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The surface uplift history of the Tibetan Plateau and Himalaya is
among the most interesting topics in geosciences because of its
effect on regional and global climate during Cenozoic time, its
influence on monsoon intensity, and its reflection of the dynamics
of continental plateaus. Models of plateau growth vary in time,
from pre-India-Asia collision (e.g., �100 Ma ago) to gradual uplift
after the India-Asia collision (e.g., �55 Ma ago) and to more recent
abrupt uplift (<7 Ma ago), and vary in space, from northward
stepwise growth of topography to simultaneous surface uplift
across the plateau. Here, we improve that understanding by
presenting geologic and geophysical data from north-central Tibet,
including magnetostratigraphy, sedimentology, paleocurrent mea-
surements, and 40Ar/39Ar and fission-track studies, to show that
the central plateau was elevated by 40 Ma ago. Regions south and
north of the central plateau gained elevation significantly later.
During Eocene time, the northern boundary of the protoplateau
was in the region of the Tanggula Shan. Elevation gain started in
pre-Eocene time in the Lhasa and Qiangtang terranes and ex-
panded throughout the Neogene toward its present southern and
northern margins in the Himalaya and Qilian Shan.

climate � tectonics � magnetostratigraphy � Hoh Xil Basin � Cenozoic

The Tibetan Plateau is the most extensive region of elevated
topography in the world (Fig. 1). How such high topography,

which should have an effect on climate, monsoon intensity, and
ocean chemistry (1–5), has developed through geologic time re-
mains disputed. Various lines of investigation, including evidence
from the initiation of rift basins (6), potassium-rich (K-rich) vol-
canism (7), tectonogeomorphic studies of fluvial systems and
drainage basins (8), thermochronologic studies (9), upper-crustal
deformation histories (10, 11), stratigraphic and magnetostrati-
graphic studies of sediment accumulation rates (12), paleobotany
(13), and oxygen isotope-based paleoaltimetry (14–22), have sug-
gested different uplift histories. Authors of recent geologic studies
(11) have proposed that significant crustal thickening (and by
inference, surface uplift) in the Qiangtang terrane occurred in the
Early Cretaceous [�145 mega-annum (Ma) age], followed by major
crustal thickening within the Lhasa terrane between �100 and 50
Ma ago. This hypothesis remains disputed (23). Other models of
plateau growth range from Oligocene (e.g., �30 Ma ago) gradual
surface uplift (7) to more recent (�7 Ma ago) and abrupt surface
uplift (24), with oblique stepwise growth of elevation northward
and eastward after the India-Eurasia collision (7, 20, 25, 26). With
few exceptions (e.g., see refs. 11 and 27), most of these models focus
on data from the Himalaya and southern Tibet and remain rela-
tively unconstrained by geologic data from the interior of the
Tibetan Plateau.

The Hoh Xil Basin (HXB) of the north-central Tibetan Plateau
(Figs. 1 and 2) is the most widespread exposure of Paleogene
sediments on the high plateau and contains �5,000 m of Cenozoic
nonmarine strata (28). Although the HXB (5,000-m average ele-
vation) is a part of the high plateau today, it once was a basin

bounding the northern boundary of the Paleogene proto-Tibetan
Plateau. The HXB, characterized by low-gradient fluvial and
lacustrine facies, may be an analogue of the Qaidam or Tarim basin
systems on the northern margins of the modern high plateau, which
are a variety of foreland basins termed ‘‘collisional successor
basins’’ by Graham et al. (29). Here, we argue that the HXB is a
foreland basin system that developed in concert with the rise and
erosion of adjacent high mountain belts. Specifically, our work
supports the idea that HXB evolution was coeval with the surface
uplift of the Qiangtang terrane to the south and that high elevation
characterized the central Tibetan Plateau by Eocene time.

