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Abstract
Corticotropin-releasing factor (CRF) is a neurohormone that mediates stress, anxiety, and affects
serotonergic activity. Studies have shown that CRF has dose-dependent opposing effects on
serotonergic activity. This effect has been hypothesized to be differentially mediated by CRF1 and
CRF2 receptors in the dorsal raphé nucleus. We directly tested this hypothesis by using in vivo
microdialysis to determine the effects of CRF and CRF antagonists in the dorsal raphé nucleus on
serotonin (5-HT) release in the nucleus accumbens, a brain region implicated in the neuropathology
of stress-related psychiatric disorders. Male urethane-anesthetized rats were implanted with a
microdialysis probe into the nucleus accumbens, and CRF (0, 100 or 500 ng) was infused into the
dorsal raphé. Infusion of CRF into the dorsal raphé nucleus had dose-dependent opposite effects,
with 100 ng of CRF significantly decreasing 5-HT levels in the nucleus accumbens and 500 ng CRF
significantly increasing accumbal 5-HT levels. In subsequent experiments, the raphé was pre-treated
with the CRF1 receptor antagonist antalarmin (0.25 µg) or the CRF2 receptor antagonist
antisauvigine-30 (ASV-30; 2 µg) prior to CRF infusion. Antagonism of CRF1 receptors in the dorsal
raphé nucleus abolished the decrease in accumbal 5-HT levels elicited by 100 ng CRF, and CRF2
receptor antagonism in the raphé blocked the increase in accumbal 5-HT levels elicited by 500 ng
CRF. These results suggest that the opposing effects of dorsal raphé CRF on 5-HT release in the
nucleus accumbens are dependent on differential activation of CRF1 and CRF2 receptors in the dorsal
raphé nucleus.
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1. Introduction
The nucleus accumbens has been the focus of numerous studies on reward and motivation, and
exhibits increased dopaminergic activity during both rewarding and aversive conditions.
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However, these dopaminergic changes in the nucleus accumbens are modulated by other
transmitter systems including the serotonergic and corticotropin-releasing factor (CRF)
systems (Amato et al., 2006; Bland et al., 2004; Izzo et al., 2005). For instance, CRF in the
nucleus accumbens has been shown to be involved in arousal and amplifying motivated
behaviors (Holahan et al., 1997; Pecina et al., 2006). Serotonergic innervation of the nucleus
accumbens originates from the lateral wings of the dorsal raphé nucleus (Van Bockstaele et
al., 1993). Serotonin in the nucleus accumbens is influenced by stress and social interaction
(Summers et al., 2003b) and decreased activity of 5-HT in the nucleus accumbens may be
associated with impulsivity (Coccaro, 1992; Winstanley et al., 2005). Thus, examining the
effects of CRF in the dorsal raphé nucleus on 5-HT release in the nucleus accumbens may help
elucidate the roles of CRF and 5-HT in the primary accumbal functions such as reward,
motivation, impulsivity, and their pyschopathologies.

Corticotropin-releasing factor plays an important role in integrating multiple components of
the stress response. Exposure to a stressor increases central CRF levels (Merali et al., 1998;
Merlo et al., 1995), while the behavioral effects of administering CRF to rats resemble those
induced by stressors (Dunn and Berridge, 1990a; Dunn and Berridge, 1990b; Harvey and
Hennessy, 1995; Koob and Bloom, 1985). The behavioral effects induced by CRF are thought
to be mediated, in part, by CRF actions on 5-HT systems within the brain (Forster et al.,
2006; Hammack et al., 2002; Kirby et al., 2000), via activation of CRF1 and CRF2 receptors
(Radulovic et al., 1998; Radulovic et al., 1999). Experimental evidence suggests that activation
of the CRF1 receptor subtype is involved in the initiation of HPA responses to stress (Bale et
al., 2002; Risbrough et al., 2003; Smith et al., 1998). Blockade of these receptors results in a
reduction of the CRF-potentiated acoustic startle response along with startle elicited by fear-
inducing stimuli (Schulz et al., 1996). In addition, CRF2 receptors appear to contribute to some
of the anxiogenic functions of CRF, because antagonism of CRF2 receptors decreases
conditioned freezing and acoustic startle behaviors (Bakshi et al., 2002; Takahashi et al.,
2001). Furthermore, CRF-mediated increases in conditioned freezing appear to be mediated
by CRF2 receptors located in the 5-HT cell body region of the dorsal raphé nucleus (Hammack
et al., 2003b).

