
J Physiol 583.2 (2007) pp 431–436 431

SYMPOS IUM REPORT

Glucocorticoids and insulin both modulate caloric intake
through actions on the brain

Mary F. Dallman, James P. Warne, Michelle T. Foster and Norman C. Pecoraro

Department of Physiology, University of California San Francisco, CA 94143, USA

Glucocorticoids act primarily in a feed-forward fashion on brain to activate CNS pathways

that implement wanting appropriate to physiological needs. Thus, depending on the available

conditions, elevated glucocorticoids may augment the behavioural want to run, fight or feed.

Although glucocorticoids stimulate intake of chow, fat and sucrose, insulin appears to sculpt

calorie-associated desires toward foods high in fat, acting through hepatic branch afferents

of the vagus nerve. Both conditions of reduced food allowance and chronic stress excite

glucocorticoid-augmented central neural networks that may lead toward ultimate abdominal

obesity.
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Adrenal glucocorticoids (GC) are well known to mobilize
substrate from peripheral energy depots such as muscle
and fat for use in hepatic gluconeogenesis, insuring a
plentiful supply of glucose for use under conditions of
challenge when flight or fight may be necessary. However,
GC also have marked and complementary effects on the
brain, that serve to augment behaviours, autonomic and
neuroendocrine outflows, and learning and memory that
are particularly associated with body energy balance and
maintenance of life during challenging periods. During the
past decade our lab has been exploring the roles of energy
stores, GC and insulin on feeding behaviours and central
stress responses (Pecoraro et al. 2006).

Below we review studies that show when
adrenalectomized (ADX) rats are provided with high-
density sucrose solutions, the rats normalize caloric
stores and central corticotropin-releasing factor (CRF)
expression to those levels that are observed in sham-
operated animals. Drinking the pleasurable, high density
calories restores neuroendocrine, autonomic outflows
and energy stores to normal in rats without GC. This
finding suggested a new working model for feedback in the
hypothalamo-pituitary adrenal (HPA) axis that we have
since tested. Ingestion of sweet (sucrose and saccharin)
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and fat (lard) substances, and searching for rewarding
food, and memory for it, is proportional to the circulating
GC environment, again invoking the powerful effects of
GC on shaping behaviours associated with feeding. GC
also stimulate insulin secretion, and we have found that it
is the interaction between GC and insulin that modulates
the choice of fat (lard) intake. The action of insulin is
on the liver, probably through insulin receptors, and
mediated through hepatic branch vagal afferents to the
brain to provoke lard intake. In the absence of insulin, lard
eating does not persist beyond one day in diabetic rats.
Thus, through a variety of different mechanisms, the GC
insure caloric intake particularly intake of high-density,
pleasurable calories. In the presence of chronic stressors,
this type of feeding may become habitual. If increased
intake of comfort foods does become a habit, abdominal
obesity may result, leading to many of the current ills of
our society (Dallman et al. 2007).

Adrenalectomy and sucrose: a new model of
feedback regulation in the HPA axis (Fig. 1)

When ADX rats are given saline to drink (thus preventing
sodium depletion due to loss of aldosterone) and chow
to eat ad libitum, there is a constellation of metabolic
consequences that occurs in the absence of GC. Male
rats eat slightly less than normal, increase body weight
at slower rates, have decreased fat mass and increased
general sympathetic tone; all of these effects are corrected
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Figure 1. New working model for regulation of activity in the
HPA axis
The schema on the left shows the standard GC-mediated feedback of
HPA function on the brain as well as the fact that the GC act on
peripheral energy stores. The schema on the right shows our current
working model. Note that the effect of GC on brain is now excitatory,
and that there is a signal from energy stores that now is inhibitory on
the brain and HPA axis (GC, glucocorticoids; CNS, central nervous
system; CRF, corticotropin-releasing factor; MA, monoamines; DA,
dopamine).