Sedimentology and Magnetostratigraphy of the HXB
HXB sediments are exposed most extensively in the Fenghuo Shan
(‘‘shan’’ means ‘‘mountain’’ in Chinese) region and can be divided
into three lithostratigraphic units. The basal Fenghuoshan Group
(FG) consists of cobble-pebble conglomerate, red sandstone, and
bioclastic limestone of fluvial, fan-delta, and lacustrine origin. The
overlying Yaxicuo Group (YG) is distinguished by sandstone,
mudstone, marl, and gypsum deposited in fluvial and playa envi-
ronments. A pronounced angular unconformity separates the YG
from the overlying Wudaoliang Group (WG), which consists of
lacustrine marl and minor amounts of black oil shale. The FG and
YG together are �5,000 m thick and deformed by overturned folds
and numerous south-directed thrusts, whereas the 100- to 200-m-
thick WG is only gently tilted.

Nearly 300 paleocurrent measurements indicate that the paleo-
flow direction recorded in the FG is dominantly northward (Fig. 2),
consistent with provenance studies and proximal-to-distal facies
distributions that show that detritus in the HXB was derived from
the Qiangtang terrane to the south (30) and controlled by the
Tanggula thrust system [for data, see supporting information (SI)
Figs. 7 and 8 in SI Appendix]. Paleocurrent indicators in the YG are
also directed to the north in its lower part but are increasingly
deflected eastward higher in the section, with some southerly
indicators at the top of the section (Fig. 2). Thus, paleoflow
indictors are mainly directed northward away from the Tanggula
Shan front and eastward parallel to the front.

Chinese workers traditionally have regarded the initiation of
the HXB as Cretaceous on the basis of pollen biostratigraphy
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(31). Our magnetostratigraphic studies from several HXB
sections, however, suggest that these strata are much younger
(32). The FG was deposited �52.0–31.3 Ma ago (Early Eocene
to Early Oligocene), and the YG was deposited 31.3–23.8 Ma
ago (Early Oligocene) (Fig. 2). The base of the WG is
biostratigraphically dated at �22 Ma ago (Miocene) (31).
Average magnetostratigraphically derived sedimentation rates
for the FG and YG exceed 200 m/Ma and, in detail, indicate
at least three general periods of sediment accumulation (32).

From �55 to 40 Ma ago, sedimentation rates averaged �150
m/Ma, increased significantly to 1,500 m/Ma at �40 Ma ago,
and decreased to �400 m/Ma from �39 to 30 Ma ago. The
rapid acceleration in sedimentation rates at �40 Ma ago
coincides with the deposition of a coarsening-upward boulder-
cobble conglomerate. We interpret these conglomerates as
syntectonic and, therefore, that they may record activity on
basin-bounding thrusts such as the Tanggula thrust system
(Fig. 3).

Fig. 2. Lithologic and magnetochronostratigraphic correlations of measured sections in the Tongtianhe, Fenghuoshan, and Wulanwula subbasins of the HXB.
Magnetochronostratigraphy of the Fenghuoshan subbasin is from ref. 32. Paleocurrent directions indicate westerly and southerly provenances in the Eocene and most
of the Oligocene and northerly provenance in the latest Oligocene. The star in the Fenghuoshan section indicates the carbonate sampling site discussed in ref. 18.

