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ABSTRACT

Correlations in coalescence times between two loci are derived under selectively neutral population models
in which the offspring of an individual can number on the order of the population size. The correlations
depend on the rates of recombination and random drift and are shown to be functions of the parameters
controlling the size and frequency of these large reproduction events. Since a prediction of linkage
disequilibrium can be written in terms of correlations in coalescence times, it follows that the prediction of
linkage disequilibrium is a function not only of the rate of recombination but also of the reproduction
parameters. Low linkage disequilibrium is predicted if the offspring of a single individual frequently replace
almost the entire population. However, high linkage disequilibrium can be predicted if the offspring of a single
individual replace an intermediate fraction of the population. In some cases the model reproduces the
standard Wright–Fisher predictions. Contrary to common intuition, high linkage disequilibrium can be
predicted despite frequent recombination, and low linkage disequilibrium under infrequent recombination.
Simulations support the analytical results but show that the variance of linkage disequilibrium is very large.

LINKAGE disequilibrium (LD) refers to the non-
random association of alleles at different loci

(Lewontin and Kojima 1960). Changes in population
size, natural selection, population structure, and random
drift can all lead to LD. Recombination, or the reciprocal
exchange of material between homologous chromo-
somes, breaks down associations between alleles at dif-
ferent loci. Estimating LD can thus give insight into the
forces that have shaped extant genetic diversity. The
potential utility of LD for fine-scale mapping of human
disease loci has also raised interest in estimating levels of
linkage disequilibrium in human populations ( Jorde

1995; Lander 1996; Risch and Merikangas 1996). The
evolutionary history of many organisms is marked by
growth and decline of populations as well as various kinds
ofsubdivision(withorwithoutmigrationandadmixture).
As an example, the Icelandic human population has un-
dergoneseverebottlenecks,accompaniedbyrecentpopu-
lation growth, in its �1100-year history (Thorarinsson

1961; Thorsteinsson and Jónsson 1991; Jónsson and
Magnússon 1997). Bataillon et al. (2006) report ex-
tensive linkage disequilibrium in the Icelandic human
population and estimate the effective population size Ne

to be �5000, much less than the current census size of
�300,000 (Garðarsdóttir and Sigurjónsson 2006).

Linkage disequilibrium is a function of the frequen-
cies of alleles in the population and LD can be quan-

tified as a function of allele frequencies in a number of
ways (cf. Hedrick 2000). One commonly used measure
of LD is the coefficient D of linkage disequilibrium and
is defined as the difference between the observed fre-
quency of a gametic type (haplotype) and the frequency
expected on the basis of random association of alleles in
gametes (Lewontin and Kojima 1960). The coefficient
D can be written as D ¼ PABPab – PaBPAb in which Pxy is
the frequency of haplotype xy. High absolute values of
D correspond to high linkage disequilibrium in the
population.

Following Slatkin (1994) we can understand the
effects of population history on LD between two diallelic
loci by considering the shape of the gene genealogy of a
sample without recombination. In this case the alleles at
both loci have the same gene genealogy. As an example,
consider a population that has recently grown in size.
Figure 1a shows a gene genealogy of a sample from a
population that has experienced recent expansion. A
single neutral mutation has arisen at each locus. The
location of the mutations on the gene genealogy deter-
mines the level of linkage disequilibrium. Since neutral
mutations arise randomly on the genealogy, the shape
of the gene genealogy becomes a deciding factor. A
gene genealogy of a sample from a recently expanded
population is composed mainly of external branches.
This happens because most coalescence events occur in
the smaller ancestral population. Hence, each mutation
is most likely to arise on an external branch and will
therefore be present on a single haplotype in the sample.
Thus the haplotypes observed in a sample of size n would
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be one each of aB and Ab, and n – 2 of AB. In this case,
jDj ¼ j((n – 2)/n) 3 0 – 1/n2j ¼ 1/n2, which becomes
quite small for large n.

For comparison, Figure 1b shows a gene genealogy
for a sample from a stable population. Now, the two
mutations are more likely to co-occur on an internal
branch that has, by definition, more than one descen-
dent in the sample. The result is only two gametic types;
i.e., we could observe n/2 each of aB and Ab, and it follows
that D ¼ 1

4, or the largest possible value that D can have.
Any ancestral process that increases the chance of events
like this will tend to increase LD.

In this work, we consider another commonly used
measure of LD, r 2, which is given by

r 2 ¼ D2

pað1� paÞpbð1� pbÞ
ð1Þ

(Hill and Robertson 1968), in which px is the fre-
quency of allele x, and which is commonly used to
estimate the statistical association between alleles at two
loci. Ohta and Kimura (1971) suggested approximat-
ing the expected value of r 2 as a ratio of expected values.
This approximation appears good provided the allele
frequencies are not too small (Hudson 1985; McVean

2002). Considering the gene genealogy of a sample of
size two from two loci and using the results of Strobeck

and Morgan (1978) and Hudson (1985), McVean

(2002) showed that an approximation to the expected
value of r 2 can be written in terms of correlation in
coalescence times. Griffiths (1981, 1991) (see also
Pluzhnikov and Donnelly 1996; Durrett 2002) gives
the covariances in coalescence times based on the
standard Wright–Fisher model of reproduction (Fisher

1930; Wright 1931). Since McVean’s (2002) approach
makes no assumptions about reproduction, predictions
about LD can be obtained under different population
models.

The present study derives correlations in coalescence
times in cases where a single individual can have very
large number of offspring with some probability. In

terms of reproduction, our model is a special case of the
models considered by Sagitov (1999) and Pitman

(1999). In terms of genetics, our model is novel because
we include the possibility of recombination. Sagitov

(1999) and Pitman (1999) did not consider recombi-
nation, but proved convergence to an ancestral process
that allows for many ancestral lines to reach a common
ancestor, or coalesce, at exactly the same instant (or
same generation) and that occurs on a shorter timescale
than in the standard coalescent (Pitman 1999; Sagitov

1999; Schweinsberg 2000; Möhle and Sagitov 2001).
Predictions of patterns of genetic diversity also differ
from those under Kingman’s coalescent (Eldon and
Wakeley 2006; Möhle 2006). Such models may be ap-
propriate for many marine organisms with high fecund-
ities and high mortality in early life stages or type III
survivorship curves (Hedgecock 1994).

Depending on parameter values, these models can
predict much lower levels of genetic variation than
would be expected on the basis of census size. This is
often observed in marine species and is quantified using
the ratio of effective to census size, Ne/N. Low Ne/N
ratios reported in Atlantic cod (Gadus morhua; Árnason

2004), red drum (Sciaenops ocellatus; Turner et al. 2002),
and the Pacific oyster (Crassostrea gigas; Hedgecock

1994) have been thought to indicate high variance in
offspring number (Crow and Kimura 1970; Hedrick

2005). Hedgecock (1994) proposed a ‘‘sweepstakes’’
reproduction model in which lucky individuals may con-
tribute a large number of offspring to the next generation.

Here we show that allowing individuals to have many
offspring typically results in low predicted LD in the
population. In some cases, however, higher LD than
that predicted under the standard Wright–Fisher model
is obtained. Low LD can also be predicted under low
recombination, and high LD under high recombina-
tion, contrary to common intuition. Finally, the differ-
ent formulas representing different timescales on which
recombination and random drift occur can predict the
same level of linkage disequilibrium. This implies that it
may be difficult to distinguish between the recombina-
tion parameter and the parameters controlling the size
and frequency of the large reproduction events using
sequence data. Our analytical results are for the ex-
pected value of r 2, but we have also performed a simu-
lation study that shows that the variance of r 2 is typically
very large.

