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ABSTRACT

We extend an Fst-based Bayesian hierarchical model, implemented via Markov chain Monte Carlo, for the
detection of loci that might be subject to positive selection. This model divides the Fst-influencing factors into
locus-specific effects, population-specific effects, and effects that are specific for the locus in combination
with the population. We introduce a Bayesian auxiliary variable for each locus effect to automatically select
nonneutral locus effects. As a by-product, the efficiency of the original approach is improved by using a
reparameterization of the model. The statistical power of the extended algorithm is assessed with simulated
data sets from a Wright–Fisher model with migration. We find that the inclusion of model selection suggests a
clear improvement in discrimination as measured by the area under the receiver operating characteristic
(ROC) curve. Additionally, we illustrate and discuss the quality of the newly developed method on the basis of
an allozyme data set of the fruit fly Drosophila melanogaster and a sequence data set of the wild tomato Solanum
chilense. For data sets with small sample sizes, high mutation rates, and/or long sequences, however, methods
based on nucleotide statistics should be preferred.

LIKE many biologists, we are interested in the ques-
tion of how animals and plants adapt to changes in

their environment. Which regions in the genome are
responsible for adaptation after climate catastrophes or
the use of environmental toxins? There is growing
interest in developing methods to detect loci that might
be subject to selection (see Glinka et al. 2003; Ronald

and Akey 2005; Vasemägiet al. 2005; Bonin et al. 2006; Li

and Stephan 2006; Mealor and Hild 2006), as these
loci might be functionally important (Beaumont and
Balding 2004).

Individuals from different subpopulations living in
different environments often vary genetically at a few key
sites in their genome due to the adaptation to different
local conditions. The amount of genetic differentiation
can be measured from differences in allele frequencies
among different populations, summarized by an esti-
mate of the Fst-coefficient first introduced by Wright

(1943). Low Fst-values may indicate balancing selec-
tion, whereas high Fst-values suggest positive directional
selection.

Beaumont and Nichols (1996) developed a method,
called FDIST, which starts with the calculation of u, an
estimator of the Fst-coefficient, for each locus in the
sample. Then coalescent simulations are performed to
generate data sets with a distribution of u similar to the

empirical distribution, from which P-values and quan-
tiles are calculated. The quantiles of this distribution are
compared with the obtained Fst-values to classify loci as
selected or neutral. Simulation studies showed that this
method detects at an acceptable rate loci subject to
positive directional selection but lacks power to detect
balancing selection (Beaumont and Balding 2004).
Beaumont and Balding (2004) developed a likelihood-
based approach, implemented via Markov chain Monte
Carlo (MCMC), which uses a Bayesian hierarchical model
similar to that of Balding (2003). In this model, each
individual Fst-value for a particular population and a
particular locus integrates effects that are specific to the
given locus, effects that are specific to the given pop-
ulation, and effects that are specific to both the locus
and the population (Beaumont and Balding 2004).
Applications to simulated data sets with predominantly
neutral loci but with some loci subject to directional or
balancing selection suggested that the Bayesian method
of Beaumont and Balding (2004) performed slightly
better than FDISTand seemed also to detect loci subject
to balancing selection. However, ideally we want to test,
within a Bayesian framework, the hypothesis of whether
a locus is subject to selection (Beaumont and Balding

2004). To avoid the problem of specifying appropriate
alternative hypotheses we introduce an auxiliary variable
for each locus effect to automatically select nonneutrally
behaving locus effects. The idea to include Bayesian
model selection was already considered by Beaumont

and Balding (2004) but not further elaborated.

1Corresponding author: Biostatistics Unit, Institute of Social and Pre-
ventive Medicine, University of Zurich, Hirschengraben 84, CH-8001
Zurich, Switzerland. E-mail: andrea.riebler@ifspm.uzh.ch

Genetics 178: 1817–1829 (March 2008)



In this article, we extend the Beaumont and Balding

(2004) approach. A new Bayesian auxiliary variable is
introduced for each locus effect (Dellaportas et al.
2002). The new variable indicates whether a specific
locus can be regarded as selected and therefore the
locus effect has to be included in the model, or it can be
regarded as neutral. By looking at the posterior distri-
bution of the auxiliary variable it is possible to infer
whether the locus is subject to selection. Through the
prior distribution, the approach deals with the problem
of multiple testing. As a prior distribution for the
auxiliary variables we assume independent and identical
Bernoulli distributions with parameter p, where p is a
priori beta distributed. The (hyper)parameters of the
beta distribution are specified in the way that only a
small fraction of loci (10%) are a priori expected to be
under selection. As a by-product, the efficiency of the
algorithm is increased by a reparameterization, so that
Gibbs sampling can be used. The method is applied to
simulated data sets from a Wright–Fisher model with
migration and with some loci subject to balancing or
positive directional selection and to real data sets.

MATERIALS AND METHODS

Hierarchical Bayesian method: Model: Beaumont and
Balding (2004) developed a hierarchical Bayesian model,
implemented via MCMC, to distinguish loci subject to selec-
tion from neutral loci. The model has two levels: a lower-level
model, in which the likelihood for the allele-frequency counts
is expressed as a function of Fst, and a higher-level model for
the Fst-values. Allele-frequency counts at a locus within a pop-
ulation are modeled using the multinomial Dirichlet likeli-
hood. This likelihood arises in a simple migration–drift model;
for derivations see Balding and Nichols (1995) and Balding

(2003). The multinomial-Dirichlet likelihood can be conve-
niently expressed in the form

Lij ¼ Pðaij1; . . . ; aijKi j lij ; xi1; . . . ; xiKi Þ

¼ GðlijÞ
Gðnij 1 lijÞ

YKi

k¼1

Gðaijk 1 lij xikÞ
Gðlij xikÞ

; ð1Þ

where aijk, with i¼ 1, . . . , I (I is the number of loci), j¼ 1, . . . , J
( J is the number of populations), and k ¼ 1, . . . , Ki (Ki is the
number of alleles at locus i), denotes the count of allele k in
population j at locus i, nij ¼

PKi

k¼1 aijk denotes the sample size,
and xik is the frequency of allele k at locus i in the migrant gene
pool. The scaling parameter lij is defined as

lij ¼
1

F ij
st

� 1:

