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ABSTRACT

Genomewide association mapping in model organisms such as inbred mouse strains is a promising ap-
proach for the identification of risk factors related to human diseases. However, genetic association studies
in inbred model organisms are confronted by the problem of complex population structure among strains.
This induces inflated false positive rates, which cannot be corrected using standard approaches applied in
human association studies such as genomic control or structured association. Recent studies demonstrated
that mixed models successfully correct for the genetic relatedness in association mapping in maize and
Arabidopsis panel data sets. However, the currently available mixed-model methods suffer from compu-
tational inefficiency. In this article, we propose a new method, efficient mixed-model association (EMMA),
which corrects for population structure and genetic relatedness in model organism association mapping.
Our method takes advantage of the specific nature of the optimization problem in applying mixed models
for association mapping, which allows us to substantially increase the computational speed and reliability
of the results. We applied EMMA to in silico whole-genome association mapping of inbred mouse strains
involving hundreds of thousands of SNPs, in addition to Arabidopsis and maize data sets. We also performed
extensive simulation studies to estimate the statistical power of EMMA under various SNP effects, varying
degrees of population structure, and differing numbers of multiple measurements per strain. Despite the
limited power of inbred mouse association mapping due to the limited number of available inbred strains,
we are able to identify significantly associated SNPs, which fall into known QTL or genes identified through
previous studies while avoiding an inflation of false positives. An R package implementation and webserver
of our EMMA method are publicly available.

WITH the recent development of high-throughput
genotyping technologies, genetic variation in

many model organisms such as mice, Arabidopsis, and
maize is being discovered on a genomewide scale
( Jander et al. 2002; Pletcher et al. 2004; Flint-Garcia

et al. 2005; Frazer et al. 2007). Genomewide association
mapping in model organisms has great potential to iden-
tify risk factors for complex traits related to human dis-
eases. Despite the disadvantage that direct inferences
from model organisms are not always applicable to hu-
man traits, model organism association mapping is poten-
tially more powerful than human association mapping
because it is possible to reduce the effect of environ-
mental factors by replicating phenotype measurements
in genetically identical organisms (Belknap 1998). In
addition, it is often easier and more cost effective to
verify associated signals in model organisms than in

human subjects. Moreover, many ongoing genotyping
and phenotyping projects in model organisms such as
the Mouse Phenome Database (MPD) (http://www.jax.
org/phenome), the Mouse HapMap project (http://www.
broad.mit.edu/personal/claire/MouseHapMap), and the
Perlegen/NIEHS resequencing project (http://mouse.
perlegen.com) (Frazer et al. 2007) provide publicly
available resources to perform in silico mapping of com-
plex traits in model organisms (Peter et al. 2007).

However, genetic association studies in inbred model
organisms are confronted by the problem of inflated
false positive rates due to population structure and
genetic relatedness among inbred strains caused by the
complex genealogical history of most model organism
strains. Conventional statistical tests of independence
between a genetic marker and a phenotype are prone to
spurious associations because the marker and the phe-
notype are likely to be correlated due to population
structure that violates the independence assumption un-
der the null hypothesis. Recent association- or linkage-
mapping studies in model organisms attempt to avoid
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inflated false positive rates by designing the studies
using recombinant inbred lines generated from a small
number of parental strains (Bystrykh et al. 2005; Zou

et al. 2005). However, these studies are limited by the
variation present in the parental strains and have long
regions between recombinations due to relatively few
generations between the recombinant inbred strains
and the parental strains. Traditional QTL mapping us-
ing F2 or backcross suffers from the same problem in
fine-resolution mapping in addition to expensive geno-
typing cost (Belknap 1998; Flint et al. 2005).

An alternative approach to reduce the inflation of
false positives is to apply a statistical test that corrects for
the bias due to population structure or genetic relat-
edness. The most widely used methods to reduce such
bias in human association mapping are genomic control
(Devlin and Roeder 1999), structured association
(Pritchard et al. 2000), and principal component
analysis (Patterson et al. 2006; Price et al. 2006).
However, these methods are inadequate in the case of
model organism association mapping. Genomic control
suffers from weak power when the effect of population
structure is large as in model organisms (Price et al.
2006; Yu et al. 2006). Structured association or principal
component analysis, which assumes a small number of
ancestral populations and admixture, only partially cap-
tures the multiple levels of population structure and
genetic relatedness in model organisms (Aranzana

et al. 2005; Yu et al. 2006; Zhao et al. 2007). Recently, it
has been suggested that linear mixed models can effec-
tively correct for population structure in the association
mapping of quantitative traits (Yu et al. 2006). Linear
mixed models incorporate pairwise genetic relatedness
between every pair of individuals in the statistical model
directly, reflecting that the phenotypes of two geneti-
cally similar individuals are more likely to be correlated
than genetically dissimilar individuals. Applications of
mixed models to association mapping in maize, Arabi-
dopsis, and potato panels demonstrate that mixed
models obtain fewer false positives and higher power
than previous methods including genomic control,
structured association, and principal component anal-
ysis (Yu et al. 2006; Malosetti et al. 2007; Zhao et al.
2007).

Although mixed models can effectively capture sta-
tistical confounding due to population structure, the
currently available implementations have several limi-
tations in the context of model organism association
mapping. First, the variance components numerically
estimated by various hill-climbing approaches such
as the Nelder–Mead simplex algorithm (Nelder and
Mead 1965; Graser et al. 1987; Meyer 1989), the EM
algorithm (Smith 1990), and the Newton–Raphson algo-
rithm (Lindstrom and Bates 1988; Gilmour et al.
1995; Johnson and Thompson 1995) provide only a
locally optimal solution, which may cause the statistical
inferences based on these estimates to be inaccurate.

Second, the computational cost of the numerical opti-
mization procedure is substantial, requiring a large
number of computationally expensive matrix opera-
tions at each iteration. Computational considerations
are important when large data sets are to be tested. For
example, the association mapping with maize panels
consisting of hundreds of SNPs over hundreds of strains
takes hours for a single run with currently available
implementations such as TASSEL (Yu et al. 2006) or SAS
(Sas Institute 2004). A microarray data set tested for
genomewide association mapping between thousands
of transcripts and tens of thousands of markers would
take several years of CPU time. Third, when inferring
the genetic variance component referred to as the kin-
ship matrix, the importance of a mathematically correct
form of kinship matrix estimation is often overlooked.
For example, Yu et al. (2006) proposed to infer a kinship
matrix using SPAGeDi software, setting negative kinship
coefficients to zero. Such a kinship matrix may not be
positive semidefinite and thus not be a valid form of
variance component. Using a nonpositive semidefinite
kinship matrix generates ill-defined likelihood for a
subset of parameter space in the estimation of the vari-
ance component.

