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Summary

HBs antigen (HBsAg)183–191 (FLLTRILTI, R187 peptide) is a dominant
human leucocyte antigen-A2 (HLA-A2)-restricted epitope associated with
hepatitis B virus (HBV) infection in Caucasian populations. However, its
prevalence is poorly understood in China, where there is a high incidence of
HBV infection. In this report, we sequenced the region of HBsAg derived from
103 Chinese patients. Approximately 16·5% of the patients bore a mutant
HBsAg183–191 epitope in which the original arginine (R187) was substituted
with a lysine (K187 mutant peptide). Importantly, K187 still bound to
HLA-A2 with high affinity, and elicited specific cytotoxic T lymphocyte (CTL)
responses in HLA-A2/Kb transgenic mice. K187-specific CTLs were also gen-
erated successfully in acute hepatitis B (AHB) patients, indicating that this
mutant epitope is processed and presented effectively. Our findings show that
R187-specific CTLs can cross-react with the K187 peptide. These findings
reveal that K187 still has the property of an HLA-A2 restricted epitope, and
elicits a protective anti-HBV CTL response in humans.
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Introduction

Hepatitis B virus (HBV) is extensively epidemic in the
world. Its infection can result in acute and chronic hepatitis,
and greatly enhance the risk of liver cirrhosis and hepato-
cellular carcinoma [1]. Evidence suggests that a vigorous,
multi-targeted cytotoxic T lymphocyte (CTL) response
occurs during acute hepatitis B (AHB) [2–6], while the
HBV-specific CTL response is very low or undetectable
during chronic infection. Moreover, several reports have
shown that CTL epitopes mutation abrogate recognition of
HBV by prototype CTLs [7,8], which favour chronic infec-
tion by allowing viruses to evade host immunity [9,10].
These researches indicate that HBV-specific CTLs play a
major role in the control and clearance of viral infection
[11]. Thus, it is especially critical to identify dominant
epitopes that will elicit strong CTL responses in HBV-
infected patients. Although a number of epitopes in HBV
antigens have been identified in European and northern
American HBV patients [2,4,12–15], it remains unclear
whether mutant epitopes still elicit CTL response in vivo.
Theoretically, the T cell receptor (TCR) repertoire is large
enough [16] that every viral mutation should be recognized
by a specific TCR, thus allowing the host immune system to

mount a novel response to mutant peptide-bearing viruses
and control their replication. In addition, HBV has been
classified into eight genotypes, A to H, according to the
divergence of � 8% in the complete genome nucleotide
sequence [17–20]. Clinical investigation has indicated that
genotypes B and C are the most frequent in China [21,22],
while other genotypes are more prevalent in Europe and
North America [23–25]. Distinct distribution of the geno-
type may cause the sequence mutation of some originally
identified epitopes in China. However, so far there has been
a paucity of reports regarding epitope discrepancies in
HBV-infected patients in China.

In this report we examined the prevalence of the
HBV epitope, HBs antigen (HBsAg)183–191 (FLLTRILTI),
which is a major human leucocyte antigen-A2 (HLA-A2)-
restricted epitope [26]. Our results show that approximately
16·5% of HBV-infected patients have a mutation with an
arginine to lysine switch at the fifth amino acid residue in
the HBsAg183–191 (FLLTRILTI) epitope, K187. Impor-
tantly, subsequent identification showed K187 was still an
HLA-A2-restricted epitope. Our findings may aid the design
of more efficient HBV-specific epitope vaccines to boost
anti-viral immune responses in chronic hepatitis B (CHB)
patients.
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Materials and methods

Patients

Nine HLA-A2-positive patients (three with AHB and six
with CHB) were enrolled for analysis of HBV peptide-
specific CTLs. All the patients met the diagnosis standards of
AHB and CHB, as described previously [27,28]. Briefly,
patients who display a serum HBsAg conversion within
6 months following onset of HBV infection are classified as
AHB, while patients who have viral persistence for more
than 6 months and typical manifestations of hepatitis or
abnormal hepatic function are classified as CHB. Two HBV-
uninfected healthy HLA-A2-positive individuals were used
as controls for tetramer staining. One hundred and three
samples with viral titres >107 copies/ml were chosen to inves-
tigate epitope sequence prevalence. Individuals with concur-
rent HCV, HDV, HGV or HIV infections or autoimmune
liver disease were excluded from the study. Our protocol was
approved by the Ethics Committee of Beijing 302 Hospital
and written informed consent was obtained from each
subject.