Fig. 1. A simplified tectonic map of the Tibetan
Plateau and Himalaya that shows the major tectonic
blocks, suture zones, large faults, and basins dis-
cussed in the text. JB, Jiuquan basin; QB, Qaidam
basin; GBC, Gangrinboche conglomerates; GCT,
great counter thrust; GT, Gangdese thrust; NKLF,
north Kunlun fault; SKLF, south Kunlun fault; ATF,
Altyn Tagh fault; XF, Xianshui River fault; TTS, Tang-
gula thrust system; JF, Jingsha fault; BNS, Bangong–
Nujiang suture zone; YZS, Yarlung Tsangpo suture
zone; MBT, main boundary thrust. Small circles with
numbers represent sites for Ar/Ar dating: 1–3, sites
studied in ref. 7; 4, sites at which samples of K-rich
lavas in the Zhuerkenwula mountain area (west of
longitude 91°30�E; see Figs. 3 and 4 a and c) were
collected for Ar/Ar dating; 5, HXB volcanic sites (see
Fig. 4 b and c). Labeled boxes (with letters) represent
areas at which previous studies for paleoelevation,
sedimentology, and magnetostratigraphy of Ceno-
zoic sections were conducted: L, Lunpola (20); FS,
Fenghuo Shan (18); N (13, 17); J (43); P (44); Z (see SI
Fig. 12 in SI Appendix). WS, FS, and TS represent the
Wulanwula, Fenghuoshan, and Tongtianhe sections, respectively, shown in Fig. 2. The large box in the center shows the location of the map shown in Fig. 3.
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Crustal Shortening and Fission-Track Analyses
of North-Central Tibet
As previously discussed, field relationships (Fig. 3) indicate that FG
and YG strata were strongly deformed before deposition of the WG
(30). Structural cross sections suggest that crustal shortening in the
Fenghuo Shan region is �43% (30, 33), with the majority of this
shortening complete by the end of the Oligocene. These structural
relationships are similar to those observed in the Nanqian-Yushu
region to the east (27, 34).

Our results from an apatite fission-track study of 25 samples from
the Tanggula Shan and HXB provide constraints on the regional
cooling history (SI Figs. 9 and 10 in SI Appendix). Early Paleogene
apatite fission-track ages and negatively skewed track-length dis-
tributions of basement rock samples from the Tanggula Shan
indicate a rapid cooling event �60–50 Ma ago followed by more
gradual cooling thereafter. This cooling history can be explained by
either regional Early Cenozoic volcanism (34, 35), tectonic exhu-
mation, or a combination of these processes. Overlap in U/Pb ages
in zircon, 40Ar/39Ar ages in biotites (34, 35), and apatite fission-track
ages of volcanic and sedimentary samples is consistent with rapid
unroofing of the northern Tanggula Shan by motion along the
Tanggula thrust system. Moreover, extensive Late Paleogene flat-
lying basalts (see below) that overlie strongly deformed Early
Paleogene strata indicate that significant upper-crustal deforma-
tion and denudation on the northern flank of the Tanggula Shan

was mostly compete by �40 Ma ago. In the HXB, apatite fission-
track samples from 40- to 35-Ma-old FG strata exhibit shorter mean
track lengths and track-length distributions suggestive of cooling
beginning �30 Ma ago. These results are compatible with the
sedimentary accumulation records for the HXB, indicating as much
as 3,500 m of sediment overburden, and the structural history
described above, indicating rapid exhumation of the Fenghuo Shan
�30–22 Ma ago.

Paleogene High-Potassium Volcanism in North-Central Tibet
Many workers attribute the surface uplift of the Tibetan Plateau to
a dynamic response to convective removal of the lower portion of
an overthickened Tibetan lithosphere (36). Hot asthenosphere
beneath a thin lithosphere is expected to produce not only dynamic
topography but also crustal melts (37). Thus, the occurrence of
K-rich, postcollisional volcanism in elevated terranes may be useful
for dating the time of surface uplift. Approximately one decade ago,
it was widely believed that all postcollisional volcanic rocks in Tibet
were younger than �13 Ma and restricted to the northern and
southern margins of the plateau (38). Recent results of others and
those presented here, however, demonstrate that postcollisional
volcanic rocks are widely distributed within the plateau interior and
are older than those in the north and south (39, 40). In particular,
30- to 40-Ma-old K-rich lavas found across the eastern part of
northern Tibet have been cited as evidence for diachronous surface