The dorsal and median raphé nuclei are major sources of 5-HT innervation of forebrain and
limbic regions (Jacobs and Azmitia, 1992), and receive CRF projections from the amygdala
(Gray, 1993). Serotonin is involved in neuronal processes related to conflict behavior,
inhibitory control and impulsivity as well as reward-related mechanisms (Evenden and Ryan,
1996; LeMarquand et al., 1994a; LeMarquand et al., 1994b; Roy and Linnoila, 1988; Soubrie,
1986). Changes in limbic 5-HT activity are also associated with stressors, and decreased central
5-HT function is implicated in the symptoms of affective disorders (Carrasco and Van de Kar,
2003; Deakin, 1998; Millan, 2003). Corticotropin-releasing factor in the dorsal raphé nucleus
is known to affect serotonergic activity (Forster et al., 2006; Kirby et al., 2000; Price et al.,
1998; Price and Lucki, 2001; Valentino et al., 2001). Previous studies have shown that both
CRF1 and CRF2 receptors have been detected in the dorsal raphé nucleus (Commons et al.,
2003; Funk et al., 2003; Van Pett et al., 2000) and may have opposing roles for 5-HT release
(Kirby et al., 2000; Pernar et al., 2004; Valentino et al., 2001). Corticotropin-releasing factor
has a higher affinity for CRF1 receptors when compared to CRF2 receptors (Grigoriadis et al.,
1996a; Grigoriadis et al., 1996b), and activation of these receptors normally inhibits
serotonergic activity in the dorsal raphé (Hammack et al., 2003b; Pernar et al., 2004). In
contrast, higher levels of CRF are believed to be required for CRF2 receptor activation, and
activation of these receptors normally facilitates serotonergic activity in dorsal raphé (Kirby
et al., 2000; Pernar et al., 2004). Combined, these studies suggest that CRF has opposing effects
in the dorsal raphé nucleus that depend on CRF1 and CRF2 receptor activation based on the
dosage of CRF. If this is the case, then dose-dependent CRF activation of CRF1 and CRF2
receptors in the dorsal raphé nucleus should influence 5-HT release in limbic terminal sites,
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such as the nucleus accumbens, and thereby influence behavior. This hypothesis has not been
directly tested in relation to the nucleus accumbens.

Since CRF in the dorsal raphé nucleus is thought to affect 5-HT activity in an opposing manner,
we hypothesized that infusion of high and low doses of rat-human CRF into the dorsal raphé
nucleus would have contrasting effects on 5-HT release in the nucleus accumbens.
Furthermore, we hypothesized that the opposing effects of CRF on accumbal 5-HT release
would be a function of opposing effects of CRF1 and CRF2 receptor activation in the dorsal
raphé nucleus.

2. Materials and methods
2.1. Animals

Ninety-six male Sprague-Dawley rats (University of South Dakota Laboratory Animal
Services, Vermillion, SD, USA) weighing between 250 and 350 g were housed in pairs and
maintained at a constant room temperature (22 °C, 60% relative humidity) and a reverse 12h
light: 12h dark cycle. Food and water were available ad libitum. The following procedures
were approved by the Institutional Animal Care and Use Committee of the University of South
Dakota, and were carried out in accordance with the National Institutes of Health Guide for
the Care and Use of Laboratory Animals. All efforts were made to minimize the number of
animals used and their suffering.

2.2. Microdialysis and pharmacological experiments
Rats were anesthetized with urethane (1.8 g/kg i.p; Sigma, St. Louis, MO) and placed in a
stereotaxic frame (David Kopf Institute, CA, USA) with the incisor bar set at −3.3 mm. Body
temperature was maintained at 37 ± 0.5°C with a temperature regulated heating pad (CMA,
North Chelmsford, MA). A concentric microdialysis probe (membrane length 2 mm, with MW
cut-off 5000; (Hoffman et al., 2002)) was inserted into the nucleus accumbens (AP: +1.2 from
bregma; ML: −1.4 from midline; DV: −8.1 from dura; (Paxinos and Watson, 1997)). For CRF
alone and control infusions (CRF receptor antagonists and vehicles for each antagonist alone)
into the dorsal raphé nucleus, a single stainless-steel infusion guide cannula (26 gauge) was
implanted 2 mm above the dorsal raphé nucleus (AP: −7.4 from bregma; ML: +2.8 from
midline; DV: −4.6 from dura) at a 26° lateral to medial angle to avoid the cerebral aqueduct
(Forster et al., 2006; Paxinos and Watson, 1997). For the CRF antagonist with CRF infusion
experiments, two 26 gauge stainless steel guide cannulae were fixed together in such a way
that the one cannula was immediately behind the other and these cannulae were implanted into
the dorsal raphé nucleus as described for the single guide cannula.