THEORY AND METHODS

Population models: The modified population model
considered is a special case of the neutral population
models analyzed by Sagitov (1999) and Pitman (1999).
A discrete-generation model, it is a modification of the
well-known Wright–Fisher (Fisher 1930; Wright 1931)
modelof reproduction.A modifiedMoran model (Moran

1958, 1962) of overlapping generations introduced and

Figure 1.—Gene genealogies of a sample of two completely
linked loci (a) from a population that has recently grown in
size and (b) from a stable population. One mutation event is
assumed at each locus, and the ancestral gametic type is AB.
The sample in a consists of one each of aB and Ab, and four
AB, indicating low linkage disequilibrium. The sample in b
consists of the gametic types aB and Ab in equal proportions,
indicating high linkage disequilibrium.
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studied by Eldon and Wakeley (2006) was also con-
sidered. Since the results obtained under the modified
Moran model (not shown) are compatible with those
obtained under the modified Wright–Fisher population
model, we consider only the modified Wright–Fisher
model and results derived under that model from now on.

Eldon and Wakeley (2006) treated only haploid
individuals. Since the present study addresses recombi-
nation, a diploid population is assumed. For the moment,
consider a diploid population without recombination or
mutation. Note that we do not treat mutation explicitly
here, but follow McVean (2002) in assuming that the
mutation rate per site is small. As usual, N denotes the
population size. The Wright–Fisher model is modified
as follows. With probability 1 – e (0 , e , 1) the usual
Wright–Fisher sampling occurs; i.e., all individuals con-
tribute equally to the next generation via multinomial
sampling, and all are replaced by offspring each genera-
tion. With probability e the offspring of a single randomly
chosen individual replace a fraction v of the population,
and the other 2N – 1 individuals share the remaining 1 – v

fraction of reproduction events according to the usual
Wright–Fisher sampling. The probability e of modified
Wright–Fisher sampling is taken as e¼fN �a in which both
constants f and a . 0. In Eldon and Wakeley (2006) f¼
1. The parameter f allows us to adjust the relative rates of
coalescence and recombination when both occur on the
same timescale.

Our first concern is with the timescale of coalescence
under this model. Under the modified Wright–Fisher
population model the expected coalescence time of two
lines can be much shorter than under the standard
coalescent (Table 1). Consider first the case 0 , a , 1, in
which a controls the timescale at which modified sampling
occurs (e ¼ f/N a). In this case, the result is a multiple-
mergers coalescent, since ‘‘v-events’’ (a single individual
has 2Nv offspring) occur on a shorter timescale (pro-
portional to N a generations) than the standard coalescent
(timescale: proportional to N generations). In the case a¼
1, all the coalescence events occur on the same timescale.
When a . 1, the v-events occur on a longer timescale than
the standard coalescent and are thus negligible in large
populations. In the first two cases (i.e., 0 , a # 1), the
expected time to coalescence is a function of f and v.

The term ‘‘x-merger’’ denotes the event that x ances-
tral lines derive from a single individual in one time step.

Given n ancestral lines, we are interested in coalescent
events: 2 # x # n. Let Gn,x denote the probability of an x-
merger among n ancestral lines. In general, for finite N,

Gn;x ¼
n

x

� �
ð1� eÞ 1

2N

� �x�1

Aðn � x; 2N Þ

1
n

x

� �
e ð1� vÞn 1

2N � 1

� �x�1

Aðn � x; 2N � 1Þ
�

1 dðx;n � 1Þnvð1� vÞn�1 1

2N � 1

� �x�1

3 Aðn � x � 1; 2N � 1Þ

1 vxð1� vÞn�xAðn � x; 2N � 1Þ
�

ð2Þ

in which A(m, M) ¼ (1 – 1/M)(1 – 2/M) � � � (1 – m/M),
A(0, M) ¼ 1, and d(�, �) is the delta function

dðy; jÞ ¼ 1 if 2 # y # j
0 otherwise:

�
ð3Þ

The function Gn,x determines the distribution of the
size and shape of gene genealogies when there is no
recombination.

McVean (2002) obtains an expression for an approx-
imation to the expected value of r 2 in terms of cova-
riances in coalescence times, assuming that the per-site
mutation rate at each locus is very small. In so doing, the
gene genealogy of a sample of size two at each of two loci
is modeled backward in time using a Markov chain.
There are three states in the chain, which correspond to
three possible configurations of the sample, and are
denoted S0, S1, and S2 (see Figure 2). The subscripts 0, 1,
and 2 refer to the number of haplotypes the four genetic
types share. The Ci states in Figure 2 represent ancestral
configurations that include a common-ancestral type
at one or both loci. A prediction about linkage disequi-
librium in a sample is obtained by considering the
covariances in coalescence times between two loci.

Recombination is included in the model as follows. To
illustrate, assume as in Strobeck and Morgan (1978)
that four haplotypes labeled AB, Ab, aB, and ab are
segregating in the population with frequency p1, p2, p3,
and p4, respectively, at a given time. Each generation
every individual contributes a large number of gametes
(i.e., haplotypes) to a common gamete pool. Zygotes are
formed by selecting two gametes at random from the
gamete pool. Given a zygote formed from haplotypes AB
and ab, a single haplotype for the next generation is
selected from the four possible meiotic products AB,
Ab, aB, and ab with probabilities (1 – c)/2, c/2, c/2, and
(1 – c)/2, respectively, in which c is the per-generation
recombination value (0 # c # 1). Thus the frequency
of haplotype i in the next generation is given by p9i ¼
pi 1 siðp2p3 � p1p4Þc for i ¼ 1, . . . , 4 in which s1 ¼ s4 ¼ 1
and s2 ¼ s3 ¼ –1 (cf. Ewens 2004). When a large repro-
duction event occurs, a single randomly chosen haplotype
represents a fraction v of the common gamete pool and

TABLE 1

Expected time to coalescence of two lines under the
modified Wright–Fisher population model

Case lcoal Timescale

0 , a , 1 fv2 N a

a ¼ 1 1 1 fv2 2N
a . 1 1 2N

The rate of coalescence is denoted by lcoal.
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the otherhaplotypes compose the remaining 1 – v fraction
of gametes. In this case, the formula for p9i above holds,
but with pi and pj6¼i replaced by p*

i ¼ v 1 pið1� vÞ and
p*

j ¼ pjð1� vÞ for j 6¼ i. Note that simultaneous multiple
mergers (Schweinsberg 2000; Möhle and Sagitov 2001)
are not possible in this simplified model of recombination.

Prediction of linkage disequilibrium: The quantity r2

given in Equation 1 is a ratio of two nonindependent
random variables and has an unknown distribution,
but Song and Song (2007) do make an advance in its
numerical evaluation.

A first approximation to Eðr 2Þ is the ratio of expecta-
tions EðD2Þ=Eðpað1� paÞpbð1� pbÞÞ (Ohta and Kimura

1971). We write Y ¼ EðD2Þ=Eðpað1� paÞpbð1� pbÞÞ. Con-
sidering the gene genealogy of a sample of size two of two
loci, McVean (2002) showed that the ratio of expectations
Y can be written in terms of covariances in pairwise co-
alescence times t1 and t2 at each of two loci,

Y ¼ Covðt1; t2 j S 0Þ � 2 Covðt1; t2 j S 1Þ1 Covðt1; t2 j S 2Þ
Eðt1Þ2 1 Covðt1; t2 j S 0Þ

ð4Þ

in which S0, S 1, and S2 denote the three possible con-
figurations in a sample of size two shown in Figure 2. In
the case of small samples, Equation 4 can be corrected
for the possibility that the same gamete is sampled more
than once (Hudson 1985; McVean 2002). In deriving
Equation 4, McVean (2002) assumed that the per-site
mutation rate is very small.

