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ABSTRACT

We present a new multilocus genotype method that makes inferences about recent immigration rates and
identifies the environmental factors that are more likely to explain observed gene flow patterns. It also
estimates population-specific inbreeding coefficients, allele frequencies, and local population FST’s and
performs individual assignments. We generate synthetic data sets to determine the region of the parameter
space where our method is and is not able to provide accurate estimates. Our simulation study indicates that
reliable results can be obtained when the global level of genetic differentiation (FST) is .1%, the number of
loci is only 10, and sample sizes are of the order of 50 individuals per population. We illustrate our method by
applying it to Pakistani human data, considering altitude and geographic distance as explanatory factors.
Our results suggest that altitude explains better the genetic data than geographic distance. Additionally, they
show that southern low-altitude populations have higher migration rates than northern high-altitude ones.

THE study of dispersal processes is an essential
problem in ecology, population genetics, conser-

vation, and management of wildlife. For this reason, the
estimation of migration rates has been one of the most
investigated problems in population biology. Migration
parameters can be directly estimated using ecological
approaches such as mark-release-recapture methods but
they are not applicable to the study of large or extended
metapopulations. In these cases, population genetics
approaches provide a better alternative because the in-
formation contained in DNA can provide gene flow
parameter estimates for different and complementary
timescales. Methods based on coalescent theory provide
long-term migration rates because they use the genea-
logical information contained in a sample of genes (e.g.,
MIGRATE, Beerli and Felsenstein 2001). On the
other hand, methods based on multilocus genotypes
(e.g., BAYESASS, Wilson and Rannala 2003) provide
estimates of recent immigration rates by extracting the
gametic disequilibrium signal generated by immigrant
individuals or their descendants.

Besides simply estimating migration rates, it is very
important to identify the biotic and/or abiotic factors
that influence them. This can be done by first obtaining
gene flow estimates and then searching for correlations
between them and various environmental variables (e.g.,
Giordano et al. 2007). Such an approach requires the
use of summary statistics that do not take advantage of all
the information contained in genetic data. An alterna-

tive approach is to implement the joint analysis of
genetic and nongenetic data. Several current methods
that combine both genetic and geographic data can
be used to detect recent migrants (e.g., GENELAND,
Guillot et al. 2005; TESS, Francxois et al. 2006) but they
do not take into account other environmental factors.

In previous studies we presented methods that use
genetic and environmental data to study colonization
processes (Gaggiotti et al. 2002, 2004) and population
genetic structure (Foll and Gaggiotti 2006). These
approaches based on hierarchical Bayesian methods
(e.g., Gelman et al. 1995) estimate the probability that a
given environmental factor influences the parameters of
interest (e.g., composition of colonizing groups or local
population FST’s) because they explicitly model the
relationship between them and the relevant ecological
factors. In this article we present a new multilocus
genotype method for inferring recent immigration rates
and identifying the environmental factors that best ex-
plain observed gene flow patterns. We use a hierarchical
Bayesian approach that introduces nongenetic data
through the prior distribution of the migration rates.
Following Wilson and Rannala’s (2003) approach we
implement the estimation of inbreeding coefficients to
allow for departures from Hardy–Weinberg equilibrium
within local populations. Finally, the method infers the
population ancestry of individuals by assigning their
alleles to populations from which they originated. We
carry out a simulation study to identify the region of
parameter space where the method is and is not able to
provide accurate posterior estimates. We also illustrate
our method with a real data example.
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DATA AND MODEL PARAMETERS

Inferring migration rates from genetic data: The
method is based on a population genetics model that
differs from that used by Wilson and Rannala (2003).
More specifically, instead of assuming that sampling
takes place right after migration, we consider that this is
done after reproduction and before migration. Let us
consider a metapopulation of a diploid species with
nonoverlapping generations that is subdivided into I
demes that can exchange migrants. Let X ¼ ðXhl Þ be
the observed multilocus genotypes of n individuals
scored at L marker loci, where Xhl denotes the genotype
of individual h at locus l. We assume that ni individuals
were sampled from population i and use the vector
S ¼ ðShÞ to identify the population Sh where the in-
dividual h was sampled from.

Population allele frequencies are given by a matrix p
composed of vectors pil ¼ ðpilaÞ that give the frequency
of allele a at locus l for population i. Following Falush

et al. (2003), we consider a model with correlated allele
frequencies based on the approach introduced by
Balding and Nichols (1995). Thus, we assume that
before the last generation, the population was at
migration–drift equilibrium so that allele frequencies
in each population are determined by the global allele
frequencies in the metapopulation as a whole, p̃l ¼ ðp̃laÞ,
and the degree of genetic differentiation between each
local population and the overall metapopulation, u ¼ ðuiÞ,
where ui ¼ 1=F i

ST � 1. Finally, to allow departures from
Hardy–Weinberg equilibrium, we introduce population-
specific inbreeding coefficients F ¼ ðFiÞ, where Fi is the
inbreeding coefficient for population i. Thus, we con-
sider two levels of inbreeding, one at the population
level corresponding to FST and another one at the in-
dividual level, corresponding to FIS.

Instead of focusing directly on individual migration
rates, we consider the probability that genes in a deme
originated in another one over the last generation.
Thus, migration is described by a matrix m ¼ ðmijÞ,
where mij is the probability that alleles in population i
came from population j during the previous generation.
The ancestral state of the individuals is described by a
matrix M ¼ ðMhÞ, where Mh ¼ ði; jÞ is a two-element
vector identifying the source demes (i and j) for the two
alleles of individual h. All possible ancestry states are
considered: both alleles come from the deme where the
individual was sampled, or both come from another
deme, or they come from two different ones. Thus,
migration rates for individuals are obtained as

m̃ijk ¼
m2

ij if j ¼ k

2mij mik if j 6¼ k
; j # k;

(
ð1Þ

where m̃ijk is the probability that individuals sampled
from population i belong to the ancestry class ( j, k).
Note that our approach estimates migration rates only
over the last generation. Moreover, as opposed to Wilson

and Rannala (2003) migration rates vary freely in the
interval (0, 1) and do not have to be small.

The model parameters described above (p; p̃; u;F;
M;m) are estimated from the genetic data using a
Bayesian approach and Markov chain Monte Carlo
(MCMC) techniques.

Likelihood: The likelihood is the probability of the ob-
served genotypes given model parameters and is con-
structed by defining the probability of observing the
genotype of individual h at locus l in terms of the
ancestry classes. We note these genotypes Xhl ¼ ðXhl1;
Xhl2Þ, where Xhlc is the allele observed at locus l in chro-
mosome c ¼ 1, 2 of individual h. Thus, individual h ge-
notype likelihood at locus l is given by

PrðXhl jMh ;F;pÞ ¼
fðXhl ; iÞ if Mh ¼ ði; iÞ
pilXhl1 pjlXhl2 1 gpjlXhl1 pilXhl2 if Mh ¼ ði; jÞ;

�

(2)

where

fðXhl ; iÞ ¼
ð1� FiÞp2

ilXhl1
1 FipilXhl2 if Xhl1 ¼ Xhl2

2ð1� FiÞpilXhl1 pilXhl2 otherwise

(
ð3Þ

and

g ¼ 0 if Xhl1 ¼ Xhl2

1 otherwise:

�
ð4Þ

The first case considered in Equation 2 corresponds
to the scenario where both alleles originated in the same
source population, in which case we need to take into
account possible deviations from Hardy–Weinberg equi-
librium (see Equation 3). The second case considers
that the individual is the descendant of parents that
come from two different source populations, in which
case we need to take into account that there are two
different ways of assigning the alleles to the parents.