Artificial cerebrospinal fluid (aCSF; Moghaddam and Bunney, 1989) was perfused
continuously through the probe at a rate of 0.4 µl/min with a microinfusion pump (CMA) via
PE-20 tubing connected to a 1 ml syringe. Three hours after probe insertion, silica cannulae
(194 µm od, 2 mm longer than guides; Polymicro Technologies, Phoenix, AZ) were lowered
through cannulae. Drug cannulae were fixed to PE-20 tubing connected to a 10 µl Hamilton
syringe, and the drug or vehicle was back-loaded into the cannula before implantation as
described previously (Forster and Blaha, 2000). Microdialysis sampling began 4 hours after
the implantation of the probe (Forster et al., 2006), with perfusates collected at 20 min intervals
and analyzed for 5-HT. For the first experiment, following at least 3 stable baseline 5-HT
samples, either aCSF (0.5 µl; vehicle for CRF) or rat-human CRF (100 or 500 ng; 0.5 µl; Sigma-
Aldrich, St. Louis, MO) was infused through a single cannula directed at the dorsal raphé
nucleus. As the natural ligand for rat CRF receptors was used for these experiments, i.e. r/
hCRF, from this point we will refer to this form of the neuromodulator as CRF, indicating
oCRF for comparison to studies using ovine CRF.
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Treatment for the second experiment consisted of (1) infusing antalarmin (0.25 µg/0.5 µl;
Sigma-Aldrich), a CRF1 receptor antagonist, into the dorsal raphé nucleus alone or 10 minutes
prior to infusion of CRF (100 ng or 500 ng/ 0.5 µl) into the dorsal raphé nucleus; or (2) infusing
antisauvagine-30 (2 µg/0.5 µl; Sigma-Aldrich), a CRF2 receptor antagonist, into the dorsal
raphé nucleus alone or ten minutes before CRF (100 ng or 500 ng/ 0.5 µl) into the dorsal raphé
nucleus. Vehicle treatments for the second experiment consisted of infusing (1) 5% ethanol
and 5% camphor in aCSF (0.5 µl; vehicle for antalarmin) into the dorsal raphé nucleus either
alone or 10 minutes prior to the infusion of 100 ng/ 0.5 µl CRF into the dorsal raphé nucleus;
or (2) 2% ethanol in aCSF (0.5 µl; vehicle for antisauvagine-30) either alone or ten minutes
before 500 ng/ 0.5 µl CRF into the dorsal raphé nucleus. All drugs and vehicle solutions were
delivered at a rate of 0.5 µl/min using a microinfusion pump (Stoelting, Wood Dale, IL). The
doses of CRF were determined from previous studies demonstrating CRF effects on 5-HT
activity (Amat et al., 2004; Forster et al., 2006; Kirby et al., 2000; Price et al., 1998). Doses of
receptor antagonists were derived from studies demonstrating effective antagonism of CRF
receptors as indicated by the drug induced blockade of CRF-dependent effects (Amat et al.,
2004; Hammack et al., 2003b; Hammack et al., 2003a; Le et al., 2002). Sampling of 5-HT in
perfusates was continued until 5-HT activity returned to pretreatment levels.