Tissue typing and peptide synthesis

The HLA-A2 haplotype was determined with fluorescein
isothiocyanate (FITC)-conjugated HLA-A2 monoantibody
staining. The K187 mutant peptide and the H-Kd-restricted
epitope, HBcAg87–95 (SYVNTNMGL) [29], were synthe-
sized at GL Biochem Ltd (Shanghai, China). Peptide purity
was >98%, as confirmed by reverse phase high-performance
liquid chromatography (HPLC) and mass spectrometry.

Amplification and sequencing of the epitope-encoding
region of HBV

To amplify the nucleotide sequence that encodes the
HBsAg183–191 epitope, we designed the following
primers: 5′-CCTAGGACCCCTGCTCGTGTTACAG-3′ and
5′-CCCTACGAACCACTGAACAAATGGCAC-3′. The HBV
genome was isolated from infected patients using virus
genome extraction kits (TaKaRa Biotechnology (Dalian) Co.
Ltd, Dalian, China), and stored at -80°C prior to use as a
polymerase chain reaction (PCR) template. Amplification
was performed as follows: 5 min denaturing at 95°C, 30
cycles with 30 s denaturing at 94°C, 30 s annealing at 58°C
and 48 s extension at 72°C. The amplified fragment was
extracted from the gel and inserted into the vector using a
T-A cloning method. At least three clones per sample were
sequenced with a 3730 sequencer in Beijing (Sunbiotech Co.
Ltd, Beijing, China).

Refolding of HLA-A2 molecules with peptide

HLA-A2 heavy and light chains and human b2 micro-
globulin (b2m) were overexpressed in Escherichia coli. The

inclusion bodies of each protein were purified and dissolved
in 8 M urea; 4 mg peptide was added to 500 ml refolding
buffer (100 mM Tris-HCl (pH 8·0), 400 mM l-arginine-
HCl, 2 mM Na ethylenediamine tetraacetic acid (NaEDTA),
0·5 mM oxidized glutathione and 5 mM reduced glu-
tathione) followed by 15 mg b2m at 4°C. After 30 min,
15 mg HLA-A2 heavy chain was added gradually and the
refolding buffer was stirred. The refolded protein was con-
centrated in a pressurized chamber and run over a Superdex
75 column.

Peptide binding assay

To determine whether the synthesized peptide could bind to
HLA-A2 molecules, we measured peptide-induced HLA-A2
up-regulation on T2 cells [30,31]. In brief, T2 cells were
incubated with 50 mM of the candidate peptides and 3 mg/ml
b2m in serum-free RPMI-1640 medium for 18 h at 37°C in
a 5% CO2 incubator. Surface expression of HLA-A2 on the
T2 cells was quantified using FITC-conjugated anti-HLA-A2
monoclonal antibody and analysed by flow cytometry. The
fluorescence index (FI) was calculated as follows: FI = (mean
fluorescence with a given peptide - mean fluorescence with
no peptide)/(mean fluorescence with no peptide). Peptides
with an FI greater than 1 were regarded as high-affinity
epitopes.

Tetramer production and staining

Tetrameric HLA-A2 peptide complexes (tetramers) were
constructed as described previously [31,32]. Briefly, HLA-A2
heavy chain, with a Bir A site, and human b2m were
expressed in bacteria and the purified inclusion bodies were
denatured in 8 M urea buffer. The proteins were refolded
with the peptide in vitro, as described above. The HLA-A2-
peptide–b2m complexes were then purified through a
Superdex 75 column and biotinylated with Bir A enzyme.
The biotinylated complexes were purified further by gel fil-
tration, and tetramerization was accomplished by mixing
biotinylated HLA-A2-peptide–b2m complex and phyco-
erythrin (PE)-conjugated streptavidin at a molar ratio of
4 : 1. Peptide-induced lymphocyte cultures were incubated
with PE-conjugated tetramers for 30 min at 4°C, and incu-
bated with FITC-labelled anti-human CD8 monoclonal
antibody (mAb) for an additional 30 min at 4°C. After
washing with PBS, stained cells were fixed with 0·5%
paraformaldehyde and analysed by flow cytometry [33–35].