If we assume that individuals were sampled at random
and loci are unlinked, then the likelihood of the whole
sample is obtained by multiplying across all loci and
individuals,

PrðX jM;F;pÞ ¼
Yn

h¼1

YL
l¼1

PrðXhl jMh;F;pÞ: ð5Þ

This likelihood can be used as the basis for inference
using a Bayesian approach.

Combining genetic and environmental data: One can
expect that migration patterns are influenced by envi-
ronmental factors such as population densities, distan-
ces between local populations, etc. To identify which
environmental factors have influenced gene flow we use
Gaggiotti et al.’s (2004) approach. Let us suppose that
our knowledge of the species under study leads us to
think that R environmental factors G ¼ ðG ðrÞÞ may
influence the migration process. We can then introduce
their effect through the prior distribution of gene mi-
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gration rates. More specifically, we focus on the ancestry
of immigrant alleles by conditioning on not being a
resident allele

mw
ij ¼

mij

1� mii
ð6Þ

and assume that the vector mw
i ¼ ðmw

ij Þj 6¼i follows a
Dirichlet distribution; i.e., mw

i j ci � DirðciÞ, where ci ¼
ðcijÞj 6¼i are shape parameters for the Dirichlet distribu-
tion. Furthermore, we assume that each shape parameter
cij follows a lognormal distribution; i.e., for each pair of
distinct populations i 6¼ j

log cij � Nðmij ;s
2Þ; ð7Þ

where the mean mij is given by the generalized linear
regression

mij ¼ a0 1
X

r

ar G
ðr Þ
ij 1

X
r ,s

arsG
ðr Þ
ij G

ðsÞ
ij ; ð8Þ

where ar denotes the effect of environmental factor r
and ars denotes the effect of first-order interactions
between factors r and s; these parameters are collected
into a single vector a ¼ ðar ; arsÞ. The sign and the mag-
nitude of the a’s tell us about the direction and the
strength of the environmental factors. Finally, s2 is
the amount of variation that remains unexplained by
the regression and G ðrÞij is the observed value for factor r,
which is hypothesized to influence migration between
populations i and j. To reduce posterior correlation
and to simplify prior elicitation and posterior interpre-
tation process, explanatory factors are normalized
before analysis so that they have zero mean and variance
one.

By excluding different regression terms we can define
different alternative models. We note, however, that as
opposed to previous applications of this approach (cf.
Gaggiotti et al. 2004; Foll and Gaggiotti 2006), the
intercept a0 is included in all models because it takes
into account the effect of factors that act at a geographic
scale larger than that of the metapopulation under
study (see discussion for more details).

Other priors: We assume that there is no prior infor-
mation on the shape of the other parameters and,
therefore, adopt the vague priors that are given in the
appendix. Note that in the particular case of the prob-
ability to observe nonmigrant genes (i.e., mqq), we adopt
a uniform prior between 0 and 1 because, although
some environmental factors may influence whether or
not an individual decides to emigrate, our method is
aimed at estimating immigration rates and, therefore,
cannot take into account this possibility.

Posterior distribution: The model is now expressed in
terms of parameters Q ¼ ðp; p̃; u;F;M;m;c;a;s2Þ and
the corresponding posterior distribution is given by
Bayes’ rule:

ð9Þ

The full model is represented by the directed acyclic
graph (DAG) in Figure 1.

The posterior distributions of parameters given in
Equation 9 are estimated using MCMC methods that
are described in the supplemental information.

Posterior model probabilities: Besides estimating
migration rates our method is aimed at identifying the
environmental factors influencing gene flow. As we
mentioned before, several alternative models can be
obtained from the full regression (8) by canceling ele-
ments of the vector a. Note that models that include first-
order interactions between factors r and s are allowed
only if both factors are included. Thus for modelM, the
corresponding posterior distribution is given by

Figure 1.—The DAG for the model given in Equation 9.
Square nodes denote known quantities (i.e., data) and circles
represent model parameters to be estimated. Arrows between
nodes represent direct stochastic relationships within the
model. The variables within each node correspond to model
parameters discussed in the text.
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f ðQM jX; S;GÞ
} PrðX jM; F; pÞPrðM j S; mÞf ðFÞf ðp j p̃; uÞf ðp̃Þf ðuÞ

3 f ðm jcÞf ðc jaM; s2; GÞf ðaMÞf ðs2ÞPrðMÞ;
ð10Þ

where QM is the parameter vector under modelM, aM
is the corresponding regression vector, and PrðMÞ
denotes prior model probability. Posterior model prob-
abilities are estimated using the reversible-jump (RJ)
MCMC approach (Green 1995, detailed in supplemen-
tal information). Here we note only that one of the
problems faced when estimating posterior model prob-
abilities is that the prior for s2

a can have a large effect on
the estimates. When very vague priors are used, more
posterior weight is placed on the model with the fewest
parameters. This is the well-known Jeffreys–Lindley
paradox (Robert 1994). This problem was avoided by
first running an MCMC of the full model with vague
priors and then using the posterior estimates of the a’s
as informative priors for a new MCMC run.

SIMULATION STUDY

We evaluated the sensitivity of our method by gener-
ating synthetic data under a particular scenario in which
gene flow is influenced by two factors. We considered
various levels of genetic differentiation and migration
rates. We are interested in the ability of our algorithm to
find the correct scenario and to provide accurate pos-
terior estimates for migration rates (with corresponding
fairly narrow highest posterior density intervals, HPDI).

Generation of synthetic data: We simulated data
following the inference model presented in Figure 1.
We initially considered a scenario with I¼ 4 populations,
each with local population sizes of Ni¼ 5000 individuals.
The sample size per population was ni ¼ 100 and we
assumed that each sampled individual was scored for
L ¼ 10 polymorphic loci, each with K ¼ 10 alleles.

Generating migration rates from environmental factors:
We consider two environmental factors that could be,
for example, geographic distance (G 1) and population
density (G 2). The pairwise geographic distances were
generated using a standard normal distribution. The
pairwise differences in population density were generated
by first filling the top triangular matrix with values drawn
from a standard normal and then filling the bottom
triangular matrix with the opposite values. This procedure
is equivalent to standardizing the observed pairwise
differences in environmental factors before analysis.

To generate the migration matrix, we first chose the
values for the diagonal elements (proportion of non-
migrant genes) and then we calculated the values for the
nondiagonal elements (immigration rates) using the
following procedure. We set a1 ¼ �0.9, a2 ¼ 1.1, and
a12 ¼ 0 (i.e., no interaction effect) and calculated mij’s
using Equation 8. Assuming no deviation from the linear

regression (i.e., s2 ¼ 0), we set cij ¼ emij . Finally we
computed the means E ½mw

ij jci � ¼ cij=
P

j 6¼i cij of the
Dirichlet distribution used for the migration rates
(Equation A2) and rescaled them so that they added
up to 1 � mii.

Genetic data: To generate multilocus genotypes with a
given level of genetic differentiation, we need to generate
parametric allele frequencies. This task was performed
using Balding and Nichols’ (1997) sampling formula
for FST. According to this formula, genes are sampled one
by one during an iterative process. The probability that
the next gene sampled is a after having sampled n genes
of which na correspond to allele a is given by

paðna ;nÞ ¼
naFST 1 ð1� FSTÞpa

1 1 ðn � 1ÞFST
; ð11Þ

where pa is the global frequency of allele a in the
metapopulation.