2.3. Serotonin analysis
Analysis of 5-HT in dialysates was accomplished by using high-performance liquid
chromatography (HPLC) with electrochemical detection (Bradberry et al., 1991; Hoffman et
al., 2002). Samples were injected into a chromatographic system with a 5 µl loop. The mobile
phase used for 5-HT separation (0.3 g EDTA, 0.432 g of 1-octanesulfonic acid, 4.8 g
NaH2PO4, 120 ml acetonitrile, 200 µl triethylamine per 1 L, pH 5.35) was pumped through a
UniJet 3 µm C18 silica column (Bioanalytical Systems, West Lafayette, IN) under nitrogen gas
pressure (2000 psi). The collection rate of 0.4 µl/ min resulted in approximately 8 µl of dialysate
to insure that the loop was overfilled during each sample period. Following separation by the
column, 5-HT was detected by a glassy carbon electrode (Bioanalytical Systems) maintained
at +0.5 V with respect to the Ag/AgCl2 reference electrode with a LC-4C potentiostat
(Bioanalytical Systems). The voltage output was recorded by CSW32 v1.4 Chromatography
Station for Windows (DataApex, Prague, Czech Republic). Serotonin peaks were identified
by comparison to a 5-HT standard (7.9 pg/5 µl 5-HT). The 2:1 signal to noise detection limit
for 5-HT using this system was 0.08 ± 0.04 pg.

2.4. Histology
At the conclusion of these experiments, rats were administered a lethal dose of Fatal-plus
(Vortech, Dearborn, MI, 0.5 ml, ip.). Brains were removed and fixed in 10% formalin. Sections
(60 µm) were cut using a Leica Jung CM1800 cryostat (Wetzlar, Germany) at −12 °C, and
analyzed under a light microscope to confirm appropriate placements of microdialysis probes
and drug infusion cannulae. Only data from rats with correct probe and cannulae placements
were included in the data analyses (n=4-9 per group).

2.5. Data Analysis
Serotonin levels are expressed as a percentage change (±SEM) from baseline levels where the
baseline level is determined by averaging the 3 baseline measurements. Significance levels for
all statistical tests were set at P<0.05 (SigmaStat v2.03). The effects of CRF or CRF receptor
antagonists in the dorsal raphé nucleus on NAc 5-HT concentrations were analyzed using a
two-way ANOVA (treatment × time) with repeated measures where the repeated factor was
time. In analyses where a significant treatment × time interaction was present, effects of
treatment were analyzed further using one-way repeated measures ANOVA. Comparisons
between drug and control treatments at a given time were analyzed using Student Newman-
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Keuls posthoc analysis. The effects of treatments across time were analyzed using one-way
repeated measures ANOVA in analyses where a significant treatment × time interaction was
present. The effects of treatment over time were then compared using the Dunnett’s test where
the sample immediately preceding treatment was used as the control 5-HT value.

3. Results
3.1. Probe and injection placement

The placement of microdialysis probes ensured that the 2 mm length of dialysis membrane
sampled 5-HT from both the nucleus accumbens shell and core (Figs. 1A, 1C, and 1E). Drug
infusion cannulae were located in the mid to posterior aspect of the dorsal raphé nucleus (Figs.
1B, 1D, and 1E). The area of the dorsal raphé nucleus infused has been shown to provide 5-
HT innervation to the nucleus accumbens (Van Bockstaele et al., 1993). Although infusions
into the dorsal raphé nucleus were close to the cerebral aqueduct, cannulae were placed on a
lateral to medial angle to minimize the possibility of diffusion into the cerebral aqueduct
(Forster et al., 2006). Probe placements outside of the dorsal raphé nucleus were used for
anatomical control (Figs. 1B).

3.2. Effects of CRF infusions into the dorsal raphé on 5-HT levels in nucleus accumbens
Infusion of CRF into the dorsal raphé nucleus had opposing effects depending on dose on
extracellular 5-HT levels in the nucleus accumbens (Fig. 2A). There was a significant effect
of CRF treatment (F2, 165 = 3.53, P < 0.05) and a significant treatment × time interaction
(F16, 165 = 8.85, P < 0.001). Infusion of 100 ng of CRF produced a significant effect on
accumbal 5-HT over time (F8, 55 = 6.605, P < 0.001). Serotonin decreased in the nucleus
accumbens in the first twenty minutes following 100 ng CRF infusion into the dorsal raphé
nucleus when compared to pretreatment 5-HT levels (Dunnett’s q 55, 9 = 5.86, P < 0.05). There
was also a significant effect on 5-HT in the nucleus accumbens in response to the infusion of
500 ng CRF into the dorsal raphé nucleus (F8, 55 = 7.378, P < 0.001). In the first sample collected
from the nucleus accumbens following the infusion of 500 ng CRF into the dorsal raphé
nucleus, 5-HT was increased approximately 55% over baseline values (Dunnett’s q 55, 9 = 5.78,
P < 0.05). When CRF treatments were compared within each time point, a significant effect
was found at 20 min post treatment (F2, 21 = 21.45, P < 0.001). The decrease in accumbal 5-
HT levels observed after the infusion of 100 ng into the dorsal raphé nucleus was significant
when compared to both aCSF (SNK P = 0.02) and 500 ng (SNK P < 0.001) CRF infusions. In
contrast, when 500 ng CRF was infused into the dorsal raphé, a significant increase was evident
at 20 min when compared to aCSF (SNK P = 0.001).