As the allele-frequency counts corresponding to distinct loci
and different subpopulations are assumed to be mutually in-
dependent, the joint likelihood is given by

L ¼
YI

i¼1

YJ

j¼1

Lij :

The precision of the estimates is improved when information
about F

ij
st is shared across loci and subpopulations by employ-

ing a hierarchical model. Each F ij
st can be seen as a combination

of contributions from locus-specific effects, such as mutations
and some forms of selection, and population-specific effects,
such as effective population size, migration rates, and popula-
tion-specific mating patterns. These effects are included using a
regression approach. Beaumont and Balding (2004) chose
the logistic regression model

log
1

lij

� �
¼ log

F ij
st

1� F ij
st

� �
¼ ai 1 bj 1 gij ;

or equivalently

F ij
st ¼

expðai 1 bj 1 gijÞ
1 1 expðai 1 bj 1 gijÞ

;

where ai is a locus effect, bj a population effect, and gij an
interaction term representing a specific locus-by-population
effect. The average Fst-value for a particular locus i is obtained
by using its locus effect, the average over the population ef-
fects, and the average of the corresponding interaction effects
with each population (M. A. Beaumont, personal communi-
cation). Gaussian priors f, as defined in Beaumont and
Balding (2004), are used for the regression parameters ai,
bj, and gij. The means and variances were selected in the way
that the implied prior distribution for each F ij

st has non-
negligible density over almost the whole interval from zero to
one. For xi, a (multivariate) uniform distribution is chosen as a
prior distribution.

Further method development: For determining loci that
might be subject to selection, the primary interest is directed
toward the posterior distribution of the locus effects. A high
positive value of ai suggests that locus i might be subject to
positive directional selection, whereas a negative value indi-
cates balancing selection. Ideally, we want to assign a posterior
probability to each hypothesis of the form ai ¼ 0. In this way,
the posterior probability indicates whether a locus i is neutral
and hence has a zero locus effect or is subject to selection. To
avoid the specification of alternative hypotheses, we use a
reparameterization and introduce an additional Bernoulli-
distributed auxiliary variable di to indicate whether locus i
might be subject to selection (Holmes and Held 2006). This
approach also deals with the problem of multiple testing of
many genomic locations, as the number of tested loci is taken
into account through the prior distribution of the auxiliary
variables.

Reparameterization: The original framework used the varia-
bles ai, bj, gij, and xi . Now, a new variable hij is introduced,

hij ¼ ai 1 bj 1 gij ¼ log
F ij

st

1� F ij
st

� �
; ð2Þ

which creates a new layer in the definition of F ij
st , as now the F ij

st -
value only depends on hij directly, and hij depends on ai and
bj. The gij values are no longer sampled but the hij values are.
Of course, the gij values can be recalculated on the basis of hij,
ai, and bj. The implied prior distribution of hij j ai, bj is given
by

hij jai ;bj � N ðai 1 bj 1 mg;s
2
hÞ

for i ¼ 1; . . . ; I and j ¼ 1; . . . ; J ;

where mg is the prior mean of g and s2
h is the prior variance of

g. The prior distributions for ai and bj remain unchanged.
Introduction of Gibbs variable selection: To indicate whether

locus i might be neutral, or subject to selection, Gibbs variable
selection was applied (for a recent review see Dellaportas

et al. 2002). In this method, additional 0–1 random variables di
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with i ¼ 1, . . . , I were included in the model specification, so
that

hij ¼ diai 1 bj 1 gij :

The indicator vector d shows which of the I possible locus
effects are present in the model and, therefore, are assumed to
be nonneutral. From the posterior distribution of the di it is
possible to infer whether a locus is subject to selection. The
prior distribution of hij changes to

hij jai ; di ;bj � N ðdiai 1 bj 1 mg;s
2
hÞ:

It would be also possible to exclude the corresponding locus-
by-population effect if a locus is considered as neutral.
However, we decided to keep this interaction term as it might
indicate a selective pressure that is present just for a specific
population at this locus.

As a prior distribution for di with i ¼ 1, . . . , I, we assume
di j p � BernoulliðpÞ independently and p � Beð0:2; 1:8Þ. We
selected the hyperparameters of the beta distribution to
achieve a nonnegligible density over the whole interval from
zero to one and a biologically realistic prior expectation of the
number of loci subject to selection. Using the law of iterated
expectations, it follows that

EðdiÞ ¼ EðEðdi j pÞÞ ¼ EðpÞ ¼ 0:1:

The prior distribution for the locus effects changes to ai �
N(0, 10), as

Varðdi � aiÞ ¼ Eðd2
i � a2

i Þ � ½Eðdi � aiÞ�2

¼ Eðdi � a2
i Þ ¼ EðdiÞEða2

i Þ
¼ 0:1 � s2

a;

so that the variance of 1 is ensured, as used in Beaumont and
Balding (2004).

Implementation: The goal is to obtain values from the pos-
terior distribution (proportional to the product of the likelihood
and the prior distributions), which, for the original algorithm,
takes the form

f ða;b;g; x j aÞ} Pða ja;b;g; xÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
L¼
Q

I

i¼1

Q
J

j¼1
Lij

� f ðaÞf ðbÞf ðgÞf ðxÞ:

(Here, the prior distributions for a, b, g, and x are in-
dependent.) This is achieved by MCMC on the basis of
iteratively updating the corresponding conditional distribu-
tions (full conditionals) (Besag et al. 1995). The estimation
procedure is implemented as a Metropolis–Hastings Monte
Carlo algorithm. At each step, the algorithm proposes a
Gaussian update for each ai, each bj, and each gij, using the
corresponding current parameter value as the mean. The
variances can be chosen arbitrarily, but the choice can be
optimized for achieving fast convergence. Ideally, the varian-
ces should be adapted to achieve acceptance rates between 25
and 45% (Gelman et al. 1996). Here, the variance for ai is
initialized with 1.22, the variance for bj with 0.62, and the
variance for gij with 1.42. If the acceptance rates are not within
the desired interval after the burn-in iterations, the variances
are adapted by the addition or the subtraction of 0.1 (if the
variances are ,0.1 only 0.01 is subtracted) and the chain is
restarted. Since the normal distribution is symmetric around
the mean, the update is accepted or rejected as in the Metrop-
olis algorithm. The frequencies xi ¼ ðxi1; . . . ; xiKi