To generate the parametric allele-frequency distribu-
tion of each locus in any given local population for a
given FST value, we first sample an allele at random from
the metapopulation allele-frequency distribution and
then use Equation 11 to calculate the probability distri-
bution for the type of the allele that will be sampled
next. Using this distribution we obtain the next allele.
This process is repeated iteratively until we obtain the
2Ni alleles present in local population i. We used uni-
form allele frequencies for the metapopulation.

Large departures from the target FST value were
avoided by using the following iterative process. We
generated the local population’s allele-frequency distri-
butions and calculated the global and pairwise FST’s. If
one or more of these values were not within 10% of the
target value we discarded the allele frequencies and
generated new ones. If the new allele frequencies sat-
isfied the requirement, we generated the genotypes;
otherwise we continued this iterative procedure until
the constraint was satisfied. This procedure was used to
control for the effect of genetic differentiation on the
performance of the method.

Using the gene migration rates calculated above, we
obtained the proportion of migrant individuals in each
population using Equation 1. Multilocus genotypes for
each local population were generated assuming Hardy–
Weinberg equilibrium. Genotypes of nonmigrant indi-
viduals were obtained by drawing two alleles from the
local population allele-frequency distribution. For the
migrant individuals with both parents coming from
the same local population, the genotype was obtained by
drawing two alleles at random from the parents’ source
population. For migrant individuals with parents com-
ing from different source populations, we sampled one
allele from the source population of each parent.
Finally, samples were generated by drawing ni individu-
als from each local population, keeping track of the
ancestry of both alleles for each sampled individual.
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Implementation details: Each MCMC was run for
1,030,000 iterations. The first 20,000 iterations consist
of short pilot runs used to tune up the proposal distri-
butions to obtain acceptance rates between 25 and 45%.
The next 10,000 iterations were discarded as burn-in and
the remaining observations were sampled every 100 itera-
tions, giving a sample size of 10,000 for each analysis.

To take into account model uncertainty, parameters
are estimated using Bayesian model-averaging methods.
The only exception to this rule are the regression pa-
rameters, which are model specific and, therefore, were
estimated using the subset of values corresponding to
the model with the highest posterior probability. Finally,
posterior model probabilities are obtained by observing
the number of times the chain visits each alternative model.

Posterior estimates are based on the sample mean
except for the deviation from the regression s2, which
usually has a highly asymmetric posterior distribution.
In this latter case we used the posterior mode, which was
estimated using kernel density estimation.

We investigated the effect of varying three parame-
ters: the level of genetic differentiation, FST ¼ {0.01,
0.05, 0.10, 0.25}; the proportion of nonmigrant alleles,
mii¼ {0.7, 0.9}; and the number of populations, I¼ {4, 6}.

For each parameter set we generated 10 independent
genetic data sets as described above. The results we
present below are averages across these 10 replicates. As
a measure of accuracy we also present the relative mean
square errors (RMSE).

Results: We investigated the performance of our
method to provide reliable estimates under different
scenarios of migration and genetic differentiation and
number of populations studied. We consider first the
effects on model determination, and then we address
the influence on migration rate estimates and finally on
individual assignments.

When the immigration rate is high (mii ¼ 0.7; see
Table 1), estimates of posterior model probabilities are
strongly influenced by the degree of genetic differenti-
ation (FST). When differentiation is low (FST¼ 0.01), the
method fails to identify the model used to generate the
synthetic data. However, the correct model is identified
when FST . 0.01, and, moreover, its posterior model
probability increases steadily with increasing genetic
differentiation. The estimation of regression parame-
ters is also influenced by the magnitude of FST but to a
lesser degree. The RMSE decreases with increasing
genetic differentiation but the bias is largely unaffected.

TABLE 1

Posterior estimates for various levels of genetic differentiation and high gene flow

FST

Factors included 0.01 0.05 0.10 0.25

None 0.621 0.073 0.026 0.015
G1 0.142 0.061 0.028 0.016
G2 0.170 0.184 0.082 0.052
G1 and G2 0.045 0.472 0.637 0.701
With interaction 0.022 0.210 0.227 0.216

Estimate/RMSE/95% HPDI

Parameter True value 0.01 0.05 0.10 0.25

a1 �0.900 a �0.921 �0.974 �0.945
0.057 0.027 0.003

(�1.754; �0.097) (�1.639; �0.324) (�1.503; �0.370)
a2 1.100 a 1.137 1.178 1.149

0.013 0.011 0.002
(0.285; 2.068) (0.504; 1.869) (0.554; 1.745)

s2 — 0.389 0.426 0.355 0.306
— — — —

(0.120; 1.159) (0.121; 2.858) (0.106; 2.010) (0.107; 1.578)

Assignments 0.01 0.05 0.10 0.25

Misassignments 0.754 0.280 0.110 0.002
Probabilitiesb 0.223 0.700 0.883 0.996

Posterior model probabilities, regression parameter mean estimates, and assignment accuracy for synthetic
data generated with proportions of nonmigrant alleles set to mii ¼ 0.70 are shown.

a The regression parameter is not included in the model with the highest posterior model probability.
b Maximum posterior assignment probabilities averaged across all individuals.
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Thus, it is the accuracy of the estimates (as illustrated by
the HPDIs) that is influenced by FST. The proportion of
the variance that remains unexplained by the model, s2,
decreases as genetic differentiation increases.

Decreasing the immigration rate (mii ¼ 0.90) has a
detrimental effect on estimates (Table 2). Although the
true model is correctly identified for FST . 0.01, its
posterior probability is lower than that observed when
mii ¼ 0.70. Estimates of regression parameters are more
biased and less accurate (wider HPDIs), leading to
higher RMSEs. Also, the proportion of the variance that
remains unexplained, s2, is larger. Note, however, that
as was the case before, the quality of all estimates im-
proves with increasing genetic differentiation.

Increasing the number of populations studied (I¼ 6)
improves model determination (Table 3). More precisely,
the posterior probability of the true model is strongly
increased and the proportion of variance that remains
unexplained decreases sharply (see Table 3 and last
columns of Tables 1 and 2). However, the effect on the
quality of the regression parameter estimates is some-
what decreased since the bias and the RMSE increase.
Nevertheless, the width of the HPDIs decreases, in-
dicating that the precision increases.

Estimates of gene migration rates improve with in-
creasing genetic differentiation (Table 4). The bias de-
creases sharply between FST ¼ 0.01 and 0.1 and then
remains very low. Note that the only cases where the
HPDI does not include the true value correspond to the
case with the weakest genetic differentiation (FST¼ 0.01).
When the number of nonmigrant genes decreases we
observe the same pattern but in this case the number of
estimates for which the HPDIs do not include the true
value is smaller and corresponds only to the estimates of
nonmigrant proportions (Table 5).

In terms of posterior individual assignments, increas-
ing genetic differentiation improves the quality of the
estimation (see the bottom three rows of Tables 1 and 2).
That is, the proportion of individuals that are misas-
signed decreases while the average posterior assignment
probability increases. Decreasing the proportion of mi-
grant genes also improves the quality of assignments; the
proportion of misassignments decreases and the average
posterior probabilities with which individuals are as-
signed increase. The effect of varying the number of
populations is very small, being somewhat more distin-
guishable when the proportion of nonmigrants is larger
(see bottom three rows of Tables 1–3).