In this article, we propose a new method, efficient
mixed-model association (EMMA), which corrects for
population structure and genetic relatedness in model
organism association mapping. Our method takes ad-
vantage of the specific nature of the optimization prob-
lem in applying mixed models for association mapping,
which allows us to substantially increase computational
speed by orders of magnitude and improve the reli-
ability of results by achieving near global optimization.
Our method improves the efficiency of the mixed-
model method by enabling us to perform statistical tests
with single-dimensional optimization. Our method’s
efficiency is further increased by avoiding redundant
computationally expensive matrix operation at each
iteration in the computation of likelihood function by
leveraging spectral decomposition, reducing the com-
putational cost of each iteration from cubic to linear
complexity. Due to a substantially decreased computa-
tional cost of each iteration, it is possible to converge
the global optimum of the likelihood in variance-
component estimation with high confidence by com-
bining grid search and the Newton–Raphson algorithm
even though the likelihood function may not be convex.
Our method is related to a similar technique developed
in a different context of simulating the null distribution
of variance-component test statistics (Crainiceanu and
Ruppert 2004).

We show that a simple genetic similarity matrix can
serve as a kinship matrix accounting for genetic re-
latedness as effectively as previously suggested methods
while guaranteeing positive semidefiniteness. Our results
are consistent with other studies (Zhao et al. 2007), which
suggests that these simpler kinship matrices reduce the
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false positive rate as effectively as or more effectively than
the kinship matrices generated by previous methods (Yu

et al. 2006). We propose an additional method called
phylogenetic control based on the assumption that a phylo-
genetic tree is a good approximation of the genealogical
history of an inbred model organism. In such cases, the
phylogenetic tree may be used as a confounding factor,
correcting for the complex genetic relations between
strains. We show that phylogenetic control can be formu-
lated as a linear mixed model and present an algorithm
for inferring the phylogenetic kinship matrix. We show
that the phylogenetic kinship matrix is always positive
semidefinite and its optimal variance components are
unique regardless of the choice of root.

One of the important questions in the design of
model organism association-mapping studies is estimat-
ing the statistical power for any specific set of inbred
strains. We performed a simulation study of the power of
our EMMA method to identify causal SNPs both on a
genomewide scale and within a smaller region such as
a QTL interval. Our results show that with a limited
number of genetically diverse strains, such as the
currently available panel of inbred mice, it is possible
to identify causal loci with a genomewide significance
only if the locus explains a large portion of phenotypic
variance. However, with more strains, the power of these
association studies increases dramatically. Our analysis
of statistical power in model organism association map-
ping demonstrates the dramatic increase in power using
multiple measurements of phenotypes from multiple
animals for each strain. Study designs that do not rep-
licate phenotype measurements and analysis methods
that do not take individual measurements into account
suffer a significant decrease in statistical power.

We applied our EMMA method to association map-
pings of various inbred model organisms. First, we
verified that EMMA gives almost identical results to
other widely used implementations using the maize
panel data sets (Yu et al. 2006). In terms of computa-
tional time, EMMA is shown to be orders of magnitude
faster than the previous methods while performing near
global optimization. Second, we performed a genome-
wide association mapping of Arabidopsis flowering-time
phenotypes. Our results are consistent with the recently
published results (Zhao et al. 2007), reducing most of
the inflated false positives. Finally, we used our EMMA
method to perform a whole-genome association-mapping
study of inbred mouse strains. We analyzed nearly
140,000 mouse HapMap SNPs over 48 strains and three
quantitative phenotypes, liver weight, body weight, and
saccharin preference, with QTL identified by previous
studies. We identified significant associations for the
three phenotypes while our results show a significant
reduction in the inflation of false positives. Interest-
ingly, many of the significantly associated SNPs fall into
the known QTL, suggesting the results are likely to be
true associations.

An R package implementation of EMMA and the web-
server containing the mouse association results are pub-
licly available online at http://mouse.cs.ucla.edu/emma.

MATERIALS AND METHODS

Genotypes and phenotypes: Genotypes, phenotypes,
SPAGeDi-based kinship matrix, and the STRUCTURE outputs
from 277 maize strains across 553 SNPs as described in Yu et al.
(2006) were downloaded from the Buckler lab web site (http://
www.maizegenetics.net). The Arabidopsis genotypes and phe-
notypes and the output from STRUCTURE were obtained from
the published data sets (Aranzana et al. 2005; Nordborg et al.
2005). The 13,416 nonsingleton Arabidopsis SNPs with no
more than 10% of genotype calls missing were tested for asso-
ciation after imputing the missing alleles using HAP (Halperin

and Eskin 2004). The flowering-time phenotypes over 95 strains
were log transformed to fit to a normal distribution.

For inbred mouse association mapping, the Broad mouse
HapMap SNP sets were obtained from the mouse HapMap
web site. The 106,040 SNPs that have no more than 10% of
genotype calls missing were tested after imputing the missing
alleles. The initial body weight (MPD10305) and liver weight
phenotypes (MPD2907) were downloaded from Jackson Labo-
ratory MPD (Jackson Laboratory 2004). They consist of 374
and 308 phenotype measurements over 38 and 34 strains, re-
spectively. The saccharin preference phenotypes consist of 280
phenotype measurements in 24 strains (Reed et al. 2004).

EMMA: Suppose that n measurements of a phenotype are
collected across t inbred strains. A linear mixed model in
model organism association mapping is typically expressed as

y ¼ X b 1 Zu 1 e; ð1Þ

where y is an n 3 1 vector of observed phenotypes, and X is an
n 3 q matrix of fixed effects including mean, SNPs, and other
confounding variables. b is a q 3 1 vector representing
coefficients of the fixed effects. Z is an n 3 t incidence matrix
mapping each observed phenotype to one of t inbred strains. u
is the random effect of the mixed model with Var(u) ¼ s2

gK ;
where K is the t 3 t kinship matrix inferred from genotypes as
described in the following section, and e is an n 3 n matrix
of residual effect such that Var(e) ¼ s2

eI : The overall pheno-
typic variance–covariance matrix can be represented as V ¼
s2

gZKZ 9 1 s2
eI :