Þ are also
updated, one locus at a time. The proposed value is chosen

from a Dirichlet distribution with the mean proportional to
the current values

x*
i j xi � Dirðci � xi1; . . . ; ci � xiKi Þ;

where the ci are locus-dependent constants used to adapt the
acceptance rates. To initialize the constants ci dependent on
Ki a simple regression function is used. In the case that the
acceptance rates are not between 25 and 45% after the burn-in
iterations, the constants ci are increased or decreased by 2%
for every percentage of deviation from a target acceptance rate
of 35% and the burn-in interval is repeated. When using a
Dirichlet distribution as a proposal distribution the frequen-
cies xik can become very small. To avoid this, a minimum allele
frequency of 10�3 is used. Since the Dirichlet distribution is not
symmetric, a Metropolis–Hastings update is required for xi

(Beaumont and Balding 2004).
As a consequence of introducing hij, the full conditional

distributions of ai and bj are normal distributions, so that it is
now possible to sample directly from them, since

f ðai j a;a�i ;b;h; xÞ} f ðaiÞ �
YJ

j¼1

f ðhij jai ;bjÞ;

where

a�i ¼ ða1; . . . ;ai�1;ai11; . . . ;aI Þ:

Hence

ai j � � N ðmaj� ;s
2
aj� Þ

with

s2
aj� ¼

1

s2
a

1
J

s2
h

 !�1

;

maj� ¼
1

s2
a

1
J

s2
h

 !�1

� ma

s2
a

1
1

s2
h

�
XJ

j¼1

ðhij � bj � mgÞ
 !

:

For the derivation of s2
aj�

and maj� see, e.g., Bernardo and
Smith (1994, p. 439). Analogously, we have bj � N(mbj�, s2

bj�
)

with

s2
bj� ¼

1

s2
b

1
I

s2
h

 !�1

;

mbj� ¼
1

s2
b

1
I

s2
h

 !�1

�
mb

s2
b

1
1

s2
h

�
XI

i¼1

ðhij � ai � mgÞ
 !

:

For the hij the full conditional distribution

f ðhij j a;a;b; xÞ} f ðhij jai ;bjÞ � Lij

is obtained, with Lij defined as a multinomial Dirichlet likeli-
hood as in Equation 1. For updating the hij a random-walk
proposal

h*
ij jhij � N ðhij js2

h*Þ

is used, where s2
h* is initialized with 1.42 and adapted as de-

scribed above for ai, bj, and gij to reach acceptance rates be-
tween 25 and 45%. The update is accepted as in the Metropolis
algorithm.

One of the main advantages of this reparameterization is
that the simulation can be performed more efficiently, as it
is now possible to sample directly from the full conditional
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distributions. This method is also known as Gibbs sampling
(Gilks et al. 1996). One potential problem might be that the
posterior correlation between hij and ai, bj (see Equation 2)
might cause slow mixing and, therefore, slow convergence
(Holmes and Held 2006). To illustrate the relative efficiency
change of the reparameterization over the original method,
the total CPU run time was recorded for both methods and the
‘‘effective sample size’’ (ESS) calculated. ESS is an estimate of
the number of independent samples that would be required to
obtain a parameter estimate with the same precision as the
MCMC estimate based on N dependent samples (here N ¼
10,000). ESS can be interpreted as a measure of the in-
formation content of the MCMC samples. An ESS value close
to N indicates that the MCMC samples are virtually uncorre-
lated. The effective sample size is calculated as the number of
MCMC samples drawn divided by the autocorrelation time t,
which is defined as

t ¼ 1 1 2 �
X‘

s¼1

rðsÞ so that ESS ¼ N

t
; ð3Þ

where r(s) is the autocorrelation at lag s and measures the
degree of association between sampled values of the moni-
tored Markov chain separated by lag s. As the real autocorre-
lations are estimated by the sample autocorrelations, it is
necessary to cut off the estimation of t at an s-value v where the
autocorrelations are sufficiently close to zero. The inclusion of
estimates for much higher lags would add too much noise
(Kass et al. 1998). The cutoff value v is determined using
the initial monotone sequence estimator (IMSE) by Geyer

(1992). Define

FðsÞ ¼ rð2 � sÞ1 rð2 � s 1 1Þ

and let r be the largest integer such that F(s) . 0 and F(s) is
monotone for s ¼ 1, . . . , r ; then v is defined as v ¼ 2 � r 1 1
(Geyer 1992).

Introducing the auxiliary variable di, the updates of bj and
hij are unchanged but ai is substituted by di � ai. If di ¼ 1 the
update of ai also stays unchanged. In contrast, ai is sampled
from its prior distribution if di ¼ 0. Each element di is thereby
updated as part of the algorithm. The full conditional dis-
tribution of di is given by

f ðdi j a;a; d�i ;b;h; x; pÞ} f ðdi j pÞ �
YJ

j¼1

f ðhij jai ; di ;bjÞ;

whereby the parameter p is updated every iteration by
sampling from its full conditional distribution

p j d1; . . . ; dI � Be 0:2 1
XI

i¼1

fdi ¼ 1g; 1:8 1
XI

i¼1

fdi ¼ 0g
 !

:

Interpretation: In the original setting by Beaumont and
Balding (2004), a posterior distribution for ai is classified as
significantly positive and therefore subject to positive direc-
tional selection if its 5% quantile is positive or equivalently if
P(ai , 0 j data) # 0.05. It is classified as significantly negative
and therefore subject to balancing selection if its 95% quantile
is negative or equivalently if P(ai , 0 j data) $ 0.95. In the
following, the posterior probability P(ai , 0 j data) is also
referred to as a Bayesian P-value.