A few cannulae for infusion of CRF did miss the dorsal raphé nucleus, resulting in CRF delivery
to regions outside, but close to, the serotonergic cells of interest (Figs. 1B). Infusion of CRF
outside the dorsal raphé nucleus did not affect accumbal 5-HT release (Fig. 2B). This suggests
that although the CRF delivered to the dorsal raphé nucleus is contained in a large volume
(0.05 µl), the effects are specific to the dorsal raphé as no influence of CRF on 5-HT overflow
were observed when CRF was infused outside the dorsal raphé nucleus.

3.3. Effects of CRF receptor antagonists in dorsal raphé on accumbal 5-HT
Prior infusion of the CRF1 receptor antagonist, antalarmin, into the dorsal raphé nucleus
blocked the 100 ng CRF-induced decrease in accumbal 5-HT levels (Fig. 3). There was a
significant effect of time (F9, 216 = 3.85, P < 0.001) and treatment × time interaction (F45, 216
= 2.61, P < 0.001). Consistent with the results from experiment one, infusion of 100 ng CRF
in the dorsal raphé following infusion of the vehicle, resulted in a significant decrease in
accumbal 5-HT levels at 20 min (F9,45 = 5.76, P < 0.001; Dunnett’s q 45, 10 = 5.97, P < 0.05).
Similarly, infusion of 100 ng CRF into the dorsal raphé nucleus following infusion of the
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CRF2 receptor antagonist resulted in a significant decrease in accumbal 5-HT levels at 20 min
(F9,36 = 36.24, P < 0.001; Dunnett’s q 36, 10 = 13.11, P < 0.05). In the group treated with the
CRF1 receptor antagonist antalarmin, there was a trend towards an effect across time (F9, 45 =
5.76, P = 0.07). Furthermore, the comparison of the CRF response elicited with antalarmin
compared to vehicle at 20 min post infusion showed antalarmin pretreatment effectively
blocked the 100 ng CRF effect on 5-HT in the nucleus accumbens (P = 0.004). When comparing
between groups within each time point, there were significant differences between treatment
groups at post 20 (F5, 23 = 7.034, P < 0.001), post 100 (F5, 23 = 3.753, P = 0.012), and post 120
(F5, 23 = 5.398, P = 0.002). At 20 min post infusion, antalarmin alone (SNK=0.007), vehicle
for antalarmin alone (SNK = 0.012), aCSF (SNK= 0.008), and infusion of antalarmin 10 min
prior to the infusion of 100 ng CRF (SNK= 0.005) were all significantly different from the
infusion of either vehicle or ASV-30 prior to the infusion of 100 ng CRF. There was a gradual,
unexplained decline in baseline after the infusion of antalarmin 10 min prior to the infusion of
100 ng CRF into the dorsal raphé, resulting in significant differences at post 100 and post 120
from all other treatment groups (SNK P < 0.05). No effect on accumbal 5-HT levels over time
were observed after the infusion of antalarmin (F8, 24 = 1.57, p = 0.187) or the infusion of
vehicle for antalarmin (F8, 32 = 1.013, p = 0.447) without the presence of CRF into the dorsal
raphé nucleus.