The covariance terms in Equation 4 have been derived
under the standard coalescent (Griffiths 1981, 1991)
(see also Pluzhnikov and Donnelly 1996; Durrett

2002). Let r denote the scaled recombination rate.
Under standard Wright–Fisher sampling, in which time
is measured in units of 2N generations, r ¼ 2Nc. Then
the corresponding correlations given each sample con-
figuration (S0, S1, or S2; see Figure 2) are given by
Equation A1 in the appendix (by replacing h with r/4).
Hence,

Y ¼ 5 1 r

11 1 13r 1 2r2 ð5Þ

(McVean 2002), which agrees with the results obtained
by Ohta and Kimura (1971) and Weir and Hill (1986)

by other methods. Simulations show that Equation 5
provides a good approximation to the average value of
r 2 calculated from a sample when the frequency of the
minor allele is not too small (Hudson 1985; McVean

2002).
Deriving the covariance terms under a modified popu-

lation model: The correlations in Equation A1 were ob-
tained on the basis of the standard coalescent (Kingman

1982a,b; Hudson 1983; Tajima 1983), in which only
binary mergers are allowed; hence the only parameter is
the scaled recombination rate r (Griffiths 1981, 1991).
The corresponding correlation terms derived under our
modified Wright–Fisher population model are shown in
the appendix. In this case, and in what follows, we define
the scaled recombination parameter to be h ¼ cNb. We
assume that h and f are finite; i.e., limN /‘cN b and
limN /‘eN a are both finite (recall that the probability of
modified Wright–Fisher sampling is e¼f/N a). Note that
the usual scaling of the recombination rate is obtained
by taking b ¼ 1. Defining the recombination parameter
h in this way allows us to investigate effects of order of
magnitude differences in timescales of recombination
and coalescence. The parameter controlling the time-
scale of coalescence is a. When a $ 1 coalescence occurs
on a timescale proportional to N generations. However, if
0 , a , 1, the timescale of coalescence is Na generations
(Table 1). To obtain a continuous-time limit we rescale
time using the coalescent timescale. Thus the rate of
coalescence shown in Table 1 is always finite. On the
coalescent timescale the rate of recombination is cN a ¼
hN a–b (we can think of this as our model’s analog of the
usual parameter r). Since h is finite, limN /‘hN a�b ¼ ‘

if a . b, i.e., when recombination is an order of mag-
nitude more frequent than coalescence. If a , b then
limN /‘hN a�b ¼ 0, and coalescence events are an order
of magnitude more frequent than recombination events.
Coalescence and recombination occur on the same
timescale only when a ¼ b.

To explain the derivations, recall that Y can be ex-
pressed in terms of covariances (see Equation 4) and
since Cov(X, Y)¼ E(XY) – E(X)E(Y) for any two random
variables X and Y, we first obtain the expected values of
the products of the pairwise coalescence times t1 and t2 at
the two loci. That is, the main work involves obtaining
E(t1t2 j Si) for i ¼ 0, 1, 2 (see Figure 2). Let sij denote the
transition probability over a single generation between
states in the ancestral process for two biallelic loci with
recombination between them, under a standard popu-
lation model (e.g., the Wright–Fisher model). Denote
by mij the transition probability per generation under
a modified sampling scheme. Then under a modified
population model the transition probability pij over one
generation from state i to state j is

pij ¼ ð1� eÞsij 1 emij : ð6Þ

The gene genealogical process we are describing is that
for a sample of size two of two loci, or a total of four

Figure 2.—The states in the ancestral process of two bial-
lelic loci for a sample of size two of two loci from a diploid
population. A genetic type at locus 1 is denoted by while

denotes a genetic type at locus 2. The common-ancestral
genetic types are denoted by and .
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genetic types. The transition probabilities take the gen-
eral form of Equation 6 in which sij and mij are given in
the appendix, and the seven possible states are given in
Figure 2.

By considering the corresponding Markov jump
chain, we can follow Durrett (2002) to obtain E(t1t2 j
Si) in which t1 and t2 denote the time until coalescence
of the two genetic types at loci 1 and 2, respectively.
Conditioning on the first change in the genealogical
history of the sample we obtain the set of recursions
given in Equation 7,

Eðt1t2 j S 0Þ ¼ qS 0S 1 Eðt1t2 j S 1Þ1 qS 0S 2 Eðt1t2 j S 2Þ
1 Eð J j S 0ÞEðtcÞS0 1 Eð J 2 j S 0Þ

Eðt1t2 j S 1Þ ¼ qS 1S 0 Eðt1t2 j S 0Þ1 qS 1S 2 Eðt1t2 j S 2Þ
1 Eð J j S 1ÞEðtcÞS1 1 Eð J 2 j S 1Þ

Eðt1t2 j S 2Þ ¼ qS 2S 0 Eðt1t2 j S 0Þ1 qS 2S 1 Eðt1t2 j S 1Þ
1 Eð J j S 2ÞEðtcÞS2 1 Eð J 2 j S 2Þ; ð7Þ

in which qS iS j
¼ pij=ð1� piiÞ, S0 ¼ 2ðqS 0S 1

1 qS 0S 2
Þ1

qS 0C 1
1 qS 0C 2

, S1 ¼ 2ðqS 1S 0
1 qS 1S 2

Þ1 qS 1C 1
1 qS 1C 2

,
and S2 ¼ 2ðqS 2S 0

1 qS 2S 1
Þ1 qS 2C 1

1 qS 2C 2
. Since J de-

notes the time until the process moves out of a particular
state, Eð J j S iÞ ¼ 1=ð1� qS iS i

Þ and Eð J 2 j S iÞ ¼
ð1 1 qS iS i

Þ=ð1� qS iS i
Þ2. The quantity tc is the time until

two lines coalesce (ignoring recombination), for which
E(tc) ¼ 1/G2,2, and Gn,x given in Equation 2 is the
probability that x lines of n coalesce in one generation.
Note that Equation 4 can also be written as

Y ¼ 1 1
Eðt1t2 j S 2Þ � 2Eðt1t2 j S 1Þ

Eðt1t2 j S 0Þ
: ð8Þ

Let E(t1t2 j Si) denote the solution of Equation 7 for i ¼
0, 1, 2. The continuous-time limit prediction of linkage
disequilibrium is then given by

Y ¼ 1 1 lim
N /‘

Eðt1t2 j S 2Þ � 2Eðt1t2 j S 1Þ
Eðt1t2 j S 0Þ

: ð9Þ

The limit in Equation 9 will depend on the different
values of a and b, the parameters controlling the
timescale of coalescence and recombination, respec-
tively. The different continuous-time limit predictions
of linkage disequilibrium obtained from Equation 9 are
given in Table 2, and the correlations are given in the
appendix.

RESULTS

Correlations in coalescence times are strongly af-
fected by demography, in this case extreme differences
in reproductive success among individuals in a popula-
tion. The correlations obtained under different assump-
tions about the two parameters, a and b, that control the
timescales of recombination and random drift are shown

in the appendix. When found to be functions of v (the
fraction of the population replaced by offspring of a
single individual) and f (recall that the probability of
modified Wright–Fisher sampling is given by e ¼ f/N a),
the correlations ascend to 1 as v and f increase.

Different predictions of LD: Eleven different pre-
dictions (Equation 9) of linkage disequilibrium are
identified (Table 2), depending on a and b (recombi-
nation is scaled as h ¼ cN b). These results are summa-
rized in Figure 3 on the parameter space spanned by
a and b. The timescale in a standard Wright–Fisher
diploid population is 2N generations. Thus when a .

1 v-coalescence events are an order of magnitude less
frequent than binary mergers, and the ancestral process
is Kingman’s coalescent. The coalescent timescale
when 0 , a , 1 is in units of N a generations, and the
ancestral process is dominated by v-coalescence events
allowing for multiple mergers. Kingman’s coalescent
and v-coalescence events occur on the same timescale
(proportional to N generations) when a ¼ 1. Recombi-
nation occurs on a faster timescale (by an order of
magnitude) than any type of coalescent event on the
region of the (a, b) parameter space represented by
zero (b , 1 except 0 , a , b , 1) in Figure 3. Thus this
region is labeled as ‘‘frequent recombination’’ in Figure 3.
The remaining part of the (a, b) parameter space is
labeled as ‘‘infrequent recombination’’ to remind us of
the longer timescale (for this part of the parameter
space) on which recombination occurs relative to the
corresponding coalescent timescale.