Instead of solving mixed-model equations by obtaining the
best linear unbiased prediction (BLUP) of random effects
u via Henderson’s iterative procedure (Henderson 1984;
Arbelbide et al. 2006), we directly estimate the variance com-
ponents sg and se, maximizing the full likelihood or restricted
likelihood that is defined as full likelihood with the fixed
effects integrated out (Dempster et al. 1981). The restricted
likelihood avoids a downward bias of maximum-likelihood
estimates of variance components by taking into account the
loss in degrees of freedom associated with fixed effects. Under
the null hypothesis, the full log-likelihood and restricted log-
likelihood function can be formulated as

lFðy; b;s; dÞ ¼ 1

2

�
�n logð2ps2Þ � log jH j

� 1

s2ðy � X bÞ9H�1ðy � X bÞ
�

ð2Þ

lRðy; s; dÞ ¼ lFðy; b̂;s2; dÞ

1
1

2
q logð2ps2Þ1 log jX 9X j � log jX 9H�1X j
� �

ð3Þ

Efficient Control of Population Structure 1711



(Welham and Thompson 1997), where s¼sg and H¼s�1V¼
ZKZ9 1 dI is a function of d, defined as d ¼ s2

e=s2
g:

The full-likelihood function is maximized when b is
b̂ ¼ ðX 9H�1X Þ�1X 9H�1y; and the optimal variance compo-
nent is ŝ2

F ¼ R=n for full likelihood and ŝ2
R ¼ R=ðn � qÞ for

restricted likelihood, where R ¼ ðy � X b̂Þ9H�1ðy � X b̂Þ is a
function of d as well.

Using spectral decomposition, it is possible to find ji and ls

such that

H ¼ ZKZ 9 1 dI ¼ UFdiagðj1 1 d; � � � ; jn 1 dÞU 9F ð4Þ

SHS ¼ SðZKZ 9 1 dI ÞS
¼ ½URWR�diagðl1 1 d; � � � ; ln�q 1 d; 0; � � � ; 0Þ½UR WR �9
¼ URdiagðl1 1 d; � � � ; ln�q 1 dÞU 9R;

ð5Þ
where S¼ I� X(X9X)�1X9, UF is n 3 n, and UR is an n 3 (n� q)
eigenvector matrix corresponding to the nonzero eigenvalues.
WR is an n 3 q eigenvector matrix corresponding to zero
eigenvalues. As shown in the appendix, our decomposition
satisfies the properties of the decomposition suggested by
previous studies (Patterson and Thompson 1971). It should
be noted that UF and UR are independent of d. Let U 9Ry ¼
½h1, h2, � � �, hn�q�9; then finding maximum-likelihood (ML)
or restricted maximum-likelihood (REML) estimates is equiv-
alent to optimizing the following functions with respect to d:

fFðdÞ ¼ lFðy; b̂; ŝ; dÞ

¼ 1

2
n log

n

2p
� n � n log

Xn�q

s¼1

h2
s

ls 1 d

 !
�
Xn

i¼1

logðji 1 dÞ
" #

ð6Þ

fRðdÞ ¼ lRðy; ŝ; dÞ

¼ 1

2
ðn � qÞlog

n � q

2p
�ðn � qÞ�ðn � qÞlog

Xn�q

s¼1

h2
s

ls 1 d

 !"

�
Xn�q

s¼1

logðls 1 dÞ
#

ð7Þ

(see the appendix for the mathematical details). The deriva-
tives of these functions follow that

f 9FðdÞ ¼
n

2
�
P

s h2
s =ðls 1 dÞ2P

s h2
s =ðls 1 dÞ �

1

2

X
i

1

ji 1 d
ð8Þ

f 9RðdÞ ¼
n � q

2
�
P

s h2
s =ðls 1 dÞ2P

s h2
s =ðls 1 dÞ �

1

2

X
s

1

ls 1 d
: ð9Þ

It should be noted that the likelihood functions are continu-
ous for all d . 0 if and only if all the eigenvalues ls are
nonnegative. Otherwise, such as in the case of the nonpositive
semidefinite kinship matrix, the likelihood would be ill de-
fined for a certain range of d.

The suggested procedure in computing likelihood and its
derivatives involves only a linear time vector operation at each
iteration once the spectral decomposition is computed. The
time complexity of the method is O(n3 1 rn), where r is the
number of iterations required. The time complexity of
standard EM or Newton–Raphson algorithms is O(rn3), and
the actual ratio of the running time is much bigger than r
because the existing methods typically require a large number
of matrix multiplications and inverses at each iteration while
EMMA computes spectral decomposition only once. Since the
computational cost of each iteration has decreased dramati-
cally, instead of obtaining a locally optimal solution during the

numerical optimization, it is now computationally feasible to
perform a grid search combining with the Newton–Raphson
algorithm in the single-dimensional parameter space consist-
ing of d, which is the ratio of the environmental random effect
to the genetic background effect, to optimize the likelihood
globally with high confidence.

Furthermore, when a large number of multiple measure-
ments are phenotyped per strain, i.e., n?t, the execution time
can be further reduced using the fact that the nonnegative
eigenvalues of ZKZ9 and SZKZ9S are the same as those of KZ9Z
and KZ9SZ, respectively. Combining this fact with a simple
modification of the Gram–Schmidt process greatly reduces
the execution time of eigenvalue decomposition, reducing the
time complexity into O(n2t 1 rn). When multiple phenotypes
are tested such as in expression quantitative trait loci (eQTL)
mapping, the spectral decomposition can be reused, and only
a square-time matrix–vector multiplication is required for
each phenotype. Thus, the time complexity with m different
phenotypes is O(n2t 1 n2m 1 rmn), which is much more
efficient than O(rn3m) achieved by previous approaches.

In the application of our EMMA method to the various data
sets presented in this article, the d’s ranged from 10�5 (almost
pure population structure effect) to 105 (almost pure envi-
ronmental or residual effect) and are divided evenly into 100
regions in logarithm scale to compute the derivatives of
likelihood functions. The global ML or REML is searched
for by applying the Newton–Raphson algorithm to all the
intervals where the signs of derivatives change and taking the
optimal d among all of the stationary points and endpoints.
Since the derivatives of both the full- and the restricted-
likelihood function are continuous with nonnegative eigen-
values, such an optimization technique has guaranteed
convergence properties as long as the kinship matrix is posi-
tive semidefinite. In the following two sections, we describe
different methods to infer a kinship matrix K, based on either
a genetic similarity matrix or a phylogenetic tree.

Similarity-based kinship matrix: A number of methods for
inferring a kinship matrix from a large number of molecular
markers have been suggested, including a simple identical-by-
state (IBS) allele-sharing matrix, an allele-frequency weighted
IBS matrix (Lynch and Ritland 1999), a maximum-likelihood
kinship matrix (Thomas and Hill 2000), and a Monte Carlo
simulation-based matrix (Wang 2002). Comparisons of dif-
ferent kinship matrices for explaining genetic differentiation
among populations show similar results with small quantitative
differences (Nievergelt et al. 2007). Recent studies on the
association mapping of Arabidopsis thaliana in a structured pop-
ulation show that a simple IBS allele-sharing matrix effectively
corrects for confounding from population structure, even
better than more sophisticated methods (Zhao et al. 2007).
Although recently suggested estimators of pairwise related-
ness have some desirable statistical properties over a simple
IBS allele-sharing matrix (Casteele et al. 2001), they are not
guaranteed to be positive semidefinite.