Using Gibbs variable selection the posterior probabilities
P(di ¼ 1 j data) instead of the Bayesian P-values are used to
detect significant loci. In this way, a locus i is classified as being
subject to selection if P(di ¼ 1 j data) is greater than some
cutoff value that will be set by means of the simulation study
results. To classify a nonneutral locus subject to positive di-
rectional or balancing selection we use the Fst-value at the
smallest observed posterior probability P(di ¼ 1 j data) as a
threshold. Selected loci with a smaller Fst-value are classified as
subject to balancing selection, and those that have a larger Fst-
value are classified as subject to positive directional selection.

In the context of selection, the locus-by-population effects
gij might also be important. For example, a large positive value
of gij might indicate a population in which local positive
selection has driven an allele to fixation whereas this selection
pressure can be weak or absent for that locus in the other
populations. As the full conditional distribution of gij does not
combine information across loci or populations, only ex-
tremely large selective influences can be found by inspecting
the gij values (Beaumont and Balding 2004).

Simulation study: To compare the behavior of the different
methods and to assess their performance in detecting non-
neutrally behaving loci we simulated gene-frequency data
from a Wright–Fisher model with migration, which is similar
to that of Beaumont and Balding (2004). In our simulations,
all populations are assumed to have the same size, N ¼ 10,000
chromosomes. Chromosomes in the current generation are
replaced with immigrants. The immigration rate is defined by
m ¼ ð1� F Þ=2NF , whereby the value of F is either set to a
fixed value (e.g., 0.2) or sampled from a beta distribution, with
parameters 0.25 and 2.25 as given in Beaumont and Balding

TABLE 1

Parameter values of the data sets simulated from the Wright–Fisher model with migration

Identifier
Selection

coefficient s
Sample

size
No. of populations

per locus
No. of

neutral loci
No. of direct-
selection loci

No. of balancing-
selection loci

s100 0.1 100 10 900 50 50
s050 0.05 100 10 900 50 50
s020 0.02 100 10 900 50 50
s100-Fb 0.1 100 10 900 50 50
s050-Fb 0.05 100 10 900 50 50
s020-Fb 0.02 100 10 900 50 50
s100-Fb-40 0.1 40 10 900 50 50
Neutral 0.0 100 10 1000 0 0

The addition of ‘‘Fb’’ to the identifier indicates that F � Be(0.25, 2.25) instead of F ¼ 0.2 leading to variable
immigration rates.
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(2004), to allow variable immigration rates over the popula-
tions. Then the next generation is sampled according to a
specified selection coefficient s. The algorithm is repeated for
T generations. In all analyses, we used 1000 generations, which
should not lead to any equilibrium, but should reflect the
selection coefficient. A selective sweep is assumed to take
�ð4 � logð2 � N ÞÞ=s generations. Assuming the advantage of a
selected allele to be s/2, which is described in more detail in
appendix a, the choice of T should be sufficiently large for a
selection coefficient of 0.1. For selection coefficients that are
>0.1 we expect the results to be worse. To allow for adaptive
selection the attributes ‘‘neutral,’’ ‘‘red,’’ or ‘‘blue’’ are as-
signed at random and independently to the populations. The
consequence is that the number of populations for which a
selective pressure exists at a locus under selection is random.
In neutral populations all alleles have the same fitness. After
1000 generations, a specified number of chromosomes is
sampled with replacement to represent the allele frequencies
for the given locus and population. The model is repeated for
all populations and all loci to get a complete simulated data
set, where we used within a data set the same selection coef-
ficient for loci subject to balancing and positive directional
selection. A detailed description of the simulation study de-
sign is given in appendix a.

We generated eight data sets, each of which consists of 1000
loci and 10 populations per locus to systematically test the
power of the different methods. Focus was set on the influence
of different selection coefficients but also on the influence of
sample size and migration rate. The details and properties of
the different data sets are given in Table 1.

Real data sets: As in Beaumont and Balding (2004), the
Drosophila melanogaster allozyme data set of Singh and Rhom-

berg (1987) was analyzed. The allele-frequency table for this
data set is provided with the program FDIST 2 (http://
www.rubic.rdg.ac.uk/�mab/software/fdist2.zip) and includes
allele counts for 61 polymorphic loci in 15 geographically
distant populations of D. melanogaster. The considered popula-
tions as given in the allele-frequency table are as follows: Ottawa,
Canada (OTT) (80 iso-female lines); Hamilton, Ontario,
Canada (HAM) (161); Amherst, Massachusetts (MAS) (121);
Brownsville, Texas (TEX) (121); La Plata, Argentina (ARG)
(38); Sweden (SWE) (40); Ukraine (UKR) (44); Central Asia
(CAS) (40); France (FRA) (81); Benin, West Africa (WAF)
(114); Central Africa (CAF) (68); Seoul, Korea (KOR) (132);
Taiwan (TAI) (80); Ho-Chi-Minh City, Vietnam (VIE) (80);
and Fairfield, Australia (AUS) (100). The loci are mostly di- or
triallelic. The maximum number of alleles for a locus is nine
(Singh and Rhomberg 1987).

Figure 1.—ROC curves of three simulated data sets analyzed with the reparameterized method without Bayesian variable se-
lection and with Bayesian variable selection. The power, also known as the true positive rate, is plotted against the false positive
rate. Similar ROC curves are obtained for the other simulated data sets.

TABLE 2

ROC analysis of the simulation results for the method
without Bayesian variable selection

Data set bAUC dVarðbAUCÞ Lower C.I. Upper C.I.

s100 0.775 0.00110 0.704 0.834
s050 0.776 0.00111 0.704 0.834
s020 0.783 0.00101 0.715 0.839
s100-Fb 0.829 0.00080 0.766 0.878
s050-Fb 0.791 0.00100 0.722 0.846
s020-Fb 0.769 0.00094 0.704 0.824
s100-Fb-40 0.744 0.00115 0.672 0.804

Estimated AUC values, the empirical variance of AUC, and
estimated 95% confidence intervals are shown.