Fig. 3. Simplified geologic map of the Hoh Xil region (boxed area in Fig. 1) based on 1:250,000-scale regional geologic mapping, showing the distribution of
tectonically disrupted strata of the HXB and structural features. Note that the Jinsha River suture zone (JS, dashed red line) that separates Qiangtang and
Songpan-Ganzi terrane is covered in this region. The dashed black line indicates the Qinghai-Tibet highway. TTS, Tanggula thrust system; SKLF, south Kunlun
fault; A–B, location of the cross section on the lower left of the figure, which shows significant upper-crustal shortening in the Hoh Xil region. Paleogene volcanic
fields of the Zhuerkenwula area are located in the western part of the region shown.
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uplift and high elevations because previously reported K-rich
volcanics from western Qiangtang are �20 Ma old or younger (Fig.
1) (7). Our 40Ar/39Ar geochronologic study of a recently discovered
volcanic province in the Zhuerkenwula mountain area (Figs. 3 and
4a) reveals that K-rich volcanism began in western Qiangtang at
least 33.7–43.5 Ma ago. Calc-alkaline volcanic rocks of Eocene-
Oligocene age were also documented recently in southern Qiang-
tang (40). In the HXB, however, most K-rich lava units are even
younger (6–24 Ma; Fig. 4 b and c) and overlie redbeds of the
foreland basin. Thus, east–west diachronous uplift of the Tibetan
Plateau is not supported by the ages of K-rich lavas, which actually
young northward from the Qiangtang terrane to the Kunlun Shan
(Fig. 4c). Whether these melts are the product of lithospheric
thinning or intracontinental subduction (35, 41) remains a topic of
active research.

Discussion
When did regional surface uplift commence? The transition from
marine to terrestrial facies is one of the most direct lines of evidence
for uplift. The youngest marine strata of the Qiangtang terrane are
Lower Cretaceous, whereas those of the Lhasa terrane are Late

Cretaceous (Fig. 5). These folded deposits are unconformably
overlain by Upper Cretaceous and Paleogene nonmarine deposits,
as imaged by recent seismic profiling in the region (SI Fig. 11 in SI
Appendix) and mapped in outcrop (11, 42). This structural–
stratigraphic relationship indicates that crustal shortening, thick-
ening, and surface uplift were active in both the Qiangtang and
Lhasa terranes well before the Early Eocene (10). South of the
Lhasa terrane, recent biostratigraphic studies in the Himalayan
terrane confirm the record of Paleocene marine deposition in both
the northern and southern Tethyan Himalaya (43, 44). Importantly,
our work demonstrates that the marine Penqu Formation near
Tingri is latest Eocene in age (Priabonian, calcareous nannofossil
zone NP20), extending the age of marine incursion in the southern
Tethyan Himalaya by �5 Ma (44). We also have directly dated an
Early Eocene (zone of Buryella clinata–Thursocyrtis ampla) radio-
larian chert in Saga County in the northern Tethyan Himalaya (SI
Fig. 12 in SI Appendix), where previous studies have only inferred
a mid-Paleogene age on the basis of Paleocene biostratigraphy and
stratigraphic relationships (43, 45). Thus, by using the disappear-
ance of marine facies as a measure of early surface uplift, we
conclude that the emergence of the Himalaya occurred post-
Eocene at the earliest, possibly even more recently. Oxygen isotope-
based paleoaltimetry studies from the Thakkhola graben and
Gyirong basin suggest that the Tethyan Himalaya were at or near
modern elevation by the mid-Miocene (14, 15). Collectively, these
studies are consistent with the sedimentary record of Himalayan
orogenesis (46) and indicate significant southward elevation gain
between 40 and �12 Ma ago.