by supplying corticosterone (Akana et al. 1985; Dallman
et al. 2003a). However, to our great surprise, we also found
that allowing ADX rats to drink a solution of 32% sucrose,
as well as chow and saline ad libitum in the absence of
corticosterone, prevented the metabolic deficiencies from
occurring (Bell et al. 2000; Laugero et al. 2001). Providing
sucrose as well as saline to drink restored thermogenesis (as
measured by uncoupling protein-1) to normal, and thus
appeared to reduce sympathetic outflow induced by ADX
(Bell et al. 2000). Moreover, voluntary sucrose drinking
also prevented the well-known changes in central CRF that
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Figure 2. Sucrose ingestion is inversely related to CRF mRNA in
the paraventricular nuclei (PVN)
In bilaterally adrenalectomized rats, the total sucrose intake during the
9 days it was available is tightly related to the expression of
hypothalamic CRF. CRF mRNA was restored to values similar to those
in sham-operated rats (5 points on the right) reducing the normally
elevated CRF seen in adrenalectomized rats (4 points on the left) to
values similar to rats with intact adrenals (data from Laugero et al.
2001).

normally occur both in the hypothalamus and amygdala
after ADX (Fig. 2).

When trying to understand how sucrose drinking had
such marked effects not only peripherally, but also on brain
CRF, we found that there was a quite strong correlation
(r = −0.64) with mesenteric fat mass (Dallman et al.
2003b), and we suggested the new model of feedback
regulation of HPA axis function shown in Fig. 1. It appears
that the brain is informed of fat storage, particularly in the
mesenteric fat, and that this information reduces activity
in central CRF systems. The limbic CRF system appears to
be recruited by chronic stressors, and represents a critical
component of the chronic stress response system (Dallman
et al. 2006).

We have tested this hypothesis by providing sucrose to
adrenalectomized rats replaced with corticosterone and
subjected to cold. Under conditions of low, clamped
corticosterone concentrations, sucrose, and increased fat
mass, were important in diminishing the central responses
and increasing thermogenic responses to cold (Bell et al.
2002). Although we hypothesize that there is neural feed-
back from fat depots to the central nervous system, this
has not been identified, yet. Nonetheless, it seems clear in
intact animals, as well, that increasing energy stores in the
form of fat depot weight, reduces central neural responses
to either acute (la Fleur et al. 2005a), or chronic (Pecoraro
et al. 2004) stressors.

Some actions of glucocorticoids on brain
and feeding behaviour

GC infused directly into the brain ventricular system of
ADX rats excite, rather than inhibit both hypothalamic
CRF and pituitary adrenocorticotropin hormone (ACTH)
secretion, and they also appear to negate the effect of
drinking sucrose on metabolism in these rats (Laugero
et al. 2002). Thus, in brain, the GC appear to act on
the HPA axis in a feed-forward, rather than in the
canonical feedback fashion that is usually envisioned
(see Fig. 1).

In keeping with central stimulation of CRF, the GC
also stimulate behaviours associated with nutrient gain
(Dallman et al. 2005). The GC appear to stimulate ongoing
behaviour that is dependent on the context, and simply
seem to intensify the drive to perform the behaviour;
this may well be a consequence of the effects of GC on
dopamine secretion in the shell of the nucleus accumbens,
the so-called pleasure centre (Barrot et al. 2000). Fighting
(Haller et al. 2000; Mikics et al. 2004), risk assessment
(Mikics et al. 2005) search (Pecoraro et al. 2005) and
running behaviours (Leshner, 1971) are all augmented by
the adrenal steroids, as is feeding behaviour.

Glucocorticoids increase the voluntary intake of
palatable foods in a dose-related manner (Bell et al. 2000;
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Figure 3. Corticosterone has opposite effects on
body weight gain and mesenteric fat weight
In adrenalectomized, corticosterone-treated rats
allowed sucrose to drink ad libitum, body weight
decreases (left panel) as mesenteric fat weight increases
(right panel) showing a central shift of calorie storage
(data from Bell et al. 2000).