TABLE 2

Posterior estimates for various levels of genetic differentiation and low gene flow

FST

Factors included 0.01 0.05 0.10 0.25

None 0.444 0.106 0.056 0.028
G1 0.122 0.072 0.055 0.030
G2 0.291 0.301 0.122 0.073
G1 and G2 0.075 0.323 0.521 0.638
With interaction 0.068 0.197 0.246 0.231

Estimate/RMSE/95% HPDI

Parameter True value 0.01 0.05 0.10 0.25

a1 �0.900 a �0.858 �1.122 �1.010
0.123 0.101 0.015

(�1.984; 0.263) (�2.091; �0.191) (�1.723; �0.321)
a2 1.100 a 1.403 1.314 1.173

0.127 0.071 0.008
(0.197; 2.687) (0.387; 2.279) (0.473; 1.886)

s2 – 0.486 0.513 0.452 0.352
— — — —

(0.131; 3.067) (0.125; 4.117) (0.120; 3.090) (0.110; 1.956)

Assignments 0.01 0.05 0.10 0.25

Misassignments 0.808 0.134 0.046 0.002
Probabilitiesb 0.288 0.847 0.946 0.997

Posterior model probabilities, regression parameter mean estimates, and assignment accuracy for synthetic
data generated with proportions of nonmigrant alleles set to mii ¼ 0.90 are shown.

a The corresponding regression parameter is not included in the model with the highest posterior model
probability.

b Maximum posterior assignment probabilities averaged across all individuals.
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We also investigated what is the effect of using ex-
plicative variables that are different from the ones used
to generate the synthetic data. The results (Table 6)
show that the highest posterior probability is assigned
to the null model, which indicates that the method does
not wrongly identify as important factors that are not
responsible for the observed migration pattern.

It is also important to investigate the effect of the
amount of data used for the estimation, which can be
characterized by the sample sizes and number of loci
scored. The effect of decreasing the sample size from 100
to 50 individuals per population does not have much of
an effect on posterior model probabilities while estimates
of regression parameters have a slightly larger bias and
wider HPDIs leading to somewhat larger RMSEs (com-
pare last column of Table 1 with Table 7). Migration rate
estimates show no increase in bias but their HPDIs are
larger (compare Tables 8 and 9). Finally, the quality of
the assignments is barely influenced by a decrease in the
sample sizes (compare Tables 1 and 7). The effect of
increasing the number of loci scored from 10 to 20 does
not have an effect on model determination, estimates of
regression parameters, and migration rates when the

level of genetic differentiation is moderate (FST ¼ 0.1)
(results not shown). The only result that changes is the
proportion of individuals that are misassigned, which
decreases from 0.002 to 0. We also carried out analysis of a

TABLE 3

Posterior estimates for the scenario with six populations

FST ¼ 0.25

Factors included mii ¼ 0.70 mii ¼ 0.90

None 0.000 0.000
G1 0.000 0.000
G2 0.000 0.001
G1 and G2 0.915 0.883
With interaction 0.085 0.116

Estimate/RMSE/95%HPDI

Parameter True value mii ¼ 0.70 mii ¼ 0.90

a1 �0.900 �1.056 �1.022
0.031 0.022

(�1.416; �0.707) (�1.521; �0.537)
a2 1.100 1.244 1.246

0.018 0.018
(0.960; 1.531) (0.856; 1.659)

s2 — 0.164 0.213
— —

(0.080; 0.381) (0.096; 0.566)

Assignments mii ¼ 0.70 mii ¼ 0.90

Missassignments 0.010 0.002
Probabilitiesa 0.985 0.997

Model determination, regression parameters, mean esti-
mates, and assignment accuracy for synthetic data when vary-
ing nonmigrant gene proportions mii.

a Maximum posterior assignment probabilities averaged
across all individuals.

TABLE 4

Migration estimates for various levels of genetic
differentiation and high migration rate

Migration
rate

FST

True value 0.01 0.05 0.10 0.25

m11 0.700 0.355a 0.663 0.702 0.710
m12 0.023 0.173 0.036 0.021 0.020
m13 0.003 0.222a 0.007 0.002 0.002
m14 0.274 0.250 0.293 0.275 0.269
m21 0.018 0.184 0.027 0.021 0.020
m22 0.700 0.359a 0.656 0.720 0.710
m23 0.227 0.252 0.240 0.213 0.220
m24 0.055 0.205 0.076 0.047 0.050
m31 0.259 0.224 0.291 0.273 0.256
m32 0.028 0.252a 0.029 0.027 0.025
m33 0.700 0.336a 0.662 0.689 0.704
m34 0.013 0.188a 0.020 0.010 0.014
m41 0.149 0.243 0.151 0.136 0.142
m42 0.081 0.211 0.111 0.085 0.079
m43 0.070 0.185 0.074 0.061 0.064
m44 0.700 0.362a 0.664 0.719 0.715

Posterior estimates averaged across analyses of 10 simulated
data sets with proportions of nonmigrant alleles set to mii ¼
0.70 are shown.

a The 95% HPDI does not contain the true value.

TABLE 5

Migration estimates for various levels of genetic
differentiation and high migration rate

Migration
rate

FST

True value 0.01 0.05 0.10 0.25

m11 0.700 0.407a 0.867 0.910 0.910
m12 0.023 0.232 0.014 0.006 0.006
m13 0.003 0.182 0.004 0.001 0.001
m14 0.274 0.179 0.115 0.083 0.084
m21 0.018 0.209 0.008 0.005 0.005
m22 0.700 0.428a 0.890 0.901 0.905
m23 0.227 0.197 0.088 0.078 0.075
m24 0.055 0.165 0.014 0.016 0.014
m31 0.259 0.244 0.098 0.087 0.086
m32 0.028 0.170 0.009 0.009 0.010
m33 0.700 0.449a 0.882 0.901 0.900
m34 0.013 0.137 0.012 0.004 0.005
m41 0.149 0.165 0.046 0.042 0.043
m42 0.081 0.181 0.033 0.025 0.023
m43 0.070 0.181 0.056 0.020 0.019
m44 0.700 0.473a 0.865 0.913 0.915

Posterior estimates averaged across analyses of 10 simulated
data sets with proportions of nonmigrant alleles set to mii ¼
0.90 are shown.

a The corresponding 95% HPDI does not contain the true
value.
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scenario with FST ¼ 0.05 and in this case, increasing
the number of loci from 10 to 20 decreased the width of
the HPDIs for migration rate estimates and improved the
accuracy of individual assignments. APPLICATION TO REAL DATA

We use the human genome diversity cell line panel–
Centre d’Etude du Polymorphisme Humain (HGDP–
CEPH) presented by Cann et al. (2002) to illustrate how
our method can be used to make inferences about the

TABLE 6

Posterior model estimates when testing for
nonexplanatory factors

FST

Factors included 0.01 0.05 0.10 0.25

None 0.636 0.533 0.512 0.505
G1 0.127 0.224 0.243 0.241
G2 0.184 0.157 0.151 0.158
G1 and G2 0.039 0.065 0.071 0.076
With interaction 0.013 0.022 0.022 0.021

FST

Assignments 0.01 0.05 0.10 0.25

Misassignments 0.741 0.282 0.110 0.002
Probabilities 0.218 0.694 0.881 0.996

Posterior model probabilities and assignment accuracy
when varying the level of genetic differentiation FST and test-
ing for two nonexplanatory factors (i.e., different from the
ones we used for generating migration rates) are shown. Data
were simulated with proportions of nonmigrant alleles set to
mii ¼ 0.70.