When the proto-Tibetan Plateau (the Lhasa and Qiangtang
terranes) reached its modern elevation remains uncertain (26),
although regional paleoaltimetry studies provide some constraints.
Independent paleoaltimetry estimates from the Namling-Oiyung
basin in southern Tibet (13, 17) suggest that the elevation of the
southern Tibetan Plateau has remained at �4.6 km since 15 Ma
ago. Farther north, chronologically well constrained stable-isotope
studies from the Nima basin along the Bangong–Nujiang suture
between the Lhasa and Qiangtang terranes suggest that this region
was high and dry, similar to the modern environment, by the Early
Oligocene (22). Oxygen isotope studies of Paleogene strata in the
Lunpola basin, which also spans the Bangong–Nujiang suture,
suggest that the region was 4.0–4.6 km high (20) by the Early
Oligocene (22). Paleoaltimetry estimates from the Hoh Xil region
are equivocal. Cyr et al. (18) used oxygen isotope values from
lacustrine carbonates from the FG and modeled monsoon-
dominated isotopic lapse rates to argue that the HXB was �2 km
high during the Late Eocene, whereas DeCelles et al. (22) reeval-
uated these data by using lower, empirically based lapse rates from
central Tibet and argue that the HXB was 4.7–5.0 km high during
the Late Eocene.

Our evidence from stratigraphy, geochronology of K-rich lavas,
and apatite fission-track studies, as well as the paleoaltimetry
studies discussed above, support the idea that the Lhasa and
southern Qiangtang terranes were at or near their modern elevation
since 40 Ma and formed the proto-Tibetan Plateau (Fig. 6). The
northern edge of the Tanggula Shan formed the northern margin
of the proto-Tibetan Plateau, whereas the Gangdese arc formed the
southern boundary, consistent with the inferences of Kapp et al. (11,
47) and Spurlin et al. (34). Oligocene–Early Miocene upper-crustal
shortening within the HXB would have been driven by Indo-Asian
collisional stresses from the south transmitted across this high
proto-Tibetan Plateau and localized along its northern boundary.
Thus, we argue that the Tibetan Plateau grew southward and
northward from a nucleus of high topography (Fig. 6), consistent
with predictions based on simple physical considerations (48, 49).
Surface uplift to 5,000 m in the HXB region was probably achieved
by a combination of upper-crustal shortening (50), continental
underthrusting of the Lhasa and Songpan-Ganzi terranes beneath
Qiangtang (11), and mantle dynamics (36).

Fig. 4. 40Ar/39Ar plateau ages from this study. (a) Zhuerkenwula mountains,
which is the largest Cenozoic volcanic province in the northern Tibetan-
Kunlun region (�2,500 km2). The K-rich lavas in this province were previously
considered to be �20 Ma old. (b) Plateau ages from the Hoh Xil region. (c)
Distributions of radiometric dates of K-rich lavas from the Qiangtang, Hoh Xil,
and Kunlun belts (�200 dates collected, mainly from refs. 39 and 60).
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Concluding Remarks
We propose a temporally and spatially differential surface-uplift
history of the Tibetan Plateau (Fig. 6). Our integrated study
suggests that the central plateau (the Lhasa and southern Qiang-
tang terranes) was uplifted by the Late Paleogene. A high proto-
Tibetan Plateau may have contributed to climatic changes farther
north in central Asia (19). Intriguingly, this timing also corresponds
to a period of pronounced global cooling (1, 2) and changes in ocean
chemistry (51). The plateau subsequently expanded as a result of
the continued northward collision of India with Asia. To the south,
the Himalaya rose during the Neogene. To the north, the Qilian
Shan rapidly uplifted in the Late Cenozoic. These ranges constitute
the modern southern and northern margins, respectively, of the
Tibetan Plateau.

Methods and Analytical Techniques
Magnetostratigraphy. Magnetostratigraphic sampling was conducted approxi-
matelyevery10m.Several sites includemultiplesamplesatthesamestratigraphic
level. Sampling followed standard paleomagnetic practice with in situ drilling by
a portable gasoline-powered core drill and sample orientation by sun compass.
All experimental work was performed in a magnetically shielded laboratory at
the University of California (Santa Cruz). Samples were subjected to progressive

thermal and alternating field demagnetization and measured at each step of
treatment by a 2G cryogenic magnetometer. Magnetization directions were
determined by principal-component analysis (52). The distributions of paleomag-
netic directions at each site were calculated by using Fisher statistics (53). Each of
the major magnetic polarity zones were defined by several samples of the same
polarity. Age constraints and spacing of the observed polarity intervals were used
to anchor the observed polarity column to the geomagnetic time scale (54).