Just three possible limiting behaviors—0, 5
11, and

Y(v)—occupy nearly all of the (a, b) parameter space
(Figure 3). Linkage equilibrium (r 2 ¼ 0) is predicted
when 0 , b , a , 1 or when 0 , b , 1 and a $ 1—this is
the region of the (a, b) parameter space occupied by
0 in Figure 3. In these cases, the rate of recombination
is an order of magnitude higher than any type of
coalescence event (limN /‘N ac ¼ limN /‘hN a�b ¼ ‘)
and hence we do not expect to see any disequilibrium.
In contrast, high linkage disequilibrium is predicted
when both a and b . 1, which is the region occupied by
5

11 in Figure 3. Here the timescale of coalescence is
proportional to N generations, the ancestral process is
Kingman’s coalescent, and recombination occurs on a
timescale that is an order of magnitude longer than the co-
alescent timescale; i.e., limN /‘Nc ¼ limN /‘hN 1�b ¼ 0.
Note that 5

11 is the value obtained from Equation 7 when
r¼ 0. Finally, when 0 , a , b and a , 1, the prediction
of linkage disequilibrium is a function of v (the fraction
of the population replaced by offspring of a single
individual)—the region occupied by Y(v) (Table 2) in
Figure 3. The ancestral process occurs on a timescale of
N a generations and is characterized by v-coalescence
events allowing for multiple mergers. Since b . a it
follows that recombination occurs on a timescale that is
longer (by an order of magnitude) than the coalescent
timescale (limN /‘hN a�b ¼ 0).
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When a and b are equal and #1, recombination and
coalescence occur on the same timescale of N a # N
generations, and more complicated behaviors are ob-
served. The prediction of LD is then a function of all
three parameters h, f, and v, and two different limit
processes, Y1(h, f, v) and Y2(h, f, v) (Table 2), arise.
The limit process Y1(h, f, v) is obtained when 0 , a¼b

, 1, represented by the thick diagonal line labeled in
Figure 3, and the limit process Y2(h, f, v) represented
by in Figure 3 results when a ¼ b ¼ 1.

When a ¼ 1, the ancestral process is a mixture of the
standard coalescent and a multiple-mergers coalescent
process, since both occur on a timescale proportional to
N generations. Taking a ¼ 1 and restricting recombi-
nation to a longer timescale (b . 1) results in the limit
process Y3(f, v) (Table 2), which occupies the part of
the (a, b) parameter space represented by the thick

vertical line labeled in Figure 3. When a . 1 the
standard coalescent process results, the timescale is
proportional to N generations, and the population
follows the usual Wright–Fisher reproduction framework.
Scaling recombination in the usual way by taking b ¼ 1
under the usual Wright–Fisher reproduction (a . 1)
results in the standard prediction Y4(h) (Table 2) of LD
represented by the thick horizontal line labeled in
Figure 3.

Nonmonotonic behavior of E(r 2): Interestingly, while
linkage disequilibrium decreases monotonically as re-
combination increases, the predictions Y1 and Y2 are
nonmonotonic functions of f and v. Figure 4a shows
Y1(h, f, v) as a function of f (1 # f # 10) and v (0 , v

, 1) when h¼ 1, and Figure 4b shows Y2(h, f, v) under
the same conditions for h, f, and v as in Figure 4a. A
comparison of the two graphs in Figure 4 shows that

TABLE 2

The continuous-time limit predictions of linkage disequilibrium Y under a modified
Wright–Fisher population model

Timescale

Coalescence Recombination Limit process

a . 1 b . 1 5

11

b ¼ 1
5 1 h

11 1 13h 1 2h2

b , 1 0
a ¼ 1 b . 1 Y3(f, v)

b ¼ 1 Y2(h, f, v)
b , 1 0

a , 1 b . 1 Y(v)
b ¼ 1 Y(v)

0 , a , b , 1 Y(v)
0 , a ¼ b , 1 Y1(h, f, v)
0 , b , a , 1 0

The different formulas are the limit (9) obtained given different values of a and b. See text for explanation
of symbols. Note that Y4ðhÞ ¼ ð5 1 hÞ=ð11 1 13h 1 2h2Þ.

YðvÞ ¼ ð1� vÞ2ð5� 4vÞ
11� 22v 1 16v2 � 4v3

Y1ðh;f;vÞ ¼
fð1� vÞ2v2ðfð5� 4vÞv2 1 hÞ

f2ð11� 22v 1 16v2 � 4v3Þv4 1 fhð13� 18v 1 8v2Þv2 1 2h2

Y2ðh;f;vÞ ¼
ð5 1 h 1 ð5� 4vÞfv2Þð1 1 ð1� vÞ2fv2Þ

11 1 2h2 1 2fv2ð11� 11v 1 4v2Þ1 f2v4ð11� 22v 1 16v2 � 4v3Þ1 ð13 1 fv2ð13� 18v 1 8v2ÞÞh

Y3ðf;vÞ ¼
f2ð1� vÞ2ð5� 4vÞv4 1 fð10� 14v 1 5v2Þv2 1 5

11 1 2fð11� 11v 1 4v2Þv2 1 f2ð11� 22v 1 16v2 � 4v3Þv4:
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Y1(h, f, v) and Y2(h, f, v) behave very similarly as
functions of f and v. The nonmonotonic trends
emerging from Figure 4 are twofold. First, for any value
of f, Y1(h, f, v) and Y2(h, f, v) ascend as v goes from
0 to �0.4 and then descend as v goes from �0.4 to 1.
The other nonmonotonic trend is that, depending on
v, Y1(h, f, v) and Y2(h, f, v) are either increasing or
decreasing functions of f. Thus, when multiple mergers
and recombination occur on the same timescale of #2N
generations, the prediction of linkage disequilibrium is
nonmonotonic in the parameters that control the rate
(f) and size (v) of multiple mergers.

The nonmonotonic behavior of Y1 and Y2 is interest-
ing because the correlation in coalescence times in-
creases monotonically with f and v. Let si ¼ corr(t1, t2 j
Si), i¼ 0, 1, 2. Writing Y ¼ s0/(1 1 s0) 1 s2/(1 1 s0) –
2s1/(1 1 s0) and looking at each term separately one can
see that, relative to 1 1 s0, s2 rises most steeply over the
same interval of v for which Y is increasing (Figure 5).

The ancestral process occurs on a timescale of N a

generations when 0 , a , 1 and is characterized by
v-coalescence events allowing for multiple mergers.
Thus when recombination occurs on a longer timescale
(even if 0 , b , 1, cf. Figure 3) the prediction of linkage
disequilibrium depends only on v ½for this range of
the (a, b)-parameter space�. Figure 6a shows Y(v) is a
decreasing function of v. When v is very small, high LD
is predicted since the gene genealogy resembles the one
obtained under standard Wright–Fisher reproduction
(see Figure 1b). As v increases, the gene genealogy starts
to resemble more the one shown in Figure 1a, i.e., con-

sisting mostly of external branches because of multiple
mergers, leaving little opportunity for LD to establish.

In Figure 4, h ¼ 1, which gives Y4(1) � 0.231. Thus,
for the range of f chosen, predicted levels of linkage

Figure 4.—Predicted levels of linkage disequilibrium (a)
Y1(h, f, v) and (b) Y2(h, f, v), from Table 2 as a function
of f and v when h ¼ 1. For explanation of symbols see text.

Figure 5.—Correlations in coalescence times si, relative to
1 1 s0, as functions of v when h ¼ 1, f ¼ 100, and b ¼ a ¼ 1
(see appendix). Line c1, s0/(1 1 s0); line c2, s2/(1 1 s0);
line c3, 2s1/(1 1 s0); line c4, (s2 1 s0)/(1 1 s0). For expla-
nation of symbols see text.

