentiation (EB day-20).
Therefore, it is possible that by day-10 of culture, differentiation has progressed sufficiently,
as indicated by the expression of the late markers of differentiation, BSP and Osx, that further
changes in Runx2 expression are not required. We hypothesize that Runx2 expression may be
upregulated at an earlier time point than the EB day-10.

In the amelogenin-null (KO) ES cell experiment, we explored the ability of LRAP to rescue
the reduced osteogenesis observed in the KO ES cells as a consequence of the loss of
endogenous amelogenin expression. We have shown that although LRAP significantly
increases mineral deposition and calcium accumulation when compared to the control media
used in KO ES cells, LRAP can only partially rescue the amelogenin null phenotypes even
when the concentration of LRAP is increased to from 10 ng/ml to 100 ng/ml (Fig. 2B). The
failure of LRAP to fully rescue osteogenesis suggests that other amelogenin isoforms may be
required to work coordinately with LRAP to fully induce the osteogenic gene expression. One
of the candidate amelogenin isoforms for such a function is the mouse amelogenin splicing
product expressed predominately by mouse ameloblasts called M180. The M180 protein is
encoded by exon 2, 3, 5, 6, and 7, consisting of 180 amino acids (Figure S1), and is believed
to be involved principally in controlling enamel crystal habit [15;23]. A recent study in
cementoblasts suggested that LRAP and p172, the porcine ortholog of mouse M180, work
together to promote cell proliferation and migration in cementoblasts and in periodontal
ligament cells from the amelogenin-knockout mouse [24].

For tissue engineering application, there are limitations to the use of conventional grafting
therapies primarily due to immuno-rejection and post-operative complications. In addition,
mesenchymal stem cells or lineage-committed cells have been reported to lose their
proliferative capacity and identity during ex vivo expansion [25]. Therefore, the result from
this study of directed differentiation of ES cells is predicted to provide another option for the
potential therapeutic use of LRAP as an alternative pharmacologic agent in bone tissue
engineering and for regenerative application in the repair of craniofacial and axial skeletal
defects. The concept of moonlighting proteins suggests that one protein can exert two or more
unique functions in different tissues [14]. We propose that LRAP, in addition to its original
function in enamel formation, also moonlights as a signaling molecule to induce bone formation
at other anatomical sites during development. Studies are now underway to identify the
signaling pathway(s) responsible for LRAP-mediated osteo-induction, and to extend these
studies to the function of LRAP on human stem cells.

The study of LRAP to function as a signaling molecule began only in the past decade [9]
[10]. Several in vitro and in vivo studies have identified the role of LRAP as a potential signaling
molecule implicated in bone formation in different cell types [10;11;17]. In the present study,
we chose to use embryonic stem cells in our assays of amelogenin isoform signaling since these
cells are pluripotent and display no previous overt differentiation pattern. Thus, their response
to exogenous LRAP is unconstrained. We show that during their differentiation as embryoid
bodies, amelogenin isoforms are expressed and are available to provide instructive signals in
the absence of a preexistent bias to cell commitment that may have hampered prior
experimental strategies. We identify that LRAP functions as a signaling molecule in the
differentiation of mouse ES cells, based on the ability of LRAP to induce bone marker gene
expression and induce mineral deposition in these ES cells.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification of amelogenin splicing isoforms during osteogenic differentiation of mouse
embryonic stem cells
Mouse wild-type RW4 (WT) and amelogenin knock-out-ES cells (KO) were induced to form
EBs, and subsequently induced to osteogenic differentiation [16]. RNA samples were extracted
from EB-derived cells at day-5, day-10, day-15, and day-20 (day-0=EB formation). Reverse
transcription products were subject to PCR analyses using a forward primer in exon 1 (5′-
ATCAAGCATCCCTGAGCTTCAGAC-3′) and a reverse primer in exon 6D (5′-
GCTCAGGAAGAATGGGGGACAG-3′) of the amelogenin gene to detect all possible
splicing variants. GAPDH was used as an internal control. Top panel: amelogenin; Bottom
panel: GAPDH. Lane 1, negative control; Lane 2, positive control; Lane 3, RW4 day-5;
Lane 4, KO day-5; Lane 5, RW4 day-10; Lane 6, KO day-10; Lane 7, RW4 day-15; Lane 8,
KO day-15; Lane 9, RW4 day-20; Lane 10, KO day-20; M, marker.
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Figure 2. ES cell differentiation and mineral nodule formation
(A) Alizarin red staining. RW4 ES cells, and amelogenin-KO ES cells were induced to
osteogenic differentiation in the basal media, control media, or LRAP media. At day-20, the
cells were analyzed for mineral nodule formation by Alizarin red staining. Both RW4- and
KO-ES cells underwent osteogenic differentiation as indicated by the dye accumulation in the
synthesized matrix. Marked increased in mineral formation, as indicated by the increased
numbers of nodules and the increased intensity of red-stained areas, was observed in LRAP-
treated culture. KO = amelogenin null ES cells, RW4 = wild-type ES cells, Basal = basal media,
Control = control media, LRAP = LRAP media. (B) Quantification of calcium concentration
in osteogenic-induced ES cells. Significant increase of calcium concentration was observed in
the LRAP-treated group in both RW4 and KO EBs. The calcium concentration for KO EBs
(patterned bars) was significantly lower than the calcium concentration for wild-type EBs
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(filled bars). LRAP partially rescued the reduced calcium secretion phenotype seen in KO ES
cells. WT = wild-type ES cells. KO = amelogenin-null ES cells. Basal = basal media, Control
= control media, LRAP= LRAP media. Relative calcium concentration was calculated by
normalization of the absolute calcium concentration to total protein concentration in each
sample. **p<0.05.
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Figure 3. LRAP induced BSP and Osx expression
Wild-typed ES cells were induced to osteogenic differentiation. EBs at day-10 and day-20 of
culture duration were selected for RT-PCR analysis to represent early and late stages of
osteogenesis, respectively. Marked increase in the expression of BSP (3A) and Osx (3C) was
observed in LRAP-treated EB as early as at day-10 of culture, when compared to the values
from the mineralization control group. A more pronounced increase of BSP expression was
observed in LRAP-treated EB at day-20 of culture (3B). Osx expression was significantly
increased in LRAP-treated EB day-20, but no change in Osx expression was observed in EB
at day-20 of culture in control media. Values on Y-axis represent fold change of real-time PCR
CT value compared to GAPDH that was used as an internal control. Basal = basal media,
Control = control media, LRAP = LRAP media. **p< 0.05; compared to basal group, ##p<0.05;
compared to control group.
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