TABLE 7

Model estimates when sampling
50 individuals per population

Factors included Posterior probabilities

None 0.021
G1 0.021
G2 0.074
G1 and G2 0.651
With interaction 0.233

Parameter True value
Estimate/RMSE/

95%HPDI

a1 �0.900 �0.960
0.008

(�1.608; �0.322)
a2 1.100 1.208

0.014
(0.536; 1.909)

s2 – 0.349
(0.108; 1.922)

Assignments

Misassignments 0.008
Probabilities 0.989

Posterior model probabilities, regression parameter mean
estimates, and assignment accuracy for synthetic data gener-
ated with proportions of nonmigrant alleles set to mii ¼
0.70 and level of genetic differentiation set to FST ¼ 0.25
are shown.

TABLE 8

Migration estimates when sampling
50 individuals per population

Parameter
True
value

Posterior
estimate RMSE 95% HPDI

m11 0.700 0.702 ,0.001 (0.612; 0.790)
m12 0.023 0.026 0.043 (0.003; 0.056)
m13 0.003 0.002 0.070 (0.000; 0.010)
m14 0.274 0.270 0.001 (0.185; 0.356)
m21 0.018 0.011 0.149 (0.000; 0.029)
m22 0.700 0.722 0.001 (0.632; 0.808)
m23 0.227 0.220 0.001 (0.142; 0.301)
m24 0.055 0.047 0.025 (0.013; 0.086)
m31 0.259 0.238 0.007 (0.158; 0.322)
m32 0.028 0.026 0.030 (0.003; 0.055)
m33 0.700 0.725 0.001 (0.637; 0.811)
m34 0.013 0.011 0.033 (0.000; 0.028)
m41 0.149 0.136 0.008 (0.074; 0.201)
m42 0.081 0.075 0.006 (0.031; 0.124)
m43 0.070 0.067 0.001 (0.025; 0.115)
m44 0.700 0.721 0.001 (0.634; 0.808)

Estimates based on the posterior mean, RMSE, and 95%
HPDI are reported for synthetic data generated with propor-
tions of nonmigrant alleles set to mii ¼ 0.70 and the level of
genetic differentiation set to FST ¼ 0.25.

TABLE 9

Migration rate estimates when sampling
100 individuals per population

Parameter
True
value

Posterior
estimate RMSE 95% HPDI

m11 0.700 0.710 ,0.001 (0.647; 0.772)
m12 0.023 0.020 0.018 (0.004; 0.038)
m13 0.003 0.002 0.218 (0.000; 0.006)
m14 0.274 0.269 ,0.001 (0.208; 0.323)
m21 0.018 0.020 0.014 (0.005; 0.038)
m22 0.700 0.710 ,0.001 (0.647; 0.772)
m23 0.227 0.220 0.001 (0.165; 0.277)
m24 0.055 0.050 0.009 (0.023; 0.079)
m31 0.259 0.256 ,0.001 (0.198; 0.317)
m32 0.028 0.025 0.009 (0.007; 0.046)
m33 0.700 0.704 ,0.001 (0.640; 0.766)
m34 0.013 0.014 0.013 (0.002; 0.029)
m41 0.149 0.142 0.002 (0.097; 0.190)
m42 0.081 0.079 0.001 (0.045; 0.115)
m43 0.070 0.064 0.007 (0.033; 0.098)
m44 0.700 0.715 ,0.001 (0.652; 0.777)

Estimates based on the posterior mean, RMSE, and 95%
HPDI are reported for synthetic data generated with propor-
tions of nonmigrant alleles set to mii ¼ 0.70 and the level of
genetic differentiation set to FST ¼ 0.25.
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factors influencing migration patterns. In our example
we selected a subset of eight populations, all from
Pakistan (see Figure 2), corresponding to 200 individ-
uals (25 per population). We grouped together the
Balochi and Brahui samples because the STRUCTURE
analyses carried out by Rosenberg et al. (2002) place
them in the same genetic cluster (see their Figure 2).
Also, instead of using all 377 loci we did a first screening
using an improved version of Beaumont and Balding’s
(2004) method to identify outlier loci that could be
influenced by selection. On the basis of this screening we
selected a total of 247 loci that were used in the analysis.

The effect of distance is supposed to be one of the
main factors in determining gene flow in many species,
but other factors such as altitude can influence geo-
graphic isolation and, therefore, migration patterns. We
use our method to evaluate the relative importance of
these two factors. We obtained pairwise geographic
distances from latitude and longitude coordinates and
also calculated the difference in altitude between each
focal population and all other populations. Cann et al.
(2002) give the geographic coordinates of each popula-
tion as sample intervals; thus we used the gravity center of
the area for the calculation of geographic distances be-
tween populations. With two parameters we can define
five alternative models, which are presented in Table 10.

As was the case for the simulation study we used short
pilot runs to tune up the proposal distributions to achieve
reasonable acceptance ratios. To ensure convergence we
increased the burn-in to 106 and the sample size to 20,000
and used a thinning interval of 50 iterations.

Some of the population-specific FST values are ,0.01
(see Table 11), the level of genetic differentiation that
our simulation study identified as problematic for the

estimation of parameters. This example, therefore,
provides us with an opportunity to illustrate the prob-
lems that may arise when our method (or any other
MCMC-based method) is used in scenarios with weak
genetic differentiation. In these situations, it is neces-
sary to run many independent replicates and compare
their results; in the present case we used 10 runs. In 6 of

Figure 2.—Geographic locations of sampled populations.
Solid circles represent centers of gravity of sampled areas of
Pakistan. Abbreviations for population names are as follows:
Ba, Balochi; Br, Brahui; Bu, Burusho; Ha, Hazara; Ka, Kalash;
Ma, Makrani; Pa, Pathan; Si, Sindhi.

TABLE 10

Posterior model probabilities for the Pakistani human data set

Factors
included

Estimate/95% HPDI

Pr(M) a1 a2 a3

None 0.064
Distance 0.093 �0.756

(�2.88; 0.417)
Altitude 0.550 �1.74

(�3.35; 0.338)
Distance and

altitude
0.232 �0.469 �1.55

(�2.95; 0.639)(�2.91; 0.747)
With

interaction
0.061 �0.524 �1.64 0.302

(�2.66; 0.71) (3.4; 0.599) (�1.2; 1.44)

Posterior model probabilities for the human data set when
considering geographic distances and differences in altitudes
as environmental factors are shown. Posterior estimates for re-
gression parameters are based on the mode and 95% HPDI.
The maximum a posteriori estimate of s2 is 0.657 with the 95%
HPDI ranging from 0.089 to 11.1.