Figure 3.—Predictions of linkage disequilibrium from Ta-
ble 2 on the (a, b) parameter space. The circled numbers re-
fer to Yj (j ¼ 1, . . . , 4) as shown in Table 2. For explanation of
symbols see text.

Linkage Disequilibrium Given a Multiple-Mergers Coalescent Process 1523



disequilibrium under modified Wright–Fisher sampling
are generally less than those predicted under standard
Wright–Fisher reproduction, given that recombination
occurs on the same timescale as coalescence (0 , a ¼
b # 1). When recombination occurs on a shorter
timescale than coalescence, Y is zero. By taking a ¼ b

when b # 1 the effects of recombination are countered
by setting the timescale of modified sampling equal to
that of recombination.

Higher than expected LD: For a certain range of the
parameter space, higher predicted levels of linkage dis-
equilibrium can also be obtained under modified sam-

pling compared to the standard model. Figure 6b shows
Y2(h, f, v) as a function of v with f ¼ 1000 and h ¼ 10.
The linkage disequilibrium predicted under the stan-
dard Wright–Fisher model (Y4(h)) when h¼ 10 is shown
for reference (Figure 6b, dashed line). For low and high
values of v the level of LD predicted under modified
sampling is similar to or less than that predicted under
the standard model. For intermediate values of v, much
higher levels of LD are predicted under modified sam-
pling. The interpretation of Figure 6b is that high linkage
disequilibrium can result from random sampling in a
population with high variance in offspring number. Con-
trast this with Figure 6c, which shows a graph of Y3(f, v)
(Table 2) as a function of v for three different values of
f. In this case of low recombination (b . 1), Y3 is a
decreasing function of v and f. For high values of v and/
or f, the model predicts low linkage disequilibrium even
under low recombination. Taken together, a population
with highly skewed offspring distribution can have high LD
in regions with high recombination and low LD in regions
with low recombination.

Another interesting, and cautionary, aspect of our
results is that the same prediction of linkage disequilib-
rium can be obtained with different combinations of
parameters. For example, given a standard population
model, Y4(h)¼ 1

3 if h ¼
ffiffiffiffiffiffi
33
p

� 5
� 	

=2 � 0:372. However,
for any b . a, as long as a , 1, Y(v)¼ 1

3 when v� 0.2831

or 23 � 49=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
937 � 48

ffiffiffiffiffiffiffiffi
330
p

3
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
937 � 48

ffiffiffiffiffiffiffiffi
330
p

3
p
 �

= 24
h
to be exact

i
: This implies that it may be difficult to dis-

tinguish between h, f, and v using sequence data.
The distribution of r 2 in simulations: The expected

value of r 2 was the focus of the analytical work above.
However, Hudson’s (1985) analysis of the distribution
of r 2 by simulation reveals a high variance of this mea-
sure of LD. To obtain quantitative estimates of the
variance of r 2 we performed Monte Carlo simulations
under a symmetric two-allele mutation model as described
by Hudson (1983) with the modification of allowing more
than two lines to coalesce at the same time. The program
we wrote to perform the simulations correctly predicts
the correlations listed in the appendix. A version in C is
available upon request.

Table 3 shows results from simulations obtained
under two different ancestral processes: one in which
the rate of coalescence (x-merger) is given by ln;x ¼

f



n
x

�
vxð1� vÞn�x for 2 # x # n and is labeled as

‘‘multiple mergers’’ in Table 3 and the other in which
the rate of coalescence is given by Equation 10 and
obtained when large reproduction events occur on a
timescale of 2N generations. The entries in Table 3 are
the mean of r2 and the corresponding standard de-
viation in parentheses. In nearly all cases the standard
deviation is larger than the mean, indicating a high
variance in the empirical distribution of r2. Figure 7
shows the sampling distribution of r2 under the same two

Figure 6.—Predicted levels of linkage disequilibrium (a)
Y(v), (b) Y2(h, f, v), and (c) Y3(f, v) from Table 2 as a
function of v. In b h ¼ 10 and f ¼ 1000. The horizontal
dashed line in b represents the predicted level of linkage dis-
equilibrium under the standard Wright–Fisher model
(Y4(h)) when h ¼ 10. For explanation of symbols see text.
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coalescent processes as in Table 3. The distributions are
similar to those obtained by Hudson (1985) and reflect
the high sampling variance of r2. Following McVean

(2002), our analytical results assume that the population
mutation rate u is small. The analytical predictions for
Eðr 2Þ we have derived are in good agreement with simu-
lations for biologically reasonable values of v (Table 3)
as long as u is small: not .10�2 in the case of the mixture-
distribution coalescent process or 10�3–10�4 if the an-
cestral process is the multiple-mergers process. For
comparison, a value of v of �8% was estimated for
Pacific oysters (C. gigas; Eldon and Wakeley 2006).

DISCUSSION

Limit predictions (as N /‘) about linkage disequi-
librium were obtained under a skewed offspring distri-
bution among individuals in a population, in which the
offspring of a single (randomly chosen) individual can
number on the order of the population size. It is shown
that the reproduction parameters v and f, which
control the size and frequency of the large reproduction
events, are as important as the recombination rate in
predicting levels of LD in a population with highly
fecund individuals. Primarily, low LD is predicted due to
the star-like shape of the gene genealogy. This can occur,
in some cases, despite a low recombination rate and can
thus give false evidence for the presence of a recombi-

nation hotspot. High LD can also be predicted despite a
high recombination rate (see discussion below), i.e.,
even in the presence of a recombination hotspot. The
present results are qualitatively similar to the effects of a
recent strong selective sweep on the LD between two
neutral loci linked to the selected locus (McVean 2007).

For example, in the model we have described the actual
timescale of the ancestral process depends on the pa-
rameter a, which determines the frequency of highly
fecund individuals (Table 1; the probability of modified
Wright–Fisher sampling is e ¼ f/N a). We have studied
the effects of a highly skewed offspring distribution on
correlations in coalescence times between two loci. The
findings show that predictions of linkage disequilibrium
are strongly affected by the different timescales on which
recombination and random drift operate, as well as the
fraction v of the population replaced by offspring of a
single individual. Thus allowing recombination and re-
production to occur on separate, and sometimes very
different, timescales uncovers a fundamental way in which
LD may be shaped by high variance in offspring number.

For a given a, correlations in coalescence times were
shown to be increasing functions of f (recall that the
probability of modified Wright–Fisher sampling is e ¼

Figure 7.—The sampling distribution of r2 for sample size
25 after 5 3 104 runs under (a) a ‘‘multiple-merger’’ coales-
cent process (0 , a , 1) and no recombination (h ¼ 0)
and (b) a mixture-distribution coalescent process (a¼ 1) with
h ¼ 1. In a, u ¼ 0.001 and low-frequency variants (,10%) are
excluded, while in b u ¼ 0.01 and all variants are included. In
both cases v ¼ 0.1 and f ¼ 1. The vertical dashed lines rep-
resent the mean r 2 of each sampling distribution: (a)
r 2 ¼ 0:452 with standard deviation 0.377; (b) r 2 ¼ 0:084 with
standard deviation 0.132.