Immunization of HLA-A2 transgenic mice

HLA-A2/Kb transgenic mice [36], a generous gift from Dr
Cao Xuetao (Shanghai Second Military Medical University),
were bred and maintained in specific pathogen-free facilities.
Expression of HLA-A2 on the cellular membrane was
assessed by flow cytometry using FITC-labelled HLA-A2-
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specific monoclonal antibody (eBioscience Co. Ltd, San
Diego, CA, USA). Six to 8-week-old mice were immunized
three times intramuscularly every 2 weeks with a mixture of
100 mg peptide with incomplete Freund’s adjuvant (IFA), as
described previously [37,38]. Seven days after the last immu-
nization, mouse splenocytes were isolated and specific CTL
responses were analysed by enzyme-linked immunospot
(ELISPOT) assays.

Analysis of interferon (IFN)-g-producing T cells by
ELISPOT

ELISPOT was performed using a commercially available
human or mice interferon-g (IFN-g) ELISPOT kit
(e-Bioscience Co. Ltd). Briefly, 96-well polyvinylidene fluo-
ride (PVDF)-treated microtitre plates were coated with anti-
IFN-g mAb at 4°C overnight. Then 2 ¥ 105 cells, which were
stimulated with 10 mg/ml peptide for 24 h in 24-well culture
plates, were added to each well of the ELISPOT plate. After
16–24 h incubation the cells were discarded and the assay
was performed according to the manufacturer’s instructions.
Wells were imaged with an ELISPOT reader, and the spots
were counted with an automated system, after setting
parameters for size, intensity and gradient with Saizhi
ELISPOT analysis software. A response was considered posi-
tive if the mean number of spot-forming cells (SFCs) in
triplicate sample wells exceeded background. Assay results
were displayed as SFC per 1 ¥ 106 cells.

Results

Prevalence of the HBsAg183–191 epitope sequence in
CHB patients

Because the variability and distribution of HBV differs
among global populations, the epitope sequence identified in
Caucasian patients may be mutated in Chinese patients. In
order to investigate the prevalence and mutant state of the
HBsAg183–191 epitope in Chinese patients, we enrolled 103
subjects randomly from more than 500 CHB patients. The
HBV genome was amplified by PCR, DNA fragments con-
taining the HBsAg183–191 epitope sequence were cloned
and at least three clones from each sample were confirmed

further by direct DNA sequencing. Of the 103 samples, 17
patients (16·5%) had a mutant epitope in whom arginine
was substituted with a lysine (Table 1). The results indicate
that a considerable percentage of Chinese patients harbour
HBV with the K187 mutant HBsAg183–191 sequence.

HLA-A2 heavy chain can refold with b2m in the
presence of K187 mutant peptide

Major histocompatibility complex (MHC) class I-restricted
epitopes form a complex with MHC-I molecules within
the cellular endoplasmic reticulum (ER). The complex is
then displayed on the cellular membrane for peptide
presentation. Individual MHC-I molecules are not stable in
vitro unless they have bound a suitable epitope. In the pres-
ence of an epitope, the heavy chain of MHC-I can refold with
b2m [39]. To determine whether the K187 mutant peptide
still has the property of an HLA-A2-restricted epitope, we
performed a refolding assay with the K187 mutant peptide,
HLA-A2 and b2m at a molar ratio of 1 : 4·5 : 18. The refold-
ing efficiency was determined by gel filtration analysis. As
shown in Fig. 1a, HLA-A2 molecules/peptide complexes
formed in vitro. This was confirmed further by sodium
dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-
PAGE) analysis (Fig. 1b). These results indicate that the K187
peptide retains the capacity to bind HLA-A2, encouraging us
to investigate its characteristics further.

K187 mutant peptide up-regulates expression of
HLA-A2 molecules on T2 cells

The affinity of peptides for MHC-I is associated closely
with their immunogenicity [40]. High-affinity peptides are

Table 1. Frequency of the HBs antigen (HBsAg)183–191 sequence in

patients with chronic hepatitis B virus (HBV) infection.

Item

K187 mutant

peptide

R187

peptide

Total

sample

Number of samples 17 86 103

The HBV genome was extracted from 103 chronic hepatitis B

patients and the HBsAg183–191 sequence was amplified by polymerase

chain reaction. The fragment was cloned into a pMD 18-T vector and

three clones were sequenced. Of the 103 samples, 17 had the K187

mutant peptide sequence and 86 had the R187 peptide sequence.