Here we show that a simple IBS allele-sharing matrix based
on the assumption of each SNP or haplotype inducing the
same level of small random changes on the phenotype guar-
antees positive semidefiniteness and convergence if missing
alleles are handled appropriately.

Let li,j,h 2 {0, 1} be a binary variable that has a value of 1 only
when the genotype (or haplotype) allele at jth locus in the ith
strain is h 2 1; � � � jHj j, where jHj j is the total number of
alleles at the jth locus. Let xh,j be random variables indepen-
dently sampled from N(0, s2); then the genetic background
effect ui of strain i can be modeled as an accumulation of small
random effects as follows, assuming that xh,j denote the
random genetic effect caused by allele h at the jth locus,
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ui ¼
X

j

XHj

h¼1

li;j ;hwj xh;j ; ð10Þ

where wj is the weight of each SNP’s contribution to the
genetic background effect. If each SNP is assumed to have the
same level of random effect, wj ¼ 1 can be assumed.
Alternatively, wj can be a function of allele frequency or a
function depending on the genomic region of the SNP. Let
j H j ¼ maxðjHj jÞ; and let Lh be the matrix whose element at
(i, j) is li,j,h; then the overall genetic background effect u is
expressed in the form

u ¼
XjHj
h¼1

LhW xh; ð11Þ

where W is a diagonal square matrix with wi at the ith diagonal
element. Assuming that each xh,j follows a normal distribution
with zero mean and variance of s2 independently, the
variance–covariance matrix of u becomes VarðuÞ ¼ s2

P
h

LhW 2L9h: Since its (i0, i1)th element
P

h

P
j w2

j li0;j ;hli1;j ;h rep-
resents the number of shared IBS alleles between the i0th and
i1th strains directly if wj ¼ 1, Var(u) is equivalent to a weighted
IBS allele sharing a kinship matrix with the scaling factor s2. It
is obvious from Equation 11 that the kinship matrix is positive
semidefinite. When missing genotypes exist, we estimate li,j,h to
be the square root of the probability of the SNP or haplotype
allele at the jth locus having the allele h. This is so the random
effect for each allele is assigned probabilistically. We generated
genotype similarity of maize, Arabidopsis, and mouse data sets
using uniform weight. When a haplotype similarity matrix is
used, the haplotype window size resulting in the largest ML
estimates is selected as the optimal window size. In the Arabi-
dopsis and mouse association-mapping results of this article,
the optimal haplotype window size is set to five in both cases.

Phylogenetic control: Evolutionary biologists have modeled
interspecific phenotype distribution using various phylogenetic
comparative methods (PCMs) (Martins and Hansen 1997).
The correlation structure between phenotypes can be effec-
tively captured with phylogenetic trees, and PCMs have been
applied to evolutionary analysis of quantitative traits such as
gene expression (Gu 2004; Oakley et al. 2005) or, very recently,
to the association mapping of dichotomous phenotypes
(Bhattacharya et al. 2007; Carlson et al. 2007). Felsentein’s
independent contrast (FIC) method (Felsenstein 1985)
models the correlation between phenotypes under the assump-
tion of Brownian motion of phenotypic change along the
phylogeny. Since random phenotypic changes occur within a
species as well, in cases where the phylogenetic tree is a good
approximation of genealogical history, it is reasonable to apply
PCMs such as the FIC method in modeling the phenotypic
variation in model organisms.

We followed Felsenstein’s assumption of Brownian pheno-
typic changes along the phylogeny. Although multiple fluc-
tuating selection may lead to a Brownian motion model
(Felsenstein 1981), here we assume a neutral model where
phenotypic changes are explained by accumulated random
pleiotropic effects by the genetic background to mathemati-
cally model Brownian phenotypic changes. Let T be a phy-
logenetic tree with t leafs and m edges, and let z 2 Rm be
random variables independently sampled from N ð0; s2

gÞ: At
each branch i whose length is bi, we represent the amount of
random phenotypic changes along the branch as

ffiffiffiffi
bi

p
zi : Let Ci

denote the set of branches connecting to a leaf node i from the
root. Then the accumulated phenotypic changes are equiva-
lent to

P
e2Ci

ffiffiffiffi
be

p
ze : If X b is the ancestral mean at an arbitrarily

chosen root node, then the phenotype values at the leaf nodes
are expressed in the form

y ¼ X b 1 ZEz 1 e; ð12Þ

where E is a t 3 m matrix whose (i, j)th element is
ffiffiffiffi
bj

p
if branch

j exists in the path from the root to the leaf node i and zero
otherwise. The kinship matrix of random effect u ¼ Ez is K ¼
EE9 and is proportional to its covariance. If the root of the
phylogenetic tree changes, E is changed into E 1 1t cT, with 1t a
vector of ones and another vector c. However, the restricted
likelihood does not change because SZ1t ¼ 0 always holds.

In our results, we adjusted the genetic distance matrix using
the F84 model (Kishino and Hasegawa 1989; Felsenstein

and Churchill 1996) from the genomewide genotypes and
inferred the phylogenetic tree with the Fitch–Margoliash and
least-squares distance method (Fitch and Margoliash 1967).

Statistical tests and multiple hypothesis testing: Once the
ML or REML variance component V̂ ¼ ŝ2

gK 1 ŝ2
eI is estimated,

a general F-statistic testing the null hypothesis Mb ¼ 0 for an
arbitrary full-rank p 3 q matrix M can be constructed as
suggested in Kennedy et al. (1992) and Yu et al. (2006),

F ¼ ðM b̂Þ9ðM ðX 9V̂�1X Þ�1M 9Þ�1ðM b̂Þ
p

; ð13Þ

with p numerator degrees of freedom and n � q denominator
degrees of freedom. The Satterthwaite degrees of freedom
may also be computed, avoiding computationally intensive
matrix operations.

The likelihood-ratio test can also be performed on the basis
of the estimated ML variance components under different
fixed effects. The statistic asymptotically follows a x2

p distribu-
tion unless the estimated variation component meets the
boundary of parameter space.