TABLE 3

ROC analysis of the simulation results for the method
with Bayesian variable selection

Data set bAUC dVarðbAUCÞ Lower C.I. Upper C.I.

s100 0.895 0.00026 0.859 0.923
s050 0.896 0.00025 0.860 0.923
s020 0.898 0.00026 0.861 0.925
s100-Fb 0.917 0.00019 0.885 0.941
s050-Fb 0.900 0.00025 0.864 0.927
s020-Fb 0.887 0.00025 0.852 0.914
s100-Fb-40 0.848 0.00044 0.802 0.884

Estimated AUC values, the empirical variance of AUC, and
estimated 95% confidence intervals are shown.
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The second data set was published by Arunyawat et al.
(2007) and contains sequences of the wild tomato species
Solanum chilense distributed from northern Chile to southern
Peru. The data set includes four different populations:
Antofagasta, Chile; Tacna, Peru; Moquegua, Peru; and Qui-
cacha, Peru. For this data set, eight loci were examined:
CT066, CT093, CT166, CT179, CT198, CT208, CT251, and
CT268. There were five to seven (diploid) individuals for each
population, leading to 2 sequences from each individual for
each locus. Therefore, the sample size is 10–14 sequences. The
total length of individual loci (including indels) ranges from
778 to 1887 bp. An allele-frequency table was calculated treating
each distinct haplotype at a locus as a new allele. The numbers
of haplotypes for the loci vary between 23 and 30.

Environment details: All analyses were run on an Intel Core
2 Duo T7200 processor with 1024 MB DDR-2-RAM under
Kubuntu 7.04 (Feisty Fawn). Each algorithm was run to obtain
10,000 output samples for each variable. In the case of the real
data sets the algorithm was run for 1,000,000 post burn-in
iterations using a thinning interval of k ¼ 100. For the 1000-
locus simulations we used 250,000 post burn-in iterations and
a thinning interval of k ¼ 25. To check convergence standard
diagnostic tests were applied. The analysis of the 1000-locus
simulation described in Table 1 took �9 hr.

The executable C-files of the different algorithms used in this
study are available on request from A. Riebler. Additional R
programs to visualize and analyze the results as well as the data
sets used in this study are also available. All programs were
developed under SuSE Linux 10.0 and Kubuntu 7.04 (Feisty
Fawn).

RESULTS

Simulation study results: We used simulation studies
to discuss the quality of the different methods in
detecting loci subject to selection and to determine a
suitable cutoff value for the reparameterized method
with variable selection. For these purposes seven simu-
lated data sets with predominantly neutral loci but with
some loci subject to balancing or positive directional
selection and one neutral data set were generated (see
Table 1). The reparameterized method without variable
selection is expected to increase the efficiency of the
original method by Beaumont and Balding (2004),

which will be confirmed by the application to the D.
melanogaster data of Singh and Rhomberg (1987). Since
this method is only a reformulation, the original method
is not used in this simulation study. The power of the
methods was assessed by a receiver operating character-
istic (ROC) analysis. For detailed descriptions, compare
appendix b. We generated ROC curves for all seven
(nonneutral) simulated data sets. A ROC curve is a
graphical plot of the power vs. (1 � specificity) for a
binary classification system whereby the cutoff value is
varied. In this analysis we did not distinguish between
loci subject to balancing and directional selection. For
all simulations we got very similar ROC plots, three of
which are shown in Figure 1. It is obvious that the ROC
curve of the method with variable selection is nearly
always above the ROC curve of the method without
Bayesian variable selection. We also tried a uniform prior
distribution for the probability of including a locus
effect that resulted in similar ROC curves. To measure
the quality of the different methods the area under the
ROC curve (AUC) was used. A perfect ROC curve has
the value AUC ¼ 1.0. In contrast, an uninformative test
has AUC ¼ 0.5 (Pepe 2003). The AUC values and the
corresponding 95% confidence intervals are shown in
Table 2 for the method without Bayesian variable
selection and in Table 3 for the method with Bayesian
variable selection. Since the scale for the AUC is re-
stricted to (0, 1), the confidence intervals were calcu-
lated on the logit scale (Pepe 2003). To compare the
empirical ROC curves we used the difference in esti-
mated AUC values (see appendix b). The null hypoth-
esis that the AUC value of the method with variable
selection is not higher than the AUC value of the
method without variable selection is tested by compar-
ing the value ofbDAUC=seðbDAUCÞwith the 99% quantile
(2.326) of a standard normal distribution (Pepe 2003).
The obtained test statistics are shown in Table 4. In all
cases the values of the test statistic are much larger, so the
null hypothesis was rejected. This means the AUC was sig-
nificantly higher for the new Bayesian variable approach.

TABLE 4

Comparison of the empirical ROC curves

Data set bDAUC dVarðbDAUCÞ Lower C.I. Upper C.I. bDAUC=seðbDAUCÞ

s100 0.119 0.00033 0.084 0.155 6.541
s050 0.120 0.00035 0.083 0.157 6.403
s020 0.114 0.00028 0.081 0.147 6.760
s100-Fb 0.088 0.00024 0.058 0.119 5.730
s050-Fb 0.109 0.00029 0.075 0.142 6.338
s020-Fb 0.118 0.00028 0.085 0.151 7.079
s100-Fb-40 0.104 0.00022 0.075 0.134 7.046

Difference in empirical AUC estimatesbDAUC, the empirical variance ofbDAUC, 95% confidence intervals,
and the test statistic used to decide whether the AUC of the method with variable selection is significantly higher
are shown.
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The predictions are reasonably well calibrated; for
example, predictions with 10% probability occur �7–
8% of the time with a lower 95%-confidence limit be-
tween 5 and 6% and an upper 95%-confidence limit
between 9 and 11%. Predictions with 5% probability
occur �5–6% of the time with a lower 95%-confidence
limit between 3 and 4% and an upper 95%-confidence
limit between 6 and 7%.

By means of the results of the simulation studies we
determined a threshold value for the reparameterized
method with variable selection of 0.17 for classifying a
locus as being subject to selection. We decided thereby
to control the false positive rate and used the threshold
value that achieved a specificity of at least 98% in all
simulated data sets. A priori the probability for a value
.0.17 is 20%. The results of the application to the
simulated data sets are shown in Table 5. In comparison
the results for the method without Bayesian variable
selection, which uses the classification criterion de-
scribed in the previous section, are shown in Table 6.