Bhatnagar et al. 2000; la Fleur et al. 2004); however, they
do not stimulate chow intake in the presence of normal
insulin concentrations (Strack et al. 1995; la Fleur et al.
2004). When ADX rats are provided with corticosterone
replacement that results in steady-state concentrations in
plasma, insulin concentrations increase pari passu with
corticosterone (Akana et al. 1985; Strack et al. 1995; Bell
et al. 2000), Together, these hormones act to increase fat
storage, particularly mesenteric fat, although with high GC
there is still marked peripheral catabolism and a decreased
rate of body weight gain. (Fig. 3).

Examining the streptozotocin-diabetic rat, la Fleur
showed clearly that ADX rats ate increasing amounts of
chow with increasing corticosterone, but that they would
not eat lard, unless they were also infused with insulin
that provided low circulating concentrations (la Fleur
et al. 2004). Of course, increasing GC stimulates increasing
concentrations of insulin in the circulation (Fig. 4), and
it may be this action of the GC that indirectly results in
increased intake of pleasurable foods. The GC may provide
the wanting for calories, but the increased insulin may
determine what food is wanted in conditions of choice. In
her studies, la Fleur also showed that specific hepatic vagal
afferents to hypothalamus and amygdala were involved in
insulin-induced lard intake in diabetic rats (la Fleur et al.
2003, 2005b).

Actions of insulin and the hepatic branch of the
vagus nerve on lard intake

We continued to study where insulin acts to stimulate lard
intake in streptozotocin-diabetic rats given a subcutaneous
pellet of corticosterone that produced steady-state plasma
concentrations that were slightly below the circadian
maximum. Such corticosterone replacement blocks endo-
genous ACTH and adrenal secretion in the absence of
chronic stressors (Akana et al. 1992) and stimulates
high caloric intake of either chow or lard, depending
on the circulating insulin concentrations (la Fleur et al.
2004).

In the first study, we compared the effects of insulin
infusions into the jugular versus the superior mesenteric
veins (Warne et al. 2006). With 5 days of ad libitum

lard availability, both groups of insulin-infused rats ate
roughly the same amount of lard as non-diabetic controls,
although the vehicle-infused rats ate very little lard.
Moreover, all of the diabetic rats were equally hyperphagic,
although the insulin infusion resulted in decreased chow
intake, compensating for the increased calories ingested as
lard. Although the insulin infusions decreased circulating
glucose somewhat, because the dose was low (3 U day−1),
all diabetic rats were markedly hyperglycaemic. However,
the jugular insulin infusion restored subcutaneous fat
depot weight to normal and increased body weight
markedly whereas the mesenteric insulin infusion restored
mesenteric fat depot weight without increasing body
weight (Warne et al. 2006). Both sites of insulin infusion
reinstated lard ingestion and total intake was regulated,
but the infusion site clearly determined the metabolic
outcome.

Next, we compared c-Fos immunoreactivity in brains
of rats that were made diabetic, given corticosterone
and infused into the jugular or superior mesenteric vein
with either saline or insulin. In order to obtain an acute
lard-feeding stimulus, we remove lard but not chow for
8 h on the fifth day and restored it for an hour in the
dark activity period before collecting brains. The results
showed two patterns of c-Fos staining: one associated with
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Figure 4. As corticosterone increases, circulating insulin
increases
In adrenalectomized, corticosterone-treated rats allowed lard to eat ad
libitum, plasma insulin increased with steady-state corticosterone
concentrations. This also occurs in similarly treated rats allowed only
chow, but the extent of the effect is greater when the rats are also
given the choice of lard to eat (data from la Fleur et al. 2004).
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circulating insulin concentrations which were the same in
the insulin-infused groups, and the other associated with
a large amount of lard ingestion that was only observed in
the rats infused with insulin into the mesenteric vein. The
lard-associated c-Fos patterns suggested that the known
opiatergic ‘pleasure’ network from the nucleus of the
tractus solitarius throughout the brain, including the
ventral tegmental area, n. accumbens and other limbic
memory sites were affected by eating appreciable amounts
of lard (Warne et al. 2007b). These results suggested
strongly that a vagal afferent signal stimulated by insulin
accompanies lard eating.