When a large number of correlated SNPs are tested,
Bonferroni correction may lead to too conservative type I
error control. Alternatively, permutation tests or other multi-
ple hypothesis-testing procedures can be used (Piepho 2001;
Storey and Tibshirani 2003). If permutations of simulation-
based approaches are applied, the computational cost is much
larger but can be reduced by reusing the spectral decompo-
sition in the same way described in the context of multiple
phenotypes. For each permuted y, only U 9Ry¼ ½h1, h2, � � �, hn�q�
has to be computed again to compute the full or the restricted
likelihood in linear time at each iteration. Thus, the compu-
tational cost for a cubic-time spectral decomposition at each
permutation can be substituted by a square-time matrix–vector
multiplication, reducing the overall time complexity from
O(n2t 1 rn) to O(n2 1 rn).

The variance-component estimation is performed on the
basis of REML for the F-test, and ML estimations are used for
the likelihood-ratio test and the computation of the Bayesian
information criterion (BIC). The P-values are computed from
the asymptotic null distribution.

Simulation studies: We performed two simulation studies
for analyzing the statistical power of EMMA. The first sim-
ulation is similar to those from other mixed-model studies (Yu

et al. 2006; Zhao et al. 2007). A fixed effect based on a
randomly chosen causal SNP from the genome with minor
allele frequency .10% is added to the existing phenotypes,
and the statistical power is computed at the causal SNP. At each
fixed effect, the simulation study was performed 1000 times to
estimate the average power. The variance explained by a SNP is
computed assuming that average minor allele frequency of the
causal SNP is 0.3.

Next, we generated simulated phenotypes sampled from a
multivariate normal distribution. A random noise vector is
added according to the contribution of genetic background to
phenotypes, h2

g : If h2
g is the fraction of variance due to genetic
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background excluding the SNP effect, then the covariance
of the simulated data is simulated as Var(y) ¼ ((n � 1Þh2

g=tr
ðS0ZKZ 9S0ÞÞK 1 ð1� h2

gÞI ; where S0 ¼ I � 119/n, where 1
denotes a vector of ones. Similar to the first simulation study, a
fixed effect based on a randomly chosen causal SNP is added
to the simulated phenotypes and the average power is
computed from 1000 independent simulations.

RESULTS

Comparison with previous methods over maize and
Arabidopsis strains: We applied our EMMA method to
the same maize panel data consisting of 553 SNPs and
three phenotypes across 277 diverse inbred lines
(Flint-Garcia et al. 2005) analyzed with the current
mixed-model implementations (Yu et al. 2006). We used
the genotype similarity matrix defined in materials

and methods as an additional variance component.
Both the SAS and the TASSEL implementations of a
unified mixed model (Yu et al. 2006) take nearly 2 hr for
a single run over the flowering-time phenotype data set
with Intel 2.8-GHz Dual Core CPU, and ASREML, which
is known to be more efficient than SAS, takes 20 min
(1201 sec) of running time. The execution time of our
mixed-model implementation is substantially faster,
taking only 2.6 min (157 sec). The comparison of the
P-values obtained from the ASREML package and
EMMA for flowering-time phenotypes shown in Figure
1a shows perfect concordance between the methods,
suggesting that both methods provide the same accu-
racy. It should be noted that EMMA is much more
efficient in spite of using orders of magnitude more of
iterations to find the near global REML estimate using a
grid search over the entire parameter space. EMMA also
shows high stability of the numerical optimization
procedure. In our results, TASSEL and ASREML im-
plementations failed to provide P-values in 4 and 1
SNPs, respectively, of 553 SNPs, possibly due to the
instability of the numerical optimization procedure,
while EMMA succeeds for all the SNPs over all the data
sets covered in this article.

Since the kinship matrix based on SPAGeDi software
as suggested by the unified mixed model is not guaran-
teed to be positive semidefinite, we explore other ways
to estimate the variance components due to genetic
background. We use a genotype similarity matrix and a
phylogenetic control matrix that guarantee positive semi-
definiteness. Haplotype similarity matrices are not appli-
cable to this data set due to sparse genotype density. We
compared the goodness-of-fit of these kinship matrices in
addition to the SPAGeDi-based kinship matrix over three
maize phenotypes using the BIC, which provides a
measure of how well each model fits the data. Adjusting
for the sample size and the number of free parameters,
Table 1 shows that the goodness-of-fits of the three kin-
ship matrices based on maximum-likelihood estimates
are comparable, while all of them were significantly bet-
ter than not using a mixed model.

The cumulative P-value distribution seen in Figure 1b
shows that the three kinship matrices correct for the
inflated false positives significantly better than the
simple linear model. As illustrated by previous studies,
the cumulative distribution of P-values is expected to
follow that of a uniform distribution with no inflated
false positives because only a tiny fraction of all SNPs are
expected to be true positives (Aranzana et al. 2005; Yu

et al. 2006; Zhao et al. 2007). The genotype similarity
matrix performs slightly better than the other two
kinship matrices, especially for small P-values. Since

Figure 1.—(a) Direct comparison of P-values between
ASREML and EMMA, computed from 553 SNPs of maize
panel data and the flowering-time phenotype using a similar-
ity-based kinship matrix. All P-values are almost identical, im-
plying that two methods are almost identical in terms of
accuracy. One SNP in ASREML failed to converge during the
variance-component estimation while it succeeded in EMMA.
(b) Cumulative distribution of P-values across different mod-
els. Under the assumption that the SNPs are unlinked and
there few true SNP associations, the observed P-values are ex-
pected to be close to the cumulative P-values. A large devia-
tion from the expectation implies that the statistical test
may cause spurious associations. Simple, a simple t-test; SA,
structured association; MM, an F-test with a mixed model with
a specified kinship matrix.
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the simpler kinship matrices show comparable or better
goodness-of-fit and false positive reduction results while
guaranteeing positive semidefiniteness, we apply only
these simple kinship matrices in the following sections.

We also applied our EMMA method to perform
genomewide association mapping of the flowering-time
phenotype in which statistically significant associations
are reported in previous studies. The cumulative distri-
bution of P-values across 13,416 nonsingleton SNPs
across 95 strains obtained from EMMA is shown in
Figure 2a. The cumulative distribution of P-values with a
haplotype similarity matrix nearly follows the expected
distribution, implying that mixed models significantly
outperform structured association in eliminating the
inflation of false positives for this data set. Phylogenetic
control reduces a large portion of inflated false pos-
itives, but residual inflation is still observed. Structured
association and simple linear regression showed much
larger inflation of false positives, consistent with the
previous studies. After correction for genetic related-
ness, the previously known FRI gene is still found to be
significant at a nominal P-value of P ¼ 10�5 across
different kinship matrices. Our independent analyses
are consistent with the more extensive results of Arabi-
dopsis association mapping recently published (Zhao

et al. 2007).
High-resolution genomewide association mapping in

inbred mouse strains: We performed a high-resolution
genomewide association-mapping study using our mixed-
model method over inbred mouse strains. We used the
Broad mouse HapMap SNPs, containing nearly 140,000
SNPs expected to cover most of genetic variation among
48 inbred strains. For phenotypes, we used initial body
weight and liver weight phenotypes downloaded from
the Jackson Laboratory mouse phenome database
( Jackson Laboratory 2004). In addition, we used a
saccharin preference phenotype where statistically sig-
nificant associations were identified in a previous study

(Reed et al. 2004). Among 48 genotyped strains, 38, 34,
and 24 strains had phenotype values available for body
weight, liver weight, and saccharin preference, respec-
tively. Each phenotype has on average 10 multiple mea-
surements across different individual mice per strain.