TABLE 11

Local population FST’s and inbreeding coefficient
for Pakistani populations

Mean/mode/95% HPDI

Population FST F

Ba/Br 0.010 0.091
0.010 0.099

(0.006; 0.015) (0.042; 0.132)
Bu 0.009 0.010

0.009 0.009
(0.005; 0.013) (10�5; 0.033)

Ha 0.015 0.0155
0.015 0.0156

(0.010; 0.020) (10�5; 0.040)
Ka 0.048 0.014

0.049 0.0133
(0.040; 0.058) (10�6; 0.037)

Ma 0.007 0.116
0.007 0.105

(0.001; 0.016) (0.065; 0.195)
Pa 0.009 0.0917

0.008 0.0904
(0.003; 0.015) (0.046; 0.142)

Si 0.017 0.0579
0.016 0.0586

(0.009; 0.028) (0.005; 0.125)

Estimates are based on the posterior mean and mode.
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them, the most probable model included altitude only
and in all cases there was a posterior probability of at
least 50%. The second most probable model included
both factors. However, in 4 other runs two other models,
one including distance only and the other including
both distance and altitude, gave similar high posterior
probabilities while the model including altitude only
was ranked third. Given these results, we followed
Faubet et al. (2007) and chose the run with the lowest
deviance for estimation purposes. The Bayesian devi-
ance has been proposed as a measure of model fit by a
number of authors (Faubet et al. 2007 and references
therein) and in our specific case we considered the
assignment component of the total deviance, Dassign ¼
�2 log PrðM j S ; mÞ. Table 10 presents these results. The
model with the highest posterior probability includes
altitude only and the second most probable model
includes both altitude and distance. In this latter case,
the regression coefficients for the effects of altitude and
distance are both negative, indicating that, as expected,
both factors decrease migration rates between popula-
tions. Note, however, that the former seems to have a
stronger effect (i.e., larger absolute value).

Table 12 presents the mode and HPDI of migration
rates between populations. Although the sum of max-
imum posterior estimates does not necessarily add up to
one, we used them as estimators because of the inherent
asymmetry of migration rate posterior distributions.
There are three populations that do not receive mi-
grants (Burusho, Bu; Hazara, Ha; and Kalash, Ka) and

they correspond to those located in high-altitude areas.
Moreover, two of these populations (Bu and Ka) do not
seem to send migrants either and a third one (Ha)
seems to contribute very little to the gene pool of the
Pathan. The population with the highest proportion of
migrant genes is the Sindhi, which receives migrants
mainly from Balochi/Brahui (Ba/Br). Three other pop-
ulations have a somewhat lower proportion of migrant
genes (Ba/Br; Makrani, Ma; and Pathan, Pa). In the case
of Ba/Br, most of the genes come from Ma, and, con-
versely, most of the genes of Ma come from Ba/Br.
Finally, the Pathan receive similar proportions of genes
from Ba/Br, Ha, and Sindhi (Si). In general, there are
frequent gene exchanges among southern populations
while northern populations remain fairly isolated. The
best explanation for this migration pattern is altitude
differences with the most isolated populations being at
high altitude and the least isolated ones at low altitude.

Finally, the mean and mode of inbreeding coefficient
estimates are somewhat large when compared to FST

estimates but this is not the case if we compare the lower
bounds of the HPDIs (Table 11). Still, there are three
local populations (Ba/Br, Ma, and Pa) for which the
lower bound of FIS HPDIs is .0.04 while that of FST’s is
much lower. A potential explanation for this result
could be that samples were taken from adult individuals
and, therefore, the data set does not fit model assump-
tions concerning the moment at which sampling takes
place. However, we do not have information concerning
the age group involved in the sampling.

TABLE 12

Migration rates between Pakistani populations

Mean/mode/95% HPDI

From/into Ba/Br Bu Ha Ka Ma Pa Si

Ba/Br 0.690 0.000 0.000 0.000 0.220 0.060 0.280
0.670 0.000 0.000 0.000 0.150 0.020 0.300

(0.427; 0.900) (10�15; 10�8) (10�9; 10�7) (10�10; 10�7) (0.008; 0.638) (10�8; 0.339) (0.021; 0.668)
Bu 0.000 1.000 0.000 0.000 0.010 0.01 0.010

0.000 1.000 0.000 0.000 0.000 0.000 0.000
(0.004; 0.086) (1.000; 1.000) (10�9; 10�7) (10�10; 10�7) (0.001; 0.190) (10�4; 0.207) (10�12; 0.189)

Ha 0.010 0.000 1.000 0.000 0.010 0.040 0.010
0.000 0.000 1.000 0.000 0.000 0.020 0.000

(0.001; 0.135) (10�16; 10�8) (1.000; 1.000) (10�14; 10�7) (10�12; 0.168) (0.010; 0.246) (10�12; 0.151)
Ka 0.000 0.000 0.000 1.000 0.000 0.010 0.000

0.000 0.000 0.000 1.000 0.000 0.000 0.000
(10�4; 0.073) (10�10; 10�8) (10�15; 10�7) (1.000; 1.000) (10�4; 0.079) (10�9; 0.128) (10�4; 0.132)

Ma 0.220 0.000 0.000 0.000 0.680 0.060 0.150
0.230 0.000 0.000 0.000 0.740 0.010 0.030

(0.014; 0.488) (10�15; 10�8) (10�15; 10�7) (10�10; 10�7) (0.233; 0.935) (10�9; 0.451) (10�9; 0.560)
Pa 0.010 0.000 0.000 0.000 0.030 0.740 0.020

0.000 0.000 0.000 0.000 0.000 0.760 0.000
(0.003; 0.143) (10�15; 10�8) (10�9; 10�7) (10�9; 10�7) (0.001; 0.302) (0.362; 0.936) (0.003; 0.251)

Si 0.070 0.000 0.000 0.000 0.050 0.070 0.530
0.060 0.000 0.000 0.000 0.030 0.050 0.520

(0.009; 0.225) (10�15; 10�8) (10�14; 10�7) (10�9; 10�7) (0.001; 0.265) (10�9; 0.339) (0.145; 0.874)

Estimates are based on posterior mean and mode.
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DISCUSSION

We present a new method for the estimation of recent
migration rates that also allows for making inferences
about the factors that influence gene flow in subdivided
populations. It focuses on the F1 descendants of migrant
individuals and, therefore, estimates the probability
that a given individual migrated during the previous
generation. Our approach also estimates various other
population-specific parameters such as local FST, in-
breeding coefficients, and allele frequencies. The
method requires data from codominant markers such
as RFLPs, microsatellites, allozymes, and SNPs and
environmental data specific to each local population.
Note, however, that the modeling of dispersal barriers
(mountains, roads, deforested areas, etc.) between pairs
of populations can be introduced by considering land-
scape resistance measures usually used by landscape
ecologists (see, e.g., McRae 2006).

We generated synthetic data following the inference
model described above to investigate the effect of vary-
ing levels of genetic differentiation, proportions of non-
migrant genes, and numbers of populations, loci, and
individuals. The results of this simulation study indicate
that the method can provide reliable estimates when
global FST values are .1%, the number of loci is only 10,
and sample sizes are of the order of 50 individuals per
population. Additionally, the identification of the envi-
ronmental factors influencing migration is easier when
migration rates are high and the number of local pop-
ulations considered increases. We did not investigate the
effect of varying the degree of polymorphism (i.e., the
number of allelic classes) or the effect of unsampled
populations. We expect that increasing polymorphism
will increase accuracy while the effect of unobserved
populations is more likely to decrease it depending on
true migration rates between unsampled and sampled
populations. Our simulation study could be extended to
take into account these considerations. Additionally, it
would be desirable to consider demographic scenarios
that differ from the one assumed by the inference model
to test the robustness of our method.