Fig. 1. Refolding assay using the K187 mutant

peptide. (a) Human leucocyte antigen-A2

folded with b2m in the presence of K187

mutant peptide at 4°C. The folded complex was

run over a Superdex 75 column. The second

peak represents the refolded product

(see arrow). (b) Sodium dodecyl

sulphate-polyacrylamide gel electrophoresis

assay using the complex represented by the

second peak.
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immunogenic,while low-affinity peptides are not.Affinity for
MHC-I is often evaluated with the competitive binding inhi-
bition assay [17]. It is also monitored by detection of peptide-
induced up-regulation of HLA-A2 molecules on transporter
protein for antigenic peptide (TAP)-deficient T2 cells [41]. To
measure the affinity of K187 for HLA-A2, we adopted a
protocol in which affinity is expressed as a fluorescence index
(FI) value, as described previously [30,31,42]. As shown in
Table 2, the FI of K187 mutant peptide reached 1·575, while
the FI of the control peptide, HBcAg87–95, reached only
0·193. Simultaneously, we performed the experiment with the
R187 epitope and identified its FI value as 1·632. The histo-
grams of three peptides were overlaid with the negative
control curve, using WinMDI version 2·9 software (Fig. 2).
Both K187 mutant peptide and R187 epitope showed a higher
fluorescence intensity than the control peptide, HBcAg87–95,
and no peptide samples. These results indicate that K187 has
an almost equally high affinity for HLA-A2 as R187, and
possesses the property of a CD8+ CTL epitope.

K187 mutant peptide elicits specific CD8+ CTL
responses in HLA-A2/Kb transgenic mice

It is critical to show that CD8+ CTL epitopes can elicit a
specific CTL response efficiently in vivo. To address this, we
immunized HLA-A2/Kb transgenic mice with K187 mutant
peptide or the control peptide, HBcAg87–95. After three
immunizations, splenocytes were isolated and specific CTL
responses were analysed by ELISPOT. As shown in Fig. 3a,
K187 mutant peptide mounted a peptide-specific CTL effi-
ciently in HLA-A2/Kb mice, while the control peptide did
not. The results indicate that the K187 mutant peptide is
presented to CD8+ T cells in vivo.

K187-specific CTLs are detected in AHB patients, but
not in CHB patients

Based on our results, we expected the K187 mutant peptide to
elicit specific CTLs in HBV-infected patients. To confirm this
further, we stained the peripheral blood mononuclear cells

(PBMCs) with tetramer in HLA-A2-positive AHB and CHB
patients. Approximately 3·93% of the total CD8+ T cells were
specific for K187 in the AHB patients (Fig. 4). ELISPOT
analysis supported the result (Fig. 3b). Through PCR ampli-
fication and direct cDNA sequencing, we confirmed that the
HBsAg183–191 sequence in these patients is the K187 mutant
peptide, FLLTKILTI. Our findings indicate that patients who
recover successfully from an acute self-limiting HBV infec-
tion develop strong K187 epitope-specific CTL responses.

R187 epitope-specific CTLs can cross-react with
K187 epitope

To address cross-reactivity between the above-mentioned
two epitopes, we enrolled two HLA-A2 restricted patients
who recovered from acute HBV infection and were found
with HBV-infected R187 epitopes. PBMCs of the patients
were isolated and stimulated with R187 and K187 epitopes,
respectively. Secretion of IFN-g by R187-specific CTLs were
detected with ELISPOT assay. As shown in Fig. 5, both R187
and K187 epitopes can stimulate the R187 epitope-specific
CTLs to secrete IFN-g. The data indicate that R187 and K187
epitopes can cross-react.

Discussion

Epitopes in HBV antigens are important for viral clearance
in patients. Many epitopes have been identified within the
HBV core [43,44], envelope [17], polymerase [4] and X
proteins [20] of infected Caucasian individuals. As the HBV

Table 2. Binding affinity of K187 or R187 to human leucocyte

antigen-A2 molecule on T2 cells.

Name of sample

Mean fluorescence

value FI value

b2m control well 723 0

HBcAg87–95 peptide control well 863 0·193

K187 mutant peptide well 1862 1·575

R187 mutant peptide well 1903 1·632

Mean fluorescence value of T2 cells stained with the fluorescein

isothiocyanate-human leucocyte antigen-A2 (FITC-HLA-A2) mono-

clonal antibody and fluorescence index (FI) value. The FI value was

obtained according to the following formula: FI = (mean FITC fluores-

cence of the given peptide - mean FITC fluorescence without peptide)/

mean FITC fluorescence without peptide.