TABLE 3

Mean and standard deviation (in parentheses) of r 2 for a
sample of size 25 (104 iterations) under the ‘‘multiple-
mergers’’ process (h = 0) and the mixture-distribution

process (h = 1)

Ancestral process

v u Multiple mergers Mixture distribution

0.1 1 0.055 (0.073) 0.106 (0.143)
0.1 0.073 (0.095) 0.107 (0.180)

0.01 0.149 (0.195) 0.159 (0.238)
0.230a (0.299)

0.001 0.251 (0.352)
0.409a (0.373)

Predicted 0.416 0.232

0.5 1 0.073 (0.104) 0.162 (0.232)
0.1 0.119 (0.196) 0.164 (0.269)

0.01 0.125 (0.275) 0.183 (0.354)
0.205a (0.279)

0.001 0.176 (0.370)
0.212a (0.341)

Predicted 0.214 0.232

In each case f ¼ 1. The predicted values are Y(v) for the
multiple-mergers process and Y2(1, 1, v) for the mixture-dis-
tribution process (see Table 2).

a Low-frequency (,10%) variants excluded.
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f/N a) and v (the fraction of the population replaced by
offspring of a single individual). The dependence of the
correlations on f and v can be explained through the
effects f and v have on the shape of the gene genealogy
of a sample of two loci on two chromosomes. If the
ancestral gametic type (state C4 in Figure 2) is reached
from any of the Si sample configurations in Figure 2,
with high probability in a large population, the coalescence
times would be highly correlated. Reaching the common-
ancestral chromosome (C4) from any of the Si states
requires only a single multiple merger and is possible in a
large population given the population models consid-
ered in this report. As v increases (i.e., tends to 1), the
fraction of the population replaced by offspring of a
single individual tends to 1. Hence, the gene genealogy
assumes a star-like shape composed almost entirely of
external branches (similar to the gene genealogy on the
right in Figure 1), if v-coalescence events are frequent
enough. The rate of v-events is determined by f. It follows
that as f and v increase, the more star-like the gene
genealogy becomes, and the common-ancestral type C4 is
often reached via a single coalescence event from any given
configuration Si, resulting in high correlation in coales-
cence times.

Given a highly skewed offspring distribution, pre-
dicted levels of LD can range from high to low
irrespective of recombination. Consider the case when
v-coalescence events occur on a shorter timescale than
the standard coalescent; i.e., a , 1. In this case the rate f

of v-coalescence events is much greater than the rate N a–1

of the standard coalescent. In a standard Wright–Fisher
population predictions of linkage disequilibrium de-
pend only on the recombination rate (h). Common
intuition says that when h?1 there will not be much LD.
However, if 0 , a , b , 1, nonzero linkage disequilib-
rium can occur when h?1 if the timescale of coales-
cence is also short due to multiple mergers (Table 2).
Given the modified model of reproduction considered
in this study, predicted levels of LD depend on v only
when 0 , a , b , 1. For low values of v the model
predicts high LD (i.e., close to 5

11), and as v tends to 1

predicted levels of LD descend toward zero. Second,
when h>1 (i.e., b . 1), predicted levels of LD also only
depend on v in the same way as when 0 , a , b , 1.
Thus the model can predict low levels of LD (if v � 1)
even when h>1 and common intuition says that LD
should be high. The relation between recombination
and linkage disequilibrium may not be as straightfor-
ward in organisms with highly fecund individuals as
standard theory predicts.

Linkage disequilibrium as predicted by Y does not
change monotonically with v when recombination and
multiple mergers occur on the same timescale of Na # N
generations (0 , a ¼ b # 1; see Figure 4). When values
of v are not too close to 1, high LD can result as Figure
6b shows. Again following Slatkin (1994) a consider-
ation of the gene genealogy of a sample of two
completely linked loci can explain the high predicted
LD when 0 , a ¼ b # 1. The modified Wright–Fisher
model considered in the present study allows many lines
to reach a common ancestor (coalesce) in the same
instance. Thus given n ancestral lines, any number of lines
from 2 to n can reach a common ancestor each time a
coalescence event occurs. To explain the high predicted
LD when 0 , a ¼ b # 1 we consider the probability
PnðxÞ ¼ ln;x=

P
x ln;x (Figure 8) of each type of coales-

cence event (x-merger) for 2 # x # n given 10 ancestral
lines (n¼ 10). On a timescale of 2N generations the rate
ln,x of coalescence of x lines of n (2 # x # n) is given by

ln;x ¼
n
2

� �
d2ðxÞ1 f

n
x

� �
vxð1� vÞn�x ð10Þ

½in which d2(x)¼ 1 if x¼ 2 and zero otherwise� obtained
from Equation 2. Under the standard coalescent only
two lines can reach a common ancestor (2-merger) each
time a coalescence event occurs. Figure 8 (a, solid bars)
shows, however, that when f¼ 1000 (in accordance with
Figure 6b) and v¼ 0.5 the most likely coalescence event
is that half the lines reach a common ancestor and that
a 2-merger is among the least likely events. Similar
patterns are obtained for lower values of f and v. The

Figure 8.—Rates of coalescence and
gene genealogy under a multiple-mergers
coalescent. (a) The probability distribution
of the different types of coalescence events,
given by PnðxÞ ¼ ln;x=

P
x ln;x (2 # x # n)

in which ln;x ¼
n
2

� �
d2ðxÞ1 f

n
x

� �
vxð1�

vÞn�x ½d2(x)¼ 1 if x¼ 2 and zero otherwise�
in units of 2N generations (i.e., a ¼ b ¼ 1)
when the number of ancestral lines n ¼ 10
and f ¼ 1000. Solid bars, v ¼ 0.5; shaded
bars, v ¼ 0.99. (b) A gene genealogy of a
sample of two completely linked loci given
a multiple-mergers ancestral process simi-
lar to the one described by solid bars in
a. One mutation event is assumed at each
locus, and the ancestral gametic type is AB.
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high probability of multiple mergers directly affects our
prediction of the shape of the gene genealogy of a
sample. Figure 8b shows the gene genealogy of a sample
of two completely linked loci when v ¼ 0.5 and most
multiple mergers are more likely than 2-mergers (or n-
mergers). The gene genealogy consists of short external
branches and a long internal branch at each locus.
Assuming a single mutation at each locus, both muta-
tions most likely occur in the internal branch, leading
to high LD. The probability distribution of multiple
mergers for f ¼ 1000 and v ¼ 0.99 is shown for
reference (Figure 8, shaded bars). When the offspring
of a single individual frequently replace almost all the
population, the most likely coalescence event is an
n-merger, i.e., all ancestral lines reaching a common
ancestor. The gene genealogy of a sample then becomes
star shaped, similar to the gene genealogy in Figure 1a.
Mutations are then most likely to occur in an external
branch, resulting in low linkage disequilibrium.

Analytical results presented here rely on the approx-
imations of Ohta and Kimura (1971), who suggested
using a ratio of expectations s2

d as a predictor for r2, and
McVean (2002), who assumed a small mutation rate.
In addition, the analytical predictions are only for the
average value of r2. These issues were addressed using
simulations. The results show that the expected value of
r2 is in agreement with the analytical results when u is
small and the offspring of a single individual replace a
modest fraction (v) of the population (0 , v # 0.5;
Table 3). However, the sampling variance of r2 is quite
high (Table 3 and Figure 7), similar to that found for the
standard coalescent (Hudson 1985). In the analysis of
data, the variance of r2 can be reduced by averaging
values over very many pairs of loci.