We applied our method to a previously published
microsatellite human data set for which local FST’s are
within the range of values that our simulation study
identified as problematic for parameter estimation. As
expected, we observed convergence problems for this
application and followed the approach of Faubet et al.
(2007) to minimize them (see previous section for a more
detailed explanation). We found that altitude influences
recent migration among Pakistani populations and that
gene exchanges are more frequent in the south than in
the north of Pakistan. Geographic distance seems to have
little effect on migration, a result that can be explained by
the limited geographic scale considered and the fact that
even in poorly developed areas there are many means of
transportation that facilitate movement of humans. On

the other hand, altitude can represent an important
barrier particularly in winter when populations at high
altitude can remain isolated for long periods of time.

The estimation of migration rates has proved to be a
very difficult task. Several methods exist for this purpose;
some of them estimate long-term migration rates and are
based on coalescent theory (e.g., MIGRATE, Beerli and
Felsenstein 2001) while others provide recent migra-
tion rate estimates and are based on multilocus genotype
approaches (e.g., BAYESASS, Wilson and Rannala

2003). All recent methods for estimating migration rates
rely on MCMC approaches and require one to pay special
attention to convergence issues (Faubet et al. 2007). This
is particularly important when genetic differentiation
among populations is weak. This caveat also applies to
our method, and the human example we present illus-
trates how to deal with these problems.

Being a multilocus genotype approach, our method
resembles in many respects BAYESASS. It is important to
note, however, that this resemblance is only superficial
because we do not assume the same sampling scheme
and we allow for high migration rates. Indeed, as op-
posed to Wilson and Rannala (2003) we assume that
sampling takes place after reproduction and before
migration. This was done to avoid the low migration
rate restriction underlying their method and to allow
migration rates to vary between 0 and 1. More specifi-
cally, Wilson and Rannala’s (2003) formulation pro-
vides estimates of migration rates restricted to the
interval (0, 1

3) and assumes that m is very small because
to account for individuals with mixed ancestry (i.e.,
individuals whose alleles come from two different pop-
ulations) they need to consider individuals that arrived
one generation before sampling takes place. Thus, they
are forced to assume that at most half of an individual’s
alleles comes from another population. In our case, we
do not have this restriction because after reproduction
the alleles of a given individual can come from any pop-
ulation. Doing this, however, precludes us from distin-
guishing between first-generation and second-generation
migrants. Nevertheless, we can consider cases where
parents are migrants from two different populations
while BAYESASS considers only a single migrant ancestor.

The information used by our estimation method is the
gametic disequilibrium generated by migration, which
increases as genetic differentiation among local popula-
tions increases. Indeed, limited migration is very effective
in increasing differentiation of gamete types among the
subpopulations by random genetic drift (Ohta 1982).
The strength of this gametic disequilibrium can be
measured through the genotype of migrant individuals
(or descendants from recent migrants) or through the
gamete haplotype frequencies. Clearly, the former corre-
sponds to short-term migration while the latter corre-
sponds to the effect of long-term migration. All this
implies that if the long-term migration is very high, the
signature left by recent migration events will be weak. In
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the case of our method, the simulation study indicates
that reliable estimates can be obtained when the effective
number of migrants is less than five (i.e., FST $ 0.05). The
gametic disequilibrium due to long-term migration can
also lead to a deviation from the hypothesis of indepen-
dence among loci used to derive the likelihood function.
This is a problem shared by all the methods that estimate
migration rates from multilocus genotype data. The
potential biases that could be introduced due to this
problem require a very detailed simulation study, using an
individually based model that produces synthetic data
that allow for the estimation of gametic disequilibrium.

Another improvement introduced in our method is
the use of the F-model first proposed by Balding and
Nichols (1995). This feature allows us to take into
account the population admixture that may have taken
place before the last generation of migration. Addition-
ally, as pointed out by Falush et al. (2003), the imple-
mentation of this model permits identification of subtle
population subdivisions and, therefore, improves the
estimation of allele-frequency distributions when genetic
differentiation is weak. This in turn improves the esti-
mation of migration rates as shown by a pilot study com-
paring the performance of our method with and without
the F-model (results not shown). All the improvements
implemented by our method lead to good mixing prop-
erties of the MCMC and therefore minimize convergence
problems. We stress, however, that users should always
carefully check the convergence of the MCMC by run-
ning multiple analyses and comparing their results.

An important feature of our method is that besides
simply estimating migration rates it also identifies the
factors that influence them. We use the same approach
as that first proposed by Gaggiotti et al. (2004), which
consists of using a Dirichlet prior for the immigration
rates and linking its shape parameters with the environ-
mental data, using a generalized linear model. In the
present case, however, we do not consider models with-
out the constant factor (i.e., the regression intercept).
This was done because our experience with the appli-
cation of this type of method (Gaggiotti et al. 2004;
Foll and Gaggiotti 2006) indicates that models ex-
cluding this parameter almost always had null posterior
probabilities. These results can be explained by the fact
that the regression intercept captures the effects of
factors that act at a larger geographic scale than that
considered for the metapopulation under study. It also
takes into account behavioral characteristics of the
species under study that remain the same regardless of
the environment. In fact, the regression intercept influ-
ences only the variance of immigration rates, which in-
creases as a0 decreases. For example, we expect that the
variance of the migration rate between two given pop-
ulations will be larger for species that can disperse very
long distances than for species with very poor dispersal
abilities. In this case, then we expect to obtain estimates
of the intercept that are smaller for the former.

In our approach we assumed that the probability of
observing nonmigrant alleles in any given population is
independent of environmental factors. The underlying
rationale for this is that local environmental conditions
will influence only emigration rates but do not have any
effect on the immigration rates that are the focus of our
estimation method. Ideally we would also like to estimate
emigration rates. As Wilson and Rannala (2003) point
out, this could be done if we know local population sizes
or, alternatively, if we could develop a method that can
make use of temporal samples. However, such approaches
are likely to involve much more complex likelihood
functions that will necessarily lead to a worsening of con-
vergence problems that are typical of complex methods
that use MCMC approaches.

The software that implements the method incorporates
features that facilitate the interpretation of results. For
example, it provides estimates of both means and modes,
which allows the user to choose the best parameter esti-
mator depending on the shape of the posterior distribu-
tion (which is also provided by the software). Indeed,
whenposteriordistributionsareasymmetric,posterioresti-
mates based on the mode and on the mean are rather dif-
ferent and the former provides a better way of describing
the results. Thus, users should always have a look at the
shape of posterior distributions to choose appropriate
estimators.

Bayesian methods such as the one we present here are
powerful tools for the study of natural populations.
Users, however, should keep in mind that their applica-
tion requires some expertise on the computational
methods underlying their implementation, particularly
on MCMC approaches. These issues are discussed more
in detail in Faubet et al. (2007) and also in the user
manuals of several of the currently available methods. If
these recommendations are followed, population biol-
ogists will be able to extract highly valuable information
about the species under study.

Most of the computations presented in this article were performed
on the cluster HealthPhy (CIMENT, Grenoble, France). We are
grateful to Matthieu Foll for providing us the software to identify
outlier loci in the human data set. We also thank Olivier Francois and
two anonymous reviewers for their useful suggestions that helped to
improve the manuscript. The software that implements the method is
available for the three most popular operating systems at http://www-
leca.ujf-grenoble.fr/logiciels.htm. This work was supported by the
Fond National de la Science (grant ACI-Impbio-2004-42-ADGP). P.F.
holds a Ph.D. studentship from the Ministère de la Recherche.