Similarly, prior infusion of the CRF2 receptor antagonist, ASV-30, into the dorsal raphé
nucleus blocked the 500 ng CRF-induced increase in accumbal 5-HT levels (F9, 72 = 3.579;
Fig. 4). There was a significant effect of treatment (F5, 252 = 3.047, P = 0.026), time (F9, 252 =
4.892, P < 0.001), and treatment × time interaction (F45, 252 = 2.984, P < 0.001). As in the first
experiment, infusion of 500 ng CRF preceded by infusion of the vehicle for the CRF2 receptor
antagonist, stimulated a significant increase at 20 min (F9, 54 = 4.38, P < 0.001; Dunnett’s
q 54, 10 = 4.23, P < 0.05). Similarly, infusion of 500 ng CRF in the dorsal raphé nucleus
following infusion of the CRF1 receptor antagonist (antalarmin) resulted in a significant
increase in accumbal 5-HT levels at 20 min (F9, 45 = 26.514, P < 0.001; Dunnett’s q 45, 10 =
12.158, P < 0.05). There was however, a gradual but significant (F9, 72 = 3.579, P < 0.001)
decline of baseline at the final sampling time points (Post 100 min Dunnett’s q 72, 10 = 3.107,
P < 0.05; Post 120 min Dunnett’s q 72, 10 = 3.169, P < 0.05) in the ASV-30 with CRF group,
which were not significantly different from the same time points when compared to the ASV-30
alone or vehicle treated groups. Due to the gradual decline in baseline observed in the ASV-30
prior to the infusion of 500 ng group, a significant difference was observed at time points post
100 (SNK P=0.041) and post 120 (SNK P=0.022) when compared to prior infusion of
antalarmin into the dorsal raphé nucleus. No significant effects on accumbal 5-HT levels across
time were observed when vehicle (SNK P = 0.061) or ASV-30 (SNK P = 0.589) were infused
alone into the dorsal raphé nucleus in the absence of CRF.

4. Discussion
Our results demonstrate for the first time that CRF infused into the dorsal raphé nucleus alters
5-HT release in the nucleus accumbens. Infusion of 100 ng CRF into the dorsal raphé decreases
extracellular 5-HT concentrations in the nucleus accumbens (Fig. 2). In contrast, a higher dose
of 500 ng CRF infused into the dorsal raphé resulted in an increase in accumbal 5-HT.
Furthermore, the results suggest that the decrease in accumbal 5-HT release induced by 100
ng CRF is dependent on CRF1 receptors in the dorsal raphé nucleus while the increase in 5-
HT release in the nucleus accumbens following 500 ng CRF infusions into the dorsal raphé
appears to be mediated by CRF2 activation.

The observation that CRF has receptor-dependent opposite effects on 5-HT release may explain
seemingly inconsistent findings from other studies that infused CRF into the dorsal raphé
nucleus and measured 5-HT neuronal activity (Kirby et al., 2000; Lowry et al., 2000) or 5-HT
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release and activity in terminal sites (Kirby et al., 2000; Kirby et al., 2003; Pernar et al.,
2004; Price et al., 1998; Price and Lucki, 2001; Thomas et al., 2003). Previous studies suggest
that lower doses of CRF (intra-dorsal raphé 3–10 ng; icv 0.1–1 µg; Kirby et al., 2000; Price et
al., 1998) inhibit 5-HT release in the lateral septum and striatum, whereas higher doses were
shown to either increase (intra-dorsal raphé 1µg CRF; Price and Lucki, 2001) or have no effect
on 5-HT concentrations. Our results combined with those of previous studies suggest that the
opposing effects of CRF on 5-HT terminal release are probably due to variable concentrations
of CRF acting differentially on CRF1 and CRF2 receptors to inhibit or excite 5-HT neuronal
cell firing.

Opposing actions by varying doses of CRF suggest mediation by different CRF receptors in
the dorsal raphé nucleus (Hammack et al., 2003b; Hammack et al., 2003a; Kirby et al., 2000;
Pernar et al., 2004). The dorsal raphé nucleus contains an unusually high density of CRF1 and
CRF2 receptors. Decreased accumbal 5-HT release elicited by a lower CRF dose was dependent
upon CRF1 receptors, demonstrated by the CRF1 receptor antagonist (antalarmin) blocking the
effect of 100 ng CRF delivered to the dorsal raphé, whereas the CRF2 receptor antagonist had
no effect (Fig. 3). Similarly, dorsal raphé firing rates inhibited by CRF, were reversed by a
selective CRF1 receptor antagonist (Kirby et al., 2000). Furthermore, a higher dose of CRF in
the dorsal raphé nucleus stimulated increased 5-HT release in the nucleus accumbens as a result
of CRF2 activation (Fig. 4). That is, the stimulatory effect of 500 ng CRF infused into the dorsal
raphé nucleus on accumbal 5-HT release was inhibited by a CRF2 receptor antagonist
(ASV-30) but was not affected by a CRF1 receptor antagonist.