We thank the International Centre for Mathematical Sciences for
supporting a workshop on Mathematical Population Genetics, March
2006, during which part of this work was done.
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APPENDIX

Transition probabilities: Here the transition probabilities from the noncoalescent states S 0, S 1, and S 2 (Figure 3)
in the ancestral process are stated. These are in discrete time. The states are based on two biallelic loci in a sample of
size two from diploid individuals. Only one crossover is allowed between the loci when a recombination event occurs. A
transition probability from state i to state j is denoted Pði/jÞ. And of course

P
j Pði/jÞ ¼ 1. As an example, consider

PðS 0/S 0Þ or the probability that all four alleles stay on separate chromosomes over one generation. Standard
Wright–Fisher sampling occurs with probability 1 – e and modified sampling with probability e. The two separate
probabilities can be obtained by adopting a balls-in-boxes approach. Going one generation back in time, the four balls
(alleles) occupy 2N boxes (chromosomes) at random. To stay in state S 0, no recombination is involved, and all the
balls must occupy different boxes. Under standard sampling, this happens with probability ð1� 1=ð2N ÞÞð1� 2=
ð2N ÞÞð1� 3=ð2N ÞÞ. Under modified sampling, a single randomly chosen box is occupied by a ball with probability v

(the v-box), while the other 2N – 1 boxes are each occupied by a ball with probability 1/(2N – 1). Under modified
sampling, the four balls stay in separate boxes in two ways. First, they can all ignore the v-box with probability (1 – v)4

and then must all occupy different boxes with probability ð1� 1=ð2N � 1ÞÞð1� 2=ð2N � 1ÞÞð1� 3=ð2N � 1ÞÞ.
Second, a single randomly chosen ball occupies the v-box with the binomial probability 4v(1 – v)3, while, of the
remaining three balls, each occupies a single box with probability ð1� 1=ð2N � 1ÞÞð1� 2=ð2N � 1ÞÞ:Taken together;

PðS 0/S 0Þ ¼ 1� 3

2N

� �
1� 1

N

� �
1� 1

2N

� �
ð1� eÞ

1 e 1� 3

2N � 1

� �
1� 2

2N � 1

� �
1� 1

2N � 1

� �
ð1� vÞ4

1 4e 1� 2

2N � 1

� �
1� 1

2N � 1

� �
vð1� vÞ3:

The other transition probabilities are obtained similarly:

PðS 0/S 1Þ ¼
2ð1� 1=N Þð1� 1=ð2N ÞÞð1� eÞ

N

1 e
4ð1� 2=ð2N � 1ÞÞð1� 1=ð2N � 1ÞÞð1� vÞ4

2N � 1
1

8ð1� 1=ð2N � 1ÞÞvð1� vÞ3
2N � 1

� �

1 4e 1� 1

2N � 1

� �
v2ð1� vÞ2

PðS 0/S 2Þ ¼
ð1� 1=ð2N ÞÞð1� eÞ

2N 2

1 e
2ð1� 1=ðð2N Þ � 1ÞÞð1� vÞ4

ð2N � 1Þ2 1
4v2ð1� vÞ2

2N � 1

� �

PðS 0/C 1Þ ¼
ð1� 1=N Þð1� 1=2N Þð1� eÞ

N

1 e
2ð1� 2=ð2N � 1ÞÞð1� 1=ð2N � 1ÞÞð1� vÞ4

2N � 1
1

4ð1� 1=ð2N � 1ÞÞvð1� vÞ3
2N � 1

� �

1 2e 1� 1

2N � 1

� �
v2ð1� vÞ2
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PðS 0/C 2Þ ¼
ð1� 1=ð2N ÞÞð1� eÞ

N 2

1 e
4ð1� 1=ð2N � 1ÞÞð1� vÞ4

ð2N � 1Þ2 1
4vð1� vÞ3

ð2N � 1Þ2 1 4v3ð1� vÞ
� �

PðS 0/C 3Þ ¼ ð1� eÞ1� 1=ð2N Þ
4N 2 1 e

4ð1� 1=ð2N � 1ÞÞð1� vÞ4

ð2N � 1Þ2 1
4vð1� vÞ3

ð2N � 1Þ2 1 4v3ð1� vÞ
� �

PðS 0/C 4Þ ¼ ð1� eÞ 1

2N

� �3

1 e
ð1� vÞ4

ð2N � 1Þ3 1 v4

� �

PðS 1/S 0Þ ¼ ð1� eÞ 1� 3

2N

� �
1� 1

N

� �
1� 1

2N

� �
c

1 ec 1� 3

2N � 1

� �
1� 2

2N � 1

� �
1� 1

2N � 1

� �
ð1� vÞ4

1 4ec 1� 2

2N � 1

� �
1� 1

2N � 1

� �
vð1� vÞ3

PðS 1/S 1Þ ¼ ð1� eÞ 1� 1

N

� �
1� 1

2N

� �
ð1� cÞ1 2ð1� 1=N Þð1� 1=ð2N ÞÞc

N

� �

1 e 1� 2

2N � 1

� �
1� 1

2N � 1

� �
ð1� cÞð1� vÞ3 1 3 1� 1

2N � 1

� �
ð1� cÞvð1� vÞ2

� �

1 ec
4ð1� 2=ð2N � 1ÞÞð1� 1=ð2N � 1ÞÞð1� vÞ4

2N � 1
1

8ð1� 1=ð2N � 1ÞÞvð1� vÞ3
2N � 1

� �

1 4ce 1� 1

2N � 1

� �
v2ð1� vÞ2

PðS 1/S 2Þ ¼ ð1� eÞ ð1� 1=ð2N ÞÞð1� cÞ
2N

1
ð1� 1=ð2N ÞÞc

2N 2

� �

1 eð1� cÞ ð1� 1=ð2N � 1ÞÞð1� vÞ3
2N � 1

1
vð1� vÞ2

2N � 1
1 v2ð1� vÞ

� �

1 ec
2ð1� 1=ð2N � 1ÞÞð1� vÞ4

ð2N � 1Þ2 1
4v2ð1� vÞ2

2N � 1

� �

PðS 1/C 1Þ ¼
ð1� eÞð1� 1=N Þð1� 1=ð2N ÞÞc

N

1 ec
2ð1� 2=ð2N � 1ÞÞð1� 1=ð2N � 1ÞÞð1� vÞ4

2N � 1
1

4ð1� 1=ð2N � 1ÞÞvð1� vÞ3
2N � 1

� �

1 2ec 1� 1

2N � 1

� �
v2ð1� vÞ2

PðS 1/C 2Þ ¼ ð1� eÞ ð1� 1=ð2N ÞÞð1� cÞ
N

1
ð1� 1=ð2N ÞÞc

N 2

� �

1 2eð1� cÞ ð1� 1=ð2N � 1ÞÞð1� vÞ3
2N � 1

1
vð1� vÞ2

2N � 1
1 v2ð1� vÞ

� �

1 ec
4ð1� 1=ð2N � 1ÞÞð1� vÞ4

ð2N � 1Þ2 1
4vð1� vÞ3

ð2N � 1Þ2 1 4v3ð1� vÞ
� �
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PðS 1/C 3Þ ¼ ð1� eÞ ð1� 1=ð2N ÞÞð1� cÞ
N