Both methods classified all loci subject to directional
selection correctly. The method without variable selec-
tion detected more loci subject to balancing selection
but also had a much higher false positive rate. Of the
7300 neutral loci in all eight data sets, 464 loci (6.36%)
were misclassified as subject to balancing selection and
87 loci (1.19%) as subject to directional selection. For
the method with variable selection, the rates were 0.78%
for balancing false positives and 0.25% for directional
false positives. In the case of the neutral simulated data
set the method with variable selection classified all ex-
cept one locus correctly. In contrast, the method without
variable selection misclassified 20 neutral loci as subject
to balancing selection and 39 loci as subject to positive
directional selection. For both methods we found that a
reduction of the sample size from 100 to 40 leads to a
reduction of power. Choosing the immigration rate to be
variable has no clear effect. However, in the case of the
method without variable selection the rate of false
positives clearly increased, while a specificity of 0.99
was maintained for the method with variable selection.
With variable migration rate the influence of the se-
lection coefficient became more apparent. At higher
selection coefficients more loci subject to balancing
selection were detected.

Example data sets: We first reanalyzed the D. mela-
nogaster data of Singh and Rhomberg (1987).

Comparison of the results of Beaumont and Balding

(2004) and the original reimplemented algorithm: Beaumont

and Balding (2004) identified 10 loci as being subject
to selection. The newly implemented version detected
9 of these 10 loci. The locus EST-6 was not detected as
being subject to balancing selection, but its Bayesian
P-value is close to the critical value (see Table 7). All
Bayesian P-values obtained are nearly identical to those
obtained by Beaumont and Balding (2004), whereas
the Fst-values show small differences (compare Table 7).
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Table 7 and Figure 2 show that the results of Beaumont

and Balding (2004) could be reproduced, except for
small deviations, indicating that the newly implemented
version is correct.

Comparison of the original and the reparameterized version:
The results of the reparameterized method are identi-
cal to those of the original model (see Table 7). This re-
sult was expected, because the reparameterization does
not entail any changes to the algorithm. It is only a re-
formulation that increases efficiency by allowing us to
sample directly from the full conditional distributions of
ai and bj.

Efficiency: The effective sample size ESS was calculated
for all locus effects ai and then averaged; analogously the
ESS was calculated for the population effects bj. Table 8
shows the results, with the last column presenting the
relative efficiency of the reparameterized method over
the original method, indicated by the relative effective
sample size standardized for CPU run time. As expected,
the reparameterization caused higher autocorrelations
in the chain but led to an improvement in the standard-
ized relative ESS. Considering this efficiency gain, the
reparameterized version should be preferred. There-
fore the original version was not considered further.

Results of the reparameterized method including Bayesian
variable selection: The results for the reparameterized
method with variable selection are shown in Figure 2.
Instead of the Bayesian P-values the posterior probabil-
ities P(di ¼ 1 j data) were used to detect significant loci.
The cutoff value is 0.17 as determined in the previous
simulation studies.

Accuracy: One of the 10 loci identified by Beaumont

and Balding (2004) was detected as being subject to
selection by the new method with Bayesian variable
selection. No additional loci were considered signifi-
cant. Beaumont and Balding (2004) showed by simu-
lations that very few loci being subject to balancing
selection were identified by their Bayesian hierarchical
method, but if loci were classified as being subject to
balancing selection, the identification was mostly cor-
rect. Beaumont and Balding (2004) detected 5 loci as
being subject to balancing selection. However, none of
these loci were inferred as being subject to balancing
selection by the method with Bayesian variable selection.

Locus-by-population effects: In accordance with Beaumont

and Balding (2004) all methods found an extremely
high gij value for the biallelic locus PT-26 in the West
African sample and a significantly negative gij value for
locus AO in the sample from Texas.

The highest posterior expectation E(ai 1 gij) was
found for the triallelic locus G6-PD. In the sample from
Texas, the allele that is the rarest in 13 of the other
14 populations is fixed. The reason could be a selec-
tive pressure at this locus that is absent in the other
populations.

Analysis of tomato data: As a second example, we
analyzed the sequence data set from S. chilense. This
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data set includes large DNA regions, and nearly every
haplotype represents a new allele; e.g., the number of
unique haplotypes is high. Figure 3 shows that there
were no locus effects classified as significant. All Fst-
values are very close to zero, indicating that there are no
signatures of directional selection in the data. However,
as all Fst-values are small, it seems probable that the
haplotype counts contained too little information about
genetic differentiation.

Accuracy: This tomato data set is a typical extreme data
set in the sense of Hudson et al. (1992a). Arunyawat

et al. (2007) estimated parameters of genetic differenti-
ation with the program DnaSP version 4.0 (Rozas et al.
2003), which, in addition to haplotype-based methods,
used nucleotide-based methods. The nucleotide-based
statistics by Hudson et al. (1992b) obtained clearly
higher values than the haplotype-based ones. For ex-
ample, for locus CT208, an Fst-value of 0.340 was ob-
tained (compare Arunyawat et al. 2007, Table 4). This
value indicates positive directional selection, whereas
the value obtained by the methods developed here hints
toward balancing selection as a more likely alternative.
The haplotype-based statistics by Nei (1973) used in
DnaSP also yielded smaller values than the nucleotide-
based statistics.

DISCUSSION

Many previous studies have used Bayesian P-values to
identify loci subject to selection (e.g., Beaumont and
Nichols 1996; Beaumont and Balding 2004). Here,
we presented two extensions of an algorithm developed
by Beaumont and Balding (2004) to automatically
select nonneutrally behaving loci by introducing Bayes-

ian variable selection. First, we reparameterized the
model framework and showed that this increases the
efficiency. Then we introduced a new Bayesian auxiliary
variable to decide whether a locus is subject to selection.

We applied the reparameterized method with and
without Bayesian variable selection to a fruit fly allozyme
data set, to a wild tomato sequence data set, and to
simulated data sets from a Wright–Fisher model with
migration. ROC analyses showed that the method with
variable selection performs significantly better than the
method without variable selection.