The cumulative distributions of observed P-values in
Figure 2 show that, without correcting for population
structure, the rate of false positives is very high. In
particular, the body weight phenotype has a substantial
inflation of false positives. When our mixed model is
used, the inflation of the statistics is significantly re-
duced in all three phenotypes.

Figure 3 shows genomewide association signals for
the three phenotypes. Comparing Figure 3a and 3b, it is
obvious that, without correcting for population struc-
ture, many false positives are observed at a genomewide
level of significance due to inflated P-values. Without
correcting for population structure, we were able to
identify nearly 6000 SNPs at a nominal P-value of 10�6

and 283 SNPs with P-values ,10�10. However, none are
significant after applying the mixed model. This strongly
supports that most of the significant associations with-
out correcting for population structure are indeed false
positives. Interestingly, although the strongest signals
for the body weight after applying the mixed model
are not genomewide significant, they are concentrated
in the region around 114 Mb in chromosome 8. This
region almost exactly falls into the LOD peak of a pre-
viously known body weight QTL Bwq3 (Annuciado

et al. 2001). The P-value of the most significant locus is
3.8 3 10�6 with the F-test, explaining 49% of the overall
phenotypic variance and 39% of the phenotypic varia-
tion due to the genetic variance component. Although
it is slightly below the genomewide significance thresh-
old with a conservative Bonferroni correction, if utiliz-
ing the results from previous QTL studies, the locus can
be declared as significant over the region of known body
weight QTL.

TABLE 1

Goodness-of-fit of different models and kinship matrices in explaining phenotypic variation of maize quantitative traits

Flowering time Ear height Ear diameter

Method Kinship matrix �2 (ML) BIC �2 (ML) BIC �2 (ML) BIC

Simple NA 1632.8 1643.9 2296.0 2307.1 1282.6 1293.5
MM SPAGeDi 1524.3 1541.0 2237.7 2254.3 1254.2 1270.5
MM Genotype similarity 1527.5 1544.2 2243.1 2259.8 1266.6 1282.9
MM Phylogenetic control 1521.6 1538.6 2227.3 2243.9 1248.9 1265.2
SA NA 1525.7 1547.9 2248.9 2271.1 1276.9 1298.7
SA1MM SPAGeDi 1494.9 1522.7 2220.3 2248.1 1253.6 1280.8
SA1MM Genotype similarity 1500.9 1528.7 2227.1 2254.9 1266.5 1293.7
SA1MM Phylogenetic control 1491.6 1519.4 2213.2 2241.0 1248.2 1275.4

Comparison of the maximum likelihood (ML) and the Bayesian information criterion (BIC) of each model with different kin-
ship matrices for maize quantitative traits. The model with the smaller BIC is preferred. Simple, the simple linear model without
adjustment for population effect; SA, the model using the output from STRUCTURE as covariates; MM, the mixed model with
different kinship matrices. The descriptions of kinship matrices are the same as in the Figure 1 legend.
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For the liver weight phenotype, we identified a ge-
nomewide significant association around the region of
34.5 Mb in chromosome 2. This falls into a previously
known liver weight QTL Lvrq1 (Rocha et al. 2004). The
region also contains many potentially relevant QTL
such as organ weight (Orgwq2) (Leamy et al. 2002),
spleen weight (Sp1q1) (Rocha et al. 2004), heart weight
(Hrtq1) (Rocha et al. 2004), and lean body mass (Lbm1)
(Masinde et al. 2002). The pointwise P-value of the most
significant SNP was 1.2 3 10�9, which explains 59% of
the genetic variance component. When comparing the
genomewide P-values between the simple t-test and
mixed models in Figure 3, c and d, we observe that the
inflation of P-values is reduced, but the signals are even
more significant around the significant SNP at chromo-

some 2. This demonstrates that mixed-model associa-
tion mapping can not only reduce the inflated false
positives, but also reveal significant associations that
have remained unidentified using conventional statisti-
cal methods in the case when the associated SNP is not
highly correlated with population structure.

For the saccharin preference phenotype, we were able
to identify a SNP 30 kb away from the Tas1r3 gene that is
perfectly correlated with the SNP previously reported to
have significant association with the phenotype (Reed

et al. 2004). It explains 51% of the genetic variance
component, with a P-value of 1.0 3 10�5. The SNP is
neither genomewide significant nor the most signifi-
cant. We believe this is due to the limited power of the
study with a small number of strains.

Power of inbred model organism association map-
ping: We evaluated the statistical power of association
mapping of inbred model organisms in two different
ways. First, we simulated an additive effect of a causal
SNP over the existing phenotypes for mouse, Arabidop-
sis, and maize strains, similar to previous studies. Such
simulation studies evaluate the SNP effect on the power
maintaining the existing correlation structure of phe-
notypes. However, they do not change the effect of the
genetic background or the number of multiple meas-
urements, and no random variable other than the SNP
is involved in the power simulation. As an alternative
model-driven method for simulation studies, we gener-
ated simulated phenotypes randomly sampled from a
multivariate normal distribution with various effects of
population structure on the phenotypic variation. A
SNP effect is simulated on the randomly generated
samples, and the statistical power is evaluated. In this
way, we can simulate not only the SNP effect but also
different genetic backgrounds and different numbers of
replicated measurements. We believe that our simula-
tion analysis provide a more extensive understanding of
the statistical power of association mapping with model
organisms.