It is possible that the divergent effects of CRF we observed are mediated by neuroanatomical
heterogeneity of CRF1 and CRF2 receptor subtypes associated with regional specificity of
function of the raphé (Lowry et al., 2000; Lowry, 2002; Summers et al., 2003a; Valentino et
al., 2001). Regional specificity in raphé may yield direct control of terminal 5-HT output, such
as from the lateral wings of the dorsal raphé nucleus to the nucleus accumbens (Van Bockstaele
et al., 1993). Of course, in our model, presumably CRF binds to both CRF1 and CRF2 receptors
regardless of the quantity released or the dosage delivered, and the effect is then modulated by
the affinity of the receptor type, which is greater for CRF binding to the type 1 receptor
(Grigoriadis et al., 1996a; Grigoriadis et al., 1996b). At lower concentrations, primarily
CRF1 receptors are activated by CRF due to their higher affinity for CRF. Higher
concentrations of CRF are required to bind and stimulate CRF2 receptor activity, and activation
of CRF2 receptors may mask CRF1 receptor function by some unidentified mechanism. The
possible mechanisms could include inhibitory receptor-to-receptor interactions or perhaps
more likely inhibitory effects from inhibition by other neurotransmitter systems within the
raphé. The raphé includes numerous GABAergic interneurons, particularly in the lateral wings,
and also catecholaminergic input (Day et al., 2004). These inhibitory systems may have reduced
accumbal 5-HT release observed in the slightly declining baseline of receptor antagonist treated
preparations. However, only animals treated with receptor antagonist followed by CRF showed
this decline suggesting an inhibitory feedback mechanism. In addition, the raphé also produces
CRF binding proteins (Peto et al., 1999; Potter et al., 1992). These binding proteins may be
involved in modulating cellular events that occur following CRF receptor binding, such as
processing and degradation of CRF and/or ligand-receptor complexes (Peto et al., 1999).
Therefore, direct or indirect mechanisms may be operational when concentration differences
of CRF influence the output of 5-HT.

A decrease in serotonergic activity in the nucleus accumbens has been associated with
increased aggression (Giacalone et al., 1968; Haney et al., 1990; Welch and Welch, 1968) and
impulsivity (Cardinal et al., 2001; Tobin and Logue, 1994). In contrast, an increase in
serotonergic activity in the nucleus accumbens is associated with stressful conditions (Petty et
al., 1994; Rueter and Jacobs, 1996; Wilkinson et al., 1996), such as in the forced swim test
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(Amat et al., 1998a; Amat et al., 1998b; Kirby et al., 1997). In addition behavioral states or
processes mediated by increased accumbal dopamine include salient events such as reward,
memory, motivation, and hedonia (Ikemoto and Panksepp, 1999; Kalivas, 1993; Pennartz et
al., 1994; Robinson and Berridge, 1993; Zangen et al., 2001), that may also be influenced by
5-HT. The nucleus accumbens has been shown to regulate impulsive choice through
interactions between dopamine and 5-HT (Winstanley et al., 2005). Therefore, CRF effects on
the raphé serotonergic output to nucleus accumbens has the potential for modifying a suite of
behaviors that involve anticipation, impulsivity, motivation, reward, aggression and/or
depression.