In subsequent studies that are still ongoing, we have
attempted to differentiate among hepatic branch vagal
afferent and efferent neural actions that might mediate
the effects of insulin. Figure 5 shows a schematic design
of our manipulations. Cutting the hepatic branch of
the vagus (Warne et al. 2007a) restored lard intake
to normal in diabetic rats without insulin, suggesting
strongly that normally, in the absence of insulin, the
hepatic branch of the vagus inhibits the ingestion of lard.
Infusion of insulin, however, over-rides the inhibitory
signal. The results of treating the hepatic branch vagus
with capsaicin to denervate hepatic afferent input to
brain are detailed in this special issue of The Journal of
Physiology (Warne et al.).

We are continuing these studies with the anticipation
that we will be able to evolve our understanding of
the role(s) of the hepatic branch of the vagus nerve,
both the afferent and efferent components, as well as
the hepatic actions of insulin, on the drive of rats to
voluntarily ingest lard. There were marked alterations
in brain c-Fos patterns of expression, and we anticipate
altered expression of hypothalamic and limbic brain
neuromodulators as a consequence of eating lard and the
various vagal manoeuvers, as was found under slightly
different conditions after hepatic branch vagotomy (la
Fleur et al. 2005b).

Hepatic Branch V

Gastroduodenal V

Capsaicin

Gastroduodenal Branch

Hepatic Branch Proper

Common Hepatic Branch
Gastric Branches

Left Cervical Vagus
Figure 5. Outline of paradigm to determine how
the hepatic branch vagus modulates lard intake
In published and ongoing experiments we are testing
the role of the hepatic branch of the vagus (which
includes afferents and efferents to both the liver and
gastroduodenum), the gastroduodenal branch of the
hepatic vagus, and the role of afferent nerves from both
sites. The anatomy is indicated for the part of the vagus
nerve of interest. Scissors and dotted lines denote
severing the nerve; the x indicates the site of painting
the nerve with capsaicin in an attempt to destroy
afferent fibres without impairing the efferents
(experiments of Warne et al. 2006).

Conclusions

GC and insulin are intimately entwined in regulating
both the amount and choice of food intake and caloric
disposition (Dallman et al. 1993). Both act in the periphery
and the central nervous system, generally in opposing
directions. GC act centrally to motivate caloric intake
and the learning, memories and behaviours associated
with this, although they may induce neuronal apoptosis
(Sapolsky, 1992). By contrast, insulin acts at the hypo-
thalamus (Woods & Porte, 1983) as well as on the reward
system (Figlewicz et al. 2004, 2006) to limit caloric intake.
Insulin, like GC, promotes learning and memory but is
anti-apoptotic (van der Heide et al. 2006). Peripherally,
GC reduce calories stored in fat and protein and increase
insulin, whereas insulin increases calories stored in both
sites (Leibel et al. 1989) and also seems to act systemically
through over-riding a normal inhibitory hepatic signal to
promote the ingestion of lard calories (Warne et al. 2007a).
Together these hormones synergize to greatly expand
mesenteric fat depots, putting stored calories in a site that
is highly labile and where fat can be readily mobilized by
the sympathetic nervous system for immediate use by the
liver.

These actions of GC and insulin are obviously highly
evolutionarily useful, allowing organisms to respond to
and have the stored energy available to escape threat.
However, today’s wealthy societies may have outstripped
this usefulness for the evolved actions of these hormones.
Life in the 21st century is fast-paced, food is abundant
and readily available; furthermore, there is a perception
that persistent stressors are increasing and may lead to
stress-associated diseases (Rozanski et al. 1999). Tellingly,
a recent report shows prospective evidence that job
strain and poor social support is significantly associated
with increased body mass index and abdominal obesity
(Brunner et al. 2007). It may be that the evolutionarily key
interactions between the stress hormones and insulin are
now our undoing, given the current environment.
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