The new approach described here leads to important
advantages of interpretation, since it is now possible to
evaluate the predictions by scoring rules. Such an anal-
ysis is not possible using the Beaumont and Balding

(2004) approach, as there are no probabilities avail-
able for the hypothesis that a locus is neutral and hence
has a zero locus effect. Scoring rules measure the quality
of predictions by assigning a numerical score. An often-
used scoring rule for binary data is the Brier score that
measures the disagreement between the observed out-
come and the prediction probability of that outcome—
the average squared error difference. The Brier score is a
measure of overall accuracy and can be decomposed
into aspects of calibration and discrimination (Spiegel-

halter 1986). A perfect forecaster would have a Brier
score of 0 and a perfect misforecaster a Brier score of 1.
Although the numerical value has no direct meaning,
some weak standards for comparison are available. One
reference value is obtained by noting that a prediction
probability of 0.5 for each locus results in a Brier score
of 0.25. Another reference value is the outcome index
variance, which is the value of the Brier score if all
prediction probabilities were equal to the prevalence

TABLE 7

Results for the SINGH and RHOMBERG (1987) data set

Fst P-value P(di ¼ 1 j data):

Locus Article Original Reparameterized Variable selection Article Original Reparameterized Variable selection

G6-PD 0.47a 0.50a 0.50a 0.31 0.00a 0.01a 0.01a 0.12
ADH 0.45a 0.49a 0.49a 0.30 0.01a 0.01a 0.01a 0.09
EST-6 0.18a 0.15 0.15 0.24 0.95a 0.94 0.94 0.01
PT-9 0.43a 0.41a 0.41a 0.27 0.05a 0.04a 0.04a 0.02
PT-15b 0.52a 0.53a 0.53a 0.34a 0.00a 0.00a 0.00a 0.20a

XDH 0.13a 0.14a 0.14a 0.23 0.98a 0.98a 0.98a 0.03
a-FUC 0.14a 0.14a 0.14a 0.24 0.97a 0.97a 0.97a 0.02
LAP-6 0.47a 0.44a 0.44a 0.28 0.03a 0.03a 0.03a 0.04
ACON-1 0.15a 0.12a 0.12a 0.23 0.99a 0.98a 0.98a 0.04
a-GLU-4 0.17a 0.15a 0.15a 0.24 0.96a 0.96a 0.96a 0.02

Estimated Fst-values for all methods, corresponding Bayesian P-values P(ai , 0 j data) for the original and the reparameterized
algorithm, and corresponding posterior probabilities P(di ¼ 1 j data) for the reparameterized algorithm including Bayesian vari-
able selection for loci detected being subject to selection by one of the methods are shown. Article, Beaumont and Balding

(2004) results; Original, original algorithm; Reparameterized, reparameterized algorithm; Variable selection, reparameterized
algorithm including Bayesian variable selection.

a The locus is classified subject to selection by the corresponding method.
b All methods classify the corresponding locus subject to selection.
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(Schmid and Griffith 2005). With a prevalence of 10%
the outcome index variance in our simulations is 0.09,
which can be used as a natural upper bound. For the

TABLE 8

Performance comparison between the original
and the reparameterized methods

Original Reparameterized

Coefficient CPU (hr) ESS CPU (hr) ESS Relative ESS

a (I ¼ 61) 7.017 9680 3.595 6866 1.38
b (J ¼ 15) 7.017 9045 3.595 6951 1.50

Analyzing the Singh and Rhomberg (1987) data set, the to-
tal CPU time was measured for both methods and the effective
sample size (ESS) was calculated, as defined in Equation 3. The
last column shows the relative effective sample size standard-
ized for CPU run time, indicating the relative efficiency of
the reparameterized method over the original method.

Figure 2.—Results from the analysis of the Singh and
Rhomberg (1987) Drosophila melanogaster data set. Estimated
Fst-values are plotted against empirical Bayesian P-values P(ai

, 0 j data) for each locus in the case of the original and the
reparameterized method without Bayesian variable selection.
For the method including Bayesian variable selection the es-
timated Fst-values are plotted against the posterior probability
P(di ¼ 1 j data). The vertical bars indicate the corresponding
critical values used for identifying loci that might be subject to
selection. Detected loci are marked with an ‘‘x.’’

Figure 3.—Results fromtheanalysisof theS. chilense data set.
Estimated Fst-values are plotted against empirical Bayesian P-
values P(ai , 0 j data) for each locus in the case of the repara-
meterized method without Bayesian variable selection. For the
method including Bayesian variable selection the estimated Fst-
values are plotted against the posterior probability P(di ¼ 1 j
data). The vertical bars indicate the corresponding critical val-
ues used for identifying loci that might be subject to selection.
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method including Bayesian variable selection we got
Brier scores ,0.05. We also calculated a mean discrim-
ination, defined as the difference between the average
predicted probabilities in the selected and the neutral
group, between 51 and 59%. The discrepancy between
the mean forecast and the observed fraction of selection
events is between 0.02 and 0.03. This low bias was
expected as we classified a locus subject to selection
with a prior expectation of 10%, which is equal to the
prevalence in the simulations. However, we found that
even classifying a locus subject to selection with an
expected prior probability of 50% by using a uniform
prior distribution does not increase this bias.

A disadvantage of the presented methods is that they
are based on haplotype statistics. Using sequence data
sets, every distinct haplotype is treated as a new allele,
independent of the number of differing nucleotides.
Therefore, when applying the methods to data sets where
many haplotypes are unique, the calculated haplotype
frequencies may not reflect the amount of information
on genetic differentiation that is included in the se-
quence data. As in the wild tomato example, all methods
would classify the loci as neutral with Fst-values close to
zero. Hudson et al. (1992a) showed that models based
on haplotype statistics are very powerful for data sets
having low mutation rates or large sample sizes, as was
the case in the Singh and Rhomberg (1987) data set.
However, for data sets with high mutation rates or small
sample sizes, as in the wild tomato example, the sequence-
based statistics are expected to be more powerful.
Therefore, the integration of nucleotide-based statistics
will be a clear improvement. Ideally, the appropriate
method would be chosen according to the data set
under study.
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APPENDIX A: SIMULATION STUDY DESIGN

We used a Wright–Fisher model with migration to generate simulated data sets. It is nearly the same simulation
model as that used in Beaumont and Balding (2004), but without the possibility for mutations.