128

E
v
e
n

ts

0
100 101 102

FITC-A

103 104

Fig. 2. Human leucocyte antigen-A2 expressing on T2 cells: thick-line

histogram represents T2 cells incubated with b2m protein alone;

thin-line histogram represents T2 cells incubated with HBcAg87–95

control peptide and b2m; broken-line histogram represents T2 cells

incubated with K187 mutant peptide and b2m; narrow-brush

histogram represents T2 cells incubated with R187 peptide.
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genome is variable, HBV epitope sequences often generate
mutations. However, very little research has focused upon
the prevalence of these mutations and their effect on CTL
generation, particularly in China. Here, we found that
approximately 16·5% of HBV-infected Chinese patients bore
a mutant HBsAg183–191 epitope in which the original argi-
nine (R187) was substituted with a lysine (K187 mutant
peptide). In addition, the mutated K187 epitope can cross-
react with R187-specific CTLs, and elicits a protective anti-
HBV CTL response in Chinese patients with HBV infection.

In this study, we found that the mutant sequence of the
HBsAg183–191 epitope, K187, can bind effectively to
HLA-A2 molecules. Our results were not consistent with
other reports illustrating that mutant HBV epitopes have a
reduced ability to bind HLA-A2 molecules [11]. The short
peak of the refolding complex in Fig. 1 did not suggest
that HLA-A2 and b2m have a lower folding efficiency in
the presence of K187. A parallel experiment using the
HBsAg183–191 epitope confirmed this result (data not

shown). Instead, the short peak was likely to be caused by the
hydrophobicity of the peptide, which decreased its water
solubility. FI values were also very similar between the K187
mutant and R187 peptides (data not shown). These results
can be explained by previous findings that interior amino
acid residues in HBV epitopes are required for TCR interac-
tion [45]. Their mutation does not affect the binding ability
of epitope to MHC-I molecule [46,47].

Previous studies have shown that substitution of internal
amino acid residues in some epitopes of HBV disrupts the
ability of the virus to be recognized by TCRs [11,12,48]. In
this study, we found that K187-specific CTLs can be primed
in HLA-A2/Kb transgenic mice and in patients with acute
HBV infection, indicating that the mutant peptide com-
plexes efficiently with MHC-I molecules and interacts with
the TCR. Our study is the first to confirm that the K187
mutant epitope can induce CTLs in vivo.

Some epitope mutations favour virus escape from the host
immune response [14,49]. However, our findings suggest
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Fig. 3. Detection of hepatitis B virus-specific cytotoxic T lymphocytes (CTLs) by interferon (IFN)-g enzyme-linked immunospot (ELISPOT) assay.

(a) Mice were immunized three times with 100 mg K187 mutant or HBcAg87–95 control peptide. Seven days following the third injection,

splenocytes were isolated and peptide-specific IFN-g cells were quantified by ELISPOT. (b) K187-specific CTLs were detected in representative acute

hepatitis B and chronic hepatitis B patients or healthy subjects. Peripheral blood mononuclear cells (PBMCs) from each individual were isolated,

stimulated with 10 mg/ml peptide, and IFN-g responses were detected by ELISPOT assay.
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that this may be not the case for the K187 mutation, as this
epitope still induced HBV-specific CTLs in vivo. Alterna-
tively, these HBsAg183–191-specific CTLs may still respond
to mutant epitope by different TCRs which have a different
Vb chain [48,50]. In addition, many HBV epitopes are found
in the surface, core and polymerase proteins [4,17–19].
These epitopes also elicit CTLs in vivo and can contribute to
the elimination of the K187 mutant HBV. However, because
our investigation does not show other mutations at the 187
position of the HBsAg183–191 epitope, we do not know
whether or not other mutations at this position cause escape
from the host immune response. Riedl et al. have reported
that mutant epitopes can disrupt the immune tolerance of
prototype epitopes, even with only one amino acid substitu-
tion [51]. Our findings confirm further that R187-specific
CTLs can cross-react with the K187 epitope. In future,
according to the research by Riedl et al., the K187 mutant
epitope is a good choice to use to disrupt the immune toler-
ance of the R187 epitope-bearing HBV to cure CHB patients.

Overall, our results show that the substitution of K187 for
R187 in the HBsAg183–191 sequence affects neither epitope
binding to HLA-A2 nor CTL recognition of the epitope.
Indeed, K187 is an efficient HLA-A2-restricted immuno-
genic peptide capable of inducing an anti-HBV-specific CTL
response in AHB patients. Our findings will aid the design of
alternative therapies for CHB patients in China.
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