Figure 4 shows the statistical power with respect to
the additive SNP effect on the Arabidopsis and maize
flowering-time phenotypes and three inbred mouse
phenotypes used in this article. The maize panel data
set consisting of 277 strains has high statistical power,
achieving 80% power with a SNP effect explaining 5%
of phenotypic variation. Genomewide significance can
also be achieved with high power with 10% of SNP
effects. For the Arabidopsis data set consisting of 95
strains, the statistical power is decreased, and roughly
twice the SNP effect would be needed compared to the
maize panels to achieve the same statistical power. For
the inbred mouse phenotypes, genomewide power is
achievable only when the SNP explains a very large
portion of phenotypic variance. In our results, the
plausible significant associations explained .35% of
the phenotypic variance. The power to achieve genome-
wide power is largely dependent on the number of

Figure 2.—Genomewide cumulative distribution of ob-
served P-values between (a) 13,416 Arabidopsis SNPs and
flowering-time phenotypes across 95 strains using various
models and(b) 106,040 mouse HapMap SNPs and three phe-
notypes, body weight (374 measurements over 38 strains),
liver weight (304 measurements over 34 strains), and saccha-
rin preference (280 measurements across 24 strains). S or
Simple, a simple t-test; SA, structured association; MM, an
F-test with a mixed model with a haplotype similarity kinship
matrix; SA1MM, the unified mixed model using the output
of STRUCTURE as additional fixed effects.
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available strains. Table 2 summarizes the most plausible
associations in these three phenotypes.

Next, we performed simulation studies by sampling
phenotypes from multivariate normal distribution on
the basis of the kinship matrix of 48 inbred mouse
strains with different effects of genetic background due
to population structure. We observed a significant in-
crease of power when multiple measurements are used.
Figure 5a shows the effect of multiple measurements on
the statistical power when the variance from the genetic
component and the residual component are the same.
It suggests that using just a single measurement per
strain may result in a significant decrease in power. Even
though multiple measurements are used, if only the phe-

notypic mean is used in the analysis and the individual
measurements are not taken into account, the statistical
power would decrease significantly. Comparing Figure
5b with 5a clearly shows the advantage of using indi-
vidual measurements over the phenotypic mean in the
statistical analysis. It shows that the statistical power may
differ by up to a factor of two between the two methods.
Other mixed-model association-mapping studies use
only the mean values in their analysis, not fully utilizing
the potential of individual measurements.

Figure 5c shows that a large relative effect from genetic
background reduces the statistical power. As the genetic
background contributes a larger portion of phenotypic
variance, the within-strain variance becomes smaller than

Figure 3.—Genomewide scans for association with initial body weight, liver weight, and saccharin preference, using simple
t-tests and F-tests with mixed models, on the basis of a kinship inferred from haplotype similarities.
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the between-strain variance, and this limits the contribu-
tion of multiple measurements to the statistical power
(Belknap 1998). For example, in an extreme case, when
h2

g ¼ 1; the residual variance is zero and the replicated
measurement does not increase the power since there is
no variability of phenotype within strains.

Figure 5d shows more clearly the effect of genetic
background and multiple measurements at a glance.
When a SNP explains a fairly large fraction (17%) of
phenotypic variance, the genomewide significance level
can be achieved with high power only when the phe-
notype has very small population structure effect and
the number of replicates is large. As the effect from
genetic background becomes larger, the advantage of
using multiple measurements decreases significantly.

DISCUSSION

In this article, we proposed an efficient statistical
method to perform association mapping with struc-
tured samples on the basis of a linear mixed model. Our
results with maize and Arabidopsis panels show that
EMMA robustly reduces the inflated false positives un-
der a structured population similar to currently avail-
able mixed-model implementations. The accuracy and
stability of the numerical optimization in EMMA is
greater than others due to global optimization of like-
lihood function and guaranteed convergence proper-
ties with a smaller search space. Our presentation of
the EMMA method is focused on a particular case of a
mixed model where two variance components are
involved because this is the typical model that previous
studies assume, and it is straightforward to correct pop-
ulation structure via one kinship matrix inferred from
genomewide markers.

The computational efficiency of EMMA is orders of
magnitude greater than that of other widely used im-
plementations. When multiple measurements per strain
are used across different individuals, the relative effi-
ciency is further increased. This is of a great importance
when the computational cost may be a bottleneck in the
statistical analysis of high-throughput data such as
genomewide gene expressions. For example, the single
run of genomewide association mapping of mouse body
weight phenotypes with multiple measurements would
take up to a month of CPU time with other implemen-
tations, while EMMA takes only a single CPU hour.
When hundreds and thousands of phenotypes are
available such as in the analysis of whole-genome ex-
pression data, the computational cost of previous imple-
mentations is prohibitive even with high-performance

Figure 4.—Comparisons of the statistical power of the
EMMA method across three different inbred mouse pheno-
types and flowering time of Arabidopsis and maize, by ran-
domly selecting causal SNPs across the genomewide SNPs.
(a) Pointwise power denotes the power to identify causal SNPs
at a nominal P-value of 0.05. (b) Regionwide power assumes
50 hypothetical tagSNPs in a genomic region. With 20 kb be-
tween tagSNPs, the genomic region covers up to 1 Mb. (c) Ge-
nomewide power is the power to achieve genomewide
significance using the P-value threshold 10�5, which is conser-

vative compared to the permutation-based genomewide sig-
nificance thresholds using the original phenotypes. The
phenotypic variation explained by SNP effect is computed as-
suming a minor allele frequency (MAF) of 0.3.

1718 H. M. Kang et al.



computing. It should be noted that there are other
techniques developed for improving computational ef-
ficiency of the numerical estimation in a more general
context of linear mixed models such as average infor-
mation REML (Gilmour et al. 1995), but these techni-
ques would not provide us with the same improvements
on the efficiency of each iterative procedure.

Our results of inbred mouse association mapping show
the potential and limitations of genomewide inbred
mouse association studies. It is remarkable that we were
able to identify significant associations at a genomewide
level without inflation of false positives, under the limited
statistical power of the method. Although there is a
possibility that residual confounding still remains with
mixed-model association, we believe that the most sig-
nificant SNP associated with liver weight is likely to be a
true positive because it explains a large portion of phe-
notypic variations between the strains beyond genetic
background effect so that the conservative Bonferroni-
adjusted P-value still remains significant. The SNP asso-
ciated with body weight looks also plausible, but it could
possibly be due to residual confounding that is not
completely captured by a kinship matrix. Likewise, other
significant associations can possibly be due to residual
confounding not captured by the kinship matrix, so the
identified associations must be verified through inde-
pendent analysis.

In a more general context of association mapping
that requires the use of multiple variance components,
the computational advantages of EMMA are not appli-
cable since EMMA can effectively solve a model only
with one correlated variance component. For example,
when allowing heterozygous alleles for outbred individ-
uals, the full model typically takes both additive and
dominant variance components in the linear mixed
model (Lynch and Ritland 1999; Arbelbide et al.
2006). Likewise, if strain-specific environmental ran-
dom effects or other additional random effects are to be
considered such as in plant association mapping, mul-
tiple variance components need to be used. In such
cases where EMMA is not directly applicable, computa-
tional bottlenecks may be the biggest obstacles in
analyzing large amounts of data such as genomewide

expression profiles. EMMA can still be applied in this
case if a reasonable approximation is combined with
other standard mixed-model methods taking multiple
variance components. Under the null hypothesis, it is
possible to estimate the ratio between multiple variance
components using the full model, and EMMA can be
applied under an alternative hypothesis assuming that
the ratio between variance components is preserved.
Since variance-component estimation under the null
hypothesis needs to be done once across a larger num-
ber of alternative hypotheses for each marker, such an
approximation procedure provides a large amount of
computational efficiency essentially equivalent to EMMA
with one variance component. Although the approxi-
mated test may lose statistical power slightly, the false
positive rates would not be inflated.