The simulation model for a particular locus i and a particular population j is as follows:

1. Decide whether locus i for population j is neutral, subject to directional selection, or subject to balancing selection.
2. Determine randomly the attribute (blue, b; red, r; or neutral, n) for population j at locus i with pb,j¼ 0.4, pr,j¼ 0.4,

and pn,j ¼ 0.2 as proposed by Beaumont and Balding (2004).
3. Sample the next generation aj having population size N:

aj ¼ ðab;j ; ar;j ; an;jÞ � MultðN ;pj ¼ ðpb;j ; pr;j ; pn;jÞÞ:

4. Determine the observed allele frequencies pb;j ¼ ab;j=N ; pr;j ¼ ar;j=N ; pn;j ¼ an;j=N .
5. Replace a binomially distributed number of chromosomes in population j by immigrants chosen at random from all

other populations. Each immigrant replaces a randomly chosen resident chromosome as follows:
a. Calculate the immigration rate m ¼ ð1� F Þ=2NF whereby F is either sampled from a beta distribution with

parameters 0.25 and 2.25 as given in Beaumont and Balding (2004), so that the immigration rate is variable
over the populations, or set to a fixed value (e.g., 0.2).

b. Determine the number of immigrants nImm � BðN ;mÞ into population j.
c. Determine the chromosomes in population j that should be replaced:

r ¼ ðrb; rr; rnÞ � MultðnImm;pjÞ:

d. Determine where the immigrants come from,

nMig;�j � Mult nImm;
1

J � 1
; . . . ;

1

J � 1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J�1

0BBB@
1CCCA;

where nMig;�j ¼ ðnMig;1; . . . ;nMig;j�1;nMig;j11;nMig;J Þ:
e. Determine the chromosome type of the immigrant chromosomes,

rImm ¼ ðrImm;b; rImm;r; rImm;nÞ ¼
X
f 6¼j

rImm;f

with rImm;f � MultðnMig;f ;pf Þ.
f. Replace the selected resident chromosomes with the immigrant chromosomes.

6. Determine the relative fitness w assuming a diploid selection model with alleles ‘‘blue (b),’’ ‘‘red (r),’’ and ‘‘neutral
(n).’’ The relative fitness depends on the type of selection:

For loci subject to directional selection, the relative fitness in a blue population is 1 1 s for blue homozygotes,
11s/2 for blue heterozygotes, and 1 for all other genotypes. The same selection effects are assumed for red
alleles in red populations. In neutral populations all genotypes have a relative fitness of 1.

For loci subject to balancing selection in either red or blue populations the relative fitness of blue–red
heterozygotes is 1 1 s and for all other genotypes 1. In neutral populations all genotypes have fitness 1.

For neutral loci all genotypes have fitness 1.
Here, s specifies the selection coefficient (s . 0).

Calculate the mean fitness �w of population j assuming Hardy–Weinberg equilibrium and calculate the allele
proportions for the next generation with

�wðpb;j ; pr;j ; pn;jÞ ¼ wbbp2
b;j 1 2wbrpb;j pr;j 1 2wbnpb;j pn;j 1 wrrp

2
r;j 1 2wrnpr;j pn;j 1 wnnp2

n;j

and

p1
b;j ¼

wbbp2
b;j 1 wbrpb;j pr;j 1 wbnpb;j pn;j

�wðpb;j ; pr;j ; pn;jÞ
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p1
r;j ¼

wrrp
2
r;j 1 wrbpr;j pb;j 1 wrnpr;j pn;j

�wðpb;j ; pr;j ; pn;jÞ

p1
n;j ¼

wnnp2
n;j 1 wnbpn;j pb;j 1 wnrpn;j pr;j

�wðpb;j ; pr;j ; pn;jÞ
:

7. Set pj ¼ p1
j and go to step 3.

APPENDIX B: ROC ANALYSIS

This section is devoted to the evaluation of the classification quality of the different models. We assume to have nD

test results for loci subject to selection and n �D test results for neutral loci:

fYD;s; s ¼ 1; . . . ;nDg and fY �D;t ; t ¼ 1; . . . ;n �Dg:

It is assumed that {YD,s, s¼ 1, . . . , nD} are identically distributed with survivor function SD(y)¼ P(YD,s $ y), and similarly
fY �D;t ; t ¼ 1; . . . ;n �Dg are such that S �DðyÞ ¼ PðY �D;t $ yÞ.

Before we calculated empirical AUC values for all simulated data sets, we deleted ties in the test results by adding
random noise. We did the calculations separately for the method without Bayesian variable selection and the method
with Bayesian variable selection. In these calculations we did not distinguish between loci subject to balancing and
positive directional selection.

The asymptotic variance for the AUC estimates was estimated by

bvarðbAUCÞ ¼ ðnDn �DÞ�1fAUCð1� AUCÞ1 ðnD � 1Þ � ðQ1 � AUC2Þ1 ðn �D � 1ÞðQ2 � AUC2Þg;

where AUC, Q1, and Q2 were calculated as described in Hanley and McNeil (1982).
To compare the ROC curves for the method with variable selection and the method without variable selection we

used the difference in empirical AUC estimates. As the ROC curves for both methods are derived from the same data
sets, we have a paired study design, so that the variance ofbDAUC is given by

varðbDAUCÞ _¼
varðS �D;AðYD;AÞ � S �D;BðYD;BÞÞ

nD
1

varðSD;AðY �D;AÞ � SD;BðY �D;BÞÞ
n �D

;

which is estimated with

bvarðŜ �D;AðYDs;AÞ � Ŝ �D;BðYDs;BÞÞ
nD

1
bvarðŜD;AðY �Dt;AÞ � ŜD;BðY �Dt;BÞÞ

n �D

; ðA1Þ

where A is the index for the method with variable selection and B the index for the method without variable selection.
In Equation A1 empirical placement values are used for the calculation of the empirical variance. A placement value
for a test result y in the neutral distribution, for example, is defined as

neutral placement value ¼ P ½Y �D $ y� ¼ S �DðyÞ;

where the distribution of Y �D is considered as the reference distribution (Pepe 2003).
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