The results of our experiments suggest that different concentrations of CRF yield differential
CRF receptor binding in the dorsal raphé nucleus. This implies that CRF may act with a dual
potential to elicit functional modulation of 5-HT in nucleus accumbens, thereby modifying
behavior. Similarities between the effects of centrally administered CRF and the behavioral
and physiological symptoms of human affective disorders, suggest an important role for CRF
(Nemeroff, 1996; Nemeroff, 1998). Depressed individuals show elevated CRF levels and
abnormal CRF functioning (Dunn and Berridge, 1990a; Dunn and Berridge, 1990b; Gold and
Chrousos, 1999; Nemeroff, 1996; Nemeroff, 1998; Plotsky et al., 1998; Wong et al., 2000), as
well as altered serotonergic functioning in the nucleus accumbens (Avgustinovich et al.,
2004; Dremencov et al., 2005) which normalize in CSF after antidepressant treatment
(Arborelius et al., 1999). The production of anxiety appears to be influenced by CRF2 receptors
in the dorsal raphé via 5-HT projections from the dorsal raphé nucleus (Graeff et al., 1996)
during anxiety-arousing circumstances such as exposure to uncontrollable stressors (Bakshi et
al., 2002; Hammack et al., 2003b; Ho et al., 2001; Takahashi et al., 2001). The importance of
our results is to suggest that CRF1 and CRF2 receptors can be differentially activated simply
by controlling the level of CRF neuronal output. If this is the case, then neurotransmitter activity
modified by CRF, such as 5-HT in terminal regions like the nucleus accumbens, can be up- or
down-regulated by modulation of the dorsal raphé nucleus through changes in the activity of
CRF projections from cell body regions such as the central amygdala to affect or fine tune
behavior.
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Figure 1. Probe and Cannula Placements in the Nucleus Accumbens and dorsal Raphé
Schematic representations of microdialysis probe (A,C,E) and dorsal raphé nucleus drug
infusion cannulae (B, D, F) for CRF dose-response experiments (A and B), CRF1 receptor
antagonist experiments (C and D), and CRF2 receptor antagonist experiments (E and F).
Microdialysis probes (black bars which represent more than one placement) were placed in the
nucleus accumbens (NAc) with a 2 mm membrane to record from both the shell and the core
(A, C, E; Figures adapted from Paxinos and Watson (1997); AP: +1.2 from bregma; ML: −1.4
from midline; DV: 8.1 from dura). Drug cannulae (black circles) were placed in regions
encompassing areas of the dorsal raphé nucleus (AP: −7.4 from bregma; ML: +2.8 from
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midline; DV: −4.6 from dura) that project to the nucleus accumbens (B, D, and F). Figure B
also illustrates cannula placements outside the dorsal raphé nucleus (crosses).
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Figure 2. Effects of CRF Infusion into the dorsal Raphé nucleus on Accumbal 5-HT levels
Infusion of 100 ng CRF into the dorsal raphé nucleus (A) resulted in a significant decrease in
accumbal 5-HT when compared to CSF (A; *significant difference in accumbal 5-HT levels
as compared to aCSF infusion, P<0.05), and compared to pre-infusion baseline 5-HT overflow
(# significant difference over time in accumbal 5-HT levels, P<0.05). Arrow indicates time of
intra-dorsal raphé injection. In contrast, infusion of 500 ng into the dorsal raphé nucleus (A)
resulted in a significant increase in accumbal 5-HT levels when compared to controls (A).
When cannulae placements were outside the dorsal raphé nucleus (B), no change in 5-HT
overflow was recorded, regardless of the treatment.
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Figure 3. Infusion of a CRF1 Antagonist into the dorsal Raphé nucleus Blocks the Effects of 100
ng CRF Infusion into the dorsal Raphé
Infusion of 100 ng CRF into the dorsal raphé nucleus (in the absence of the CRF1 antagonist
antalarmin) resulted in a significant 5-HT decrease in the nucleus accumbens (* significant
compared to control groups; # significant difference over time; P<0.05). The effect of 100 ng
CRF on accumbal 5-HT levels was not affected by infusion of the CRF2 antagonist (ASV-30)
into the dorsal raphé nucleus 10 min prior to the infusion of 100 ng CRF. In contrast, infusion
of antalarmin, a CRF1 receptor antagonist, into the dorsal raphé nucleus completely blocked
the 100 ng CRF effect. No effects on accumbal 5-HT levels were observed after infusion of
vehicle or antalarmin alone in the absence of CRF. Arrows indicate time of intra-dorsal raphé
injection: first arrow represents infusion of receptor antagonist or vehicle, and the second arrow
represents infusion of CRF.
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Figure 4. Infusion of a CRF2 Antagonist into the dorsal Raphé nucleus Blocks the Effects of 500
ng CRF Infused into the dorsal Raphé
Infusion of 500 ng CRF into the dorsal raphé nucleus (in the absence of the CRF2 antagonist
ASV-30) resulted in a significant increase in accumbal 5-HT (* significant compared to control
groups; # significant difference over time; P<0.05). The effect of 500 ng CRF on accumbal 5-
HT levels was not affected by infusion of the CRF1 antagonist (antalarmin) into the dorsal
raphé nucleus 10 min prior to the infusion of 500 ng CRF. In contrast, infusion of ASV-30,
blocked the effects of 500 ng CRF into the dorsal raphé nucleus. No effects on accumbal 5-
HT levels were observed after infusion of vehicle or ASV-30 alone in the absence of CRF.
Arrows indicate time of intra-dorsal raphé injection: first arrow represents infusion of receptor
antagonist or vehicle, and the second arrow represents infusion of CRF.
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