LITERATURE CITED

Balding, D. J., and R. A. Nichols, 1995 A method for quantifying
differentiation between populations at multi-allelic loci and its
implications for investigating identity and paternity. Genetica
96: 3–12.

Balding, D. J., and R. A. Nichols, 1997 Significant genetic corre-
lations among Caucasians at forensic DNA loci. Heredity 78: 583–
589.

1502 P. Faubet and O. E. Gaggiotti



Beaumont, M. A., and D. J. Balding, 2004 Identifying adaptive ge-
netic divergence among populations from genome scans. Mol.
Ecol. 13: 969–980.

Beerli, P., and J. Felsenstein, 2001 Maximum likelihood estima-
tion of a migration matrix and effective population sizes in n sub-
populations by using a coalescent approach. Proc. Natl. Acad.
Sci. USA 98: 4563–4568.

Brooks, S. P., P. Giudici and G. O. Roberts, 2003 Efficient con-
struction of reversible jump proposal distribution. J. R. Stat.
Soc. Ser. B Stat. Methodol. 65: 3–55.

Cann, H., C. Toma, L. Cazes, M. Legrand, V. Morel et al., 2002 A
human genome diversity cell line panel. Science 296: 261–262.

Falush, D., M. Stephens and J. K. Pritchard, 2003 Inference of
population structure using multilocus genotype data: linked loci
and correlated allele frequencies. Genetics 164: 1567–1587.

Faubet, P., R. S. Waples and O. E. Gaggiotti, 2007 Evaluating the
performance of a multilocus Bayesian method for the estimation
of migration rates. Mol. Ecol. 16: 1149–1166.

Foll, M., and O. E. Gaggiotti, 2006 Identifying the environmental
factors that determine the genetic structure of populations. Ge-
netics 174: 875–891.

Francxois, O., S. Ancelet and G. Guillot, 2006 Bayesian clustering
using hidden Markov random fields in spatial population genet-
ics. Genetics 174: 805–816.

Gaggiotti, O. E., F. Jones, W. M. Lee, W. Amos, J. Harwood et al.,
2002 Patterns of colonization in a grey seal metapopulation.
Nature 416: 424–427.

Gaggiotti, O. E., S. P. Brooks, W. Amos and J. Harwood, 2004 Com-
bining demographic, environmental and genetic data to test hy-
potheses about colonization events in metapopulations. Mol.
Ecol. 13: 811–825.

Gelman, A., J. B. Carlin, H. S. Stern and D. B. Rubin,
1995 Bayesian Data Analysis. Chapman & Hall, London.

Giordano, A. R., B. J. Ridenhour and A. Storfer, 2007 The influ-
ence of altitude and topography on genetic structure in the long-
toed salamander (Ambystoma macrodactulym). Mol. Ecol. 16: 1625–
1637.

Green, P. J., 1995 Reversible jump mcmc computation and bayesian
model determination. Biometrika 82: 711–732.

Guillot, G., A. Estoup, F. Mortier and J. F. Cosson, 2005 A spatial
statistical model for landscape genetics. Genetics 170: 1261–
1280.

McRae, B. H., 2006 Isolation by resistance. Evolution 60: 1551–1561.
Ohta, T., 1982 Linkage disequilibrium due to random genetic drift

in finite subdivided populations. Evolution 79: 1940–1944.
Robert, C. P., 1994 The Bayesian Choice: A Decision-Theoretic Motiva-

tion. Springer, New York.
Rosenberg,N., J.Pritchard, J.Weber,H.Cann,K.Kidd etal.,2002 Ge-

netic structure of human populations. Science 298: 2981–2985.
Wilson, G. A., and B. Rannala, 2003 Bayesian inference of recent

migration rates using multilocus genotypes. Genetics 163: 1177–
1191.

Communicating editor: L. Excoffier

APPENDIX: PRIOR DISTRIBUTIONS FOR PARAMETERS

We take the following priors for each parameter discussed in the text.
Probability to observe nonmigrant genes: We assume that nonmigrant proportions are not influenced by

environmental factors and therefore use a uniform distribution:

mii � Uð0; 1Þ; i:e:; f ðmiiÞ ¼
1 if mii 2 ð0; 1Þ
0 otherwise:

�
ðA1Þ

Probability to observe migrant genes: We use a Dirichlet prior for the rate of migrant genes contributed by local
populations other than the focal one, mw

ij ,

mw
i jci � DirðciÞ; i:e:; f ðmw

i jciÞ ¼ G
X
j 6¼i

cij

0
@

1
AY

j 6¼i

m
wcij
�1

ij

GðcijÞ
; ðA2Þ

where the mw
ij ’s are given by Equation 6.

Shape parameters for the Dirichlet prior: As cij’s must be positive we use a log-normal distribution,

log cij ja;s2;G � Nðmij ;s
2Þ; i:e:; f ðcij ja; s2; GÞ ¼ 1

cij

ffiffiffiffiffiffiffiffiffiffiffi
2ps2
p exp �

ðlog cij � mijÞ2

2s2

 !
; ðA3Þ

where mij is given by the regression (8).
Regression coefficients: We use a normal distribution,

a � Nð0;s2
aÞ; i:e:; f ðaÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

2ps2
a

q exp � a2

2s2
a

� �
; ðA4Þ

where s2
a ¼ 10.

Deviation from the regression: We assume that s2 follows an inverse-gamma distribution,

t ¼ s�2 � Gammaðat; btÞ; i:e:; f ðtÞ ¼ bat

t

GðatÞ
tat�1expð�tbtÞ; ðA5Þ

where at, bt ¼ 1
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Local population FST’s: As ui’s must be positive we use a log-normal distribution,

log ui � Nðv; jÞ; i:e:; f ðuiÞ ¼
1

ui

ffiffiffiffiffiffiffiffi
2pj
p exp

ðlog ui � vÞ2
2j

� �
; ðA6Þ

where v ¼ j ¼ 1.
Metapopulation allele frequencies: We use an uninformative Dirichlet prior,

p̃l � Dirðl; . . . ; lÞ; i:e:; f ðp̃l Þ ¼
Gðkl lÞ
GðlÞkl

Ykl

a¼1

p̃ l�1
la ; ðA7Þ

where kl is the number of alleles observed at locus l in the metapopulation and l ¼ 1.
Population allele frequencies: We use a Dirichlet prior,

pil j ui ; p̃l � Dirðui p̃lÞ; i:e:; f ðpil j ui ; p̃lÞ ¼ GðuiÞ
Ykl

a¼1

p
ui p̃la�1
ila

Gðui p̃laÞ
: ðA8Þ

Population-specific inbreeding coefficients: We use a uniform distribution,

Fi � Uð�1; 1Þ; i:e:; f ðFiÞ ¼
1
2 if Fi 2 ð�1; 1Þ
0 otherwise:

�
ðA9Þ

Ancestry assignments: Following Wilson and Rannala (2003), we use a multinomial prior,

M j S; mi � Multðni ; miÞ; i:e:;PrðM j S; miÞ ¼ ni !
Y
j#k

m̃
nijk

ijk

nijk !
; ðA10Þ

where nijk is the number of individuals sampled from population i that belongs to ancestry class ( j, k) and m̃ijk is given
by Equation 1.
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