1
ð1� 1=ð2N ÞÞc

N 2

� �

1 e2ð1� cÞ ð1� 1=ð2N � 1ÞÞð1� vÞ3
2N � 1

1
vð1� vÞ2

2N � 1
1 v2ð1� vÞ

� �

PðS 1/C 4Þ ¼ ð1� eÞ 1� c

4N 2 1
c

8N 3

� �
1 eð1� cÞ ð1� vÞ3

ð2N � 1Þ2 1 v3

� �

PðS 2/S 0Þ ¼ ð1� eÞ 1� 3

2N

� �
1� 1

N

� �
1� 1

2N

� �
c2

1 ec2 1� 3

2N � 1

� �
1� 2

2N � 1

� �
1� 1

2N � 1

� �
ð1� vÞ4

1 4ec2 1� 2

2N � 1

� �
1� 1

2N � 1

� �
vð1� vÞ3

PðS 2/S 1Þ ¼ ð1� eÞ 2ð1� 1=N Þð1� 1=ð2N ÞÞc2

N
1 2 1� 1

N

� �
1� 1

2N

� �
ð1� cÞc

� �

1 e
4ð1� 2=ð2N � 1ÞÞð1� 1=ð2N � 1ÞÞð1� vÞ4

2N � 1
1

8ð1� 1=ð2N � 1ÞÞvð1� vÞ3
2N � 1

�

1 4 1� 1

2N � 1

� �
v2ð1� vÞ2

�
c2

1 2eð1� cÞ 1� 2

2N � 1

� �
1� 1

2N � 1

� �
ð1� vÞ3 1 3 1� 1

2N � 1

� �
vð1� vÞ2

� �
c

PðS 2/S 2Þ ¼ ð1� eÞ 1� 1

2N

� �
ð1� cÞ2 1

ð1� 1=ð2N ÞÞcð1� cÞ
N

1
ð1� 1=ð2N ÞÞc2

2N 2

� �

1 e
2ð1� 1=ð2N � 1ÞÞð1� vÞ4

ð2N � 1Þ2 1
4v2ð1� vÞ2

2N � 1

� �
c2

1 e 1� 1

2N � 1

� �
ð1� vÞ2 1 2vð1� vÞ

� �
ð1� cÞ2

1 2ecð1� cÞ ð1� 1=ð2N � 1ÞÞð1� vÞ3
2N � 1

1
vð1� vÞ2

2N � 1
1 v2ð1� vÞ

� �

PðS 2/C 1Þ ¼
ð1� eÞð1� 1=N Þð1� 1=ð2N ÞÞc2

N

1 ec2 2ð1� 2=ð2N � 1ÞÞð1� 1=ð2N � 1ÞÞð1� vÞ4
2N � 1

1
4ð1� 1=ð2N � 1ÞÞvð1� vÞ3

2N � 1

� �

1 2ec2 1� 1

2N � 1

� �
v2ð1� vÞ2

PðS 2/C 2Þ ¼ ð1� eÞ ð1� 1=ð2N ÞÞc2

N 2 1
2ð1� 1=ð2N ÞÞð1� cÞc

N

� �

1 e
4ð1� 1=ð2N � 1ÞÞð1� vÞ4

ð2N � 1Þ2 1
4vð1� vÞ3

ð2N � 1Þ2 1 4v3ð1� vÞ
� �

c2

1 4ecð1� cÞ ð1� 1=ð2N � 1ÞÞð1� vÞ3
2N � 1

1
vð1� vÞ2

2N � 1
1 v2ð1� vÞ

� �
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PðS 2/C 3Þ ¼ ð1� eÞ ð1� 1=ð2N ÞÞc2

N 2 1
2ð1� 1=ð2N ÞÞð1� cÞc

N

� �

1 e
4ð1� 1=ð2N � 1ÞÞð1� vÞ4

ð2N � 1Þ2 1
4vð1� vÞ3

ð2N � 1Þ2 1 4v3ð1� vÞ
� �

c2

1 4eð1� cÞ ð1� 1=ð2N � 1ÞÞð1� vÞ3
2N � 1

1
vð1� vÞ2

2N � 1
1 v2ð1� vÞ

� �
c

PðS 2/C 4Þ ¼ ð1� eÞ ð1� cÞ2
2N

1
cð1� cÞ

2N 2 1
c2

8N 3

� �

1 e
ð1� vÞ2
2N � 1

1 v2

� �
ð1� cÞ2 1 2c

ð1� vÞ3
ð2N � 1Þ2 1 v3

� �
ð1� cÞ1 c2 ð1� vÞ4

ð2N � 1Þ3 1 v4

� �� �
:

Correlations in coalescent times: Here the correlations in coalescent times between the two loci are specified for the
modified Wright–Fisher population model. These are the correlations given that the ancestral process starts from one
of the three noncoalescent states S 0; S 1,or S 2 (Figure 3) and are obtained as a limit process in a large population (i.e.,
as N /‘). In what follows, let s0¼ corr(t1, t2 j S 0), s1¼ corr(t1, t2 j S 1), and s2¼ corr(t1, t2 j S 2). The different cases
depend on the values of the recombination-timescale parameter b (recombination is scaled as h ¼ cN b), and the
reproduction-timescale parameter a (the probability of modified Wright–Fisher sampling is e ¼ f/N a), and are of
course the same as those given for Y. Note that the correlation terms can be used to obtain Y using Equation 11 in
McVean (2002). Replacing h with h/2 and f with f/2 gives the formulas for Y in Table 2. The factor of 2 comes from
the timescale of 2N (in the case a $ 1) used in obtaining the correlation terms. Predictions of the models concerning
levels of linkage disequilibrium are independent of the different scaling of the parameters.

Only if 0 , a ¼ b # 1 the correlation terms are functions of all three parameters h, f, and v. If 0 , a ¼ b , 1 the
correlation terms are

s0 ¼
v2ð�2h2 1 fvð�6v2 1 11v� 8Þh 1 f2v2ð2v3 � 7v2 1 8v� 4ÞÞ

f2ð6v3 � 25v2 1 36v� 18Þv4 1 fhð6v3 � 27v2 1 44v� 26Þv2 1 2h2ðv2 � 2Þ

s1 ¼ �
v2ð2h2 1 3fvð2v2 � 5v 1 4Þh 1 f2v2ð3v2 � 8v 1 6ÞÞ

f2ð6v3 � 25v2 1 36v� 18Þv4 1 fhð6v3 � 27v2 1 44v� 26Þv2 1 2h2ðv2 � 2Þ

s2 ¼
v2ð�2h2 � fð6v3 � 17v2 1 12v 1 2Þh 1 f2v2ð6v3 � 25v2 1 36v� 18ÞÞ

f2ð6v3 � 25v2 1 36v� 18Þv4 1 fhð6v3 � 27v2 1 44v� 26Þv2 1 2h2ðv2 � 2Þ:

If a ¼ b ¼ 1 the correlation terms are s0 ¼ a0/d – 1, s1 ¼ a1/d – 1, and s2 ¼ a2/d – 1 in which

a0 ¼ ð2fv2 1 1Þð4f2ð11� 22v 1 16v2 � 4v3Þv4 1 4fð4v2 � 11v 1 11Þv2 1 8h2

1 2hð2fð8v2 � 18v 1 13Þv2 1 13Þ1 11Þ;

a1 ¼ 4f3ð3v2 � 8v 1 6Þv6 1 4f2ð6hv3 1 ð3� 15hÞv2 1 4ð3h� 2Þv 1 9Þv4

1 fðð8h2 1 2h 1 3Þv2 1 8ð3h� 1Þv 1 18Þv2 1 3;

a2 ¼ 2ð2fv2 1 1Þð2f2ð18� 36v 1 25v2 � 6v3Þv4 1 9fð2� vÞ2v2 1 4h2

1 2hðfð5v2 � 16v 1 14Þv2 1 7Þ1 9Þ;

d ¼ 4f3ð18� 36v 1 25v2 � 6v3Þv6 1 4f2ð27� 36v 1 17v2 � 3v3Þv4 1 9fðv2 � 4v 1 6Þv2

1 8h2ðfv2ð2� v2Þ1 1Þ1 2hð2f2ð26� 44v 1 27v2 � 6v3Þv4 1 fð52� 44v 1 11v2Þv2 1 13Þ1 9:

If 0 , a, b , 1, and b , a, the three correlation terms are all equal to v2/(2 – v2). If 0 , a, b , 1, and a , b, the
correlation terms are
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s0 ¼
4� 8v 1 7v2 � 2v3

18� 36v 1 25v2 � 6v3;

s1 ¼
1

3� 2v
;

and s2 ¼ 1. This is always the case when a , b or when both parameters are .1. In the case a ¼ 1 and b . 1,

s0 ¼
2f2ð2v3 � 7v2 1 8v� 4Þv4 1 fð�7v2 1 8v� 8Þv2 � 2

2f2ð6v3 � 25v2 1 36v� 18Þv4 � 9fðv� 2Þ2v2 � 9

s1 ¼
2fv2 1 1

2fð3� 2vÞv2 1 3
:

If a . 1 and 0 , b , 1, all three correlation terms ¼ 0.
If a . 1 and b ¼ 1, the results correspond to those obtained under standard Wright–Fisher sampling:

s0 ¼
2

9 1 26h 1 8h2

s1 ¼
3

9 1 26h 1 8h2

s2 ¼
9 1 2h

9 1 26h 1 8h2: ðA1Þ

If a . 1 and b . 1, s0 ¼ 2
9, s1 ¼ 1

3, and s2 ¼ 1.
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