There have been several genomewide association-
mapping studies with inbred mouse strains. To the best
of our knowledge, our results are the first whole-
genome association mapping of inbred mice that takes
the genetic relatedness into account via a statistical
method supported by asymptotic theory. Previous stud-
ies either do not take the population structure into
account (Cervino et al. 2007) or apply heuristics to
reduce the confounding effect from population struc-
ture. For example, the weighted version of the F-statistic
(Pletcher et al. 2004) does not follow the asymptotic
null distribution. Redefining the significance level on
the basis of the empirical null distribution given the
heritability parameter (Liu et al. 2006) or the weighted
permutation (McClurg et al. 2007) rescales the P-values
only similar to genomic control and will suffer from a
lack of power as the genetic background effect becomes
larger.

Our power simulation studies provide assistance to
the design of the association study under the effect of
population structure. Multiple factors are involved in
determining the condition for identifying a locus, and it
cannot be represented simply by a single value such as
phenotypic variance explained by the SNP. Our results
show the importance of multiple measurements of
phenotypes from multiple animals for each strain and
of directly using the individual measurements in the

TABLE 2

List of plausible associations in the mouse association mapping

P-value Variance explained (%)

Phenotype Chromosome Position F-test LR test Overall Genetic Alleles MAF Notes

Body
weight

8 113,588,970 3.9 3 10�6 1.9 3 10�5 49.0 38.7 A/C 0.27 300 kb from the LOD
peak of Bwq3 QTL

Liver
weight

2 34,499,435 1.2 3 10�9 1.4 3 10�7 39.1 58.6 G/C 0.50 Genomewide significant,
within Lvrq1 QTL

Saccharin
preference

4 154,883,600 1.0 3 10�5 7.5 3 10�5 35.9 50.6 G/A 0.31 30 kb from Tas1r3 gene

MAF, minor allele frequency.
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statistics for association mapping. Taking individual
measurements into account within the association map-
ping is much more computationally intensive. EMMA
provides a method for efficiently handling individual
measurements. In addition, our results also demon-
strate the effect of genetic background on the statistical
power. As the population structure explains larger
phenotypic variance, the power using multiple measure-
ments becomes lower.

Our results show that phylogenetic control can
control for population structure as effectively as the
linear mixed model based on the genetic similarity
matrix in some data sets despite the limited ability of the
model to represent complex genetic relatedness. Since
genetic similarity matrices are better models when ac-
counting for recombination and hybridization, and also
are easier to compute, phylogenetic control is not pre-

ferred in association mapping in model organisms.
However, it is possible to compute the likelihood of the
phylogenetic control model in linear time (Felsenstein

1985), and this may be useful when a very large number
of individuals are to be tested.
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APPENDIX: DERIVATION OF RESTRICTED LIKELIHOOD AND ITS DERIVATIVES

A derivation of Equations 6 and 7 from Equations 2 and 3 is presented in Patterson and Thompson (1971) and
Harville (1974). However, their derivation is not straightforward, and it needs to be clarified how exactly it is related
to spectral decomposition. Here we describe a more detailed description of obtaining Equations 6 and 7.

Plugging in the optimal parameters b̂ and ŝF ¼ R=n in Equation 2, it follows that

fFðdÞ ¼ lFðy; b̂; ŝ; dÞ ¼ 1

2
�n log

2pR

n
� log jH j � n

� �
: ðA1Þ

From Equation 4, it is straightforward that logjH j ¼
Pn

i¼1 logðji 1 dÞ: And R can be rewritten as follows:

R ¼ ðy � X b̂Þ9H�1ðy � X b̂Þ ðA2Þ

¼ y9ðI � X ðX 9H�1X Þ�1X 9H�1Þ9H�1ðI � X ðX 9H�1X Þ�1X 9H�1Þy ðA3Þ

¼ y9P 9H�1Py; ðA4Þ

where P ¼ I � X(X9H�1X)�1X9H�1.
It is straightforward to show that

ðSHSÞðP 9H�1PÞðSHSÞ ¼ SHS ðA5Þ

ðP 9H�1PÞðSHSÞðP 9H�1PÞ ¼ P 9H�1P ; ðA6Þ

using the fact PS ¼ S and SP ¼ S. Consequently,

P 9H�1P ¼ ðSHSÞ1 ¼ URdiag ðls 1 dÞ�1
� �

U 9R; ðA7Þ

where (�)1 denotes the pseudo-inverse of a matrix. Therefore, it follows that

R ¼ y9ðP 9H�1PÞy ðA8Þ

¼ ðU 9RyÞ9diag ðls 1 dÞ�1
� �

ðU 9RyÞ ðA9Þ

¼
Xn�q

s¼1

h2
s

ls 1 d
: ðA10Þ
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From Equations A1 and A10, it follows that

fFðdÞ ¼
1

2
n log

n

2pe
� n log

Xn�q

s¼1

h2
s

ls 1 d

 !
�
Xn

i¼1

logðji 1 dÞ
" #

: ðA11Þ

The restricted likelihood of y is equivalent to computing the likelihood of Ay where S ¼ AA9 and A9A ¼ I:

ðSHSÞðSHSÞ1 ¼ ðSHSÞðP 9H�1PÞ ¼ SHP 9H�1P ¼ SP ¼ S ðA12Þ

(Patterson and Thompson 1971; Harville 1974). On the other hand,

ðSHSÞðSHSÞ1 ¼ ðURdiagðls 1 dÞU 9RÞ URdiag ðls 1 dÞ�1
� �

U 9R
� �

¼ URU 9R: ðA13Þ

Accordingly, URU 9R ¼ S and U 9RU R ¼ I hold, and the restricted likelihood of y is equivalent to the likelihood of U 9Ry�
N(0, s2diag(ls 1 d)). By plugging in ŝ2

R to s2, it immediately follows that

fRðdÞ ¼
1

2
ðn � qÞlog

n � q

2pe
� ðn � qÞlog

Xn�q

s¼1

h2
s

ls 1 d

 !
�
Xn�q

s¼1

logðls 1 dÞ
" #

: ðA14Þ
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