Geochronology. 40Ar/39Ar analyses were conducted on plagioclase mineral sep-
aratesfrom10samplesfromthewesternregionsofthenorthernTibetanPlateau.
Theanalyticalprocedures followedthosedescribed inref.55.After irradiation,all
samples were step-heated by using a radio-frequency furnace. Argon isotope
analyses were conducted on a MM1200 mass spectrometer at the Institute of
Geology (China Seismological Bureau). 40Ar/39Ar plateau ages are interpreted as
eruption ages for the volcanic samples; all of the plateau ages are well defined
over 75% of the cumulative 39Ar released and are statistically indistinguishable
from their corresponding inverse isochron ages.

Apatite Fission-Track Analyses. Samples for fission-track study came from a
transect that followedtheLhasa-Golmudhighway.All samplesweremeasuredat
the University of Melbourne (Melbourne, Australia). Standard and induced track
densities were measured on mica external detectors (g � 0.5). Ages were calcu-
lated by using the zeta method (362.3 � 8) for dosimeter glass CN-5. Empirical

Fig. 5. Generalized geological correlation across the
Tibetan Plateau and Himalayan terrane, showing the
timing for disappearance of marine strata in the Hi-
malayan, Lhasa, and Qiangtang terranes. The initial
age of the Siwalik foreland basin is according to ref.
46. PQF, marine Pengqu Formation (44); GBC, Gangrin-
boche conglomerate; JCLF, Jiachala Formation of tur-
bidites (43); HPCMS, Himalayan passive continental
margin strata; LZZG, Lingzizhong group volcanics; SXF,
shallow marine Sexing Formation (59); TKNF, marine
member of the Takena Formation; JZSF, Jingzhushan
Formation redbeds; LSF, marine Lang Shan Formation;
ABSF, Abushan Formation redbeds; WDLG, continen-
tal WG; FHSG-YXCG, FG and YG redbeds; �K, K-rich
lava; MCT, main central thrust; YZS, Yarlung Tsangpo
suture zone; BNS, Bangong–Nujiang suture zone; TTS,
Tanggula thrust system. Solid wavy line, nonconfor-
mity; dot–dash line, boundary between marine and
continental sediments.

Fig. 6. Schematic paleogeographic cross sections of
the Himalaya and Tibetan Plateau, showing our pro-
posed surface-uplift history for the Tibetan Plateau, in
which the plateau grows northward and southward
from an elevated proto-Tibetan Plateau (Lhasa and
Qiangtang terranes) beginning in the Late Paleogene.
MBT, main boundary thrust; GCT, great counter thrust;
LZZG, Lingzizhong group volcanics; WDLG, continental
Wudaoliang Group; TTS, Tanggula thrust system;
NKLF, north Kunlun fault; NQF, north Qilian Mountain
fault; GBC, Gangrinboche conglomerates; YZS,
Yarlung Tsangpo suture zone; BNS, Bangong–Nujiang
suture zone; JS, Jinsha River suture zone; MCT, main
central thrust; SL, sea level; GT, Gangdese thrust; GST,
Gaize–Siling Tso thrust; LB, Lunpola basin; SGAT,
Shiquanhe–Gaize–Amdo thrust; SQF, the south Qilian
Mountain fault; SB, Siwalik foreland basin; MFT, main
frontal thrust. The Yaluzangbu River has been fixed as
a reference point. See the A–B line in Fig. 1 for the
position of the 0-Ma cross-section line.
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equations (56) that relate time, temperature, fission-track length, and fission-
track density were used to extract age, track-length, and thermal history data.

Paleocurrents Direction Determination. Paleocurrent directions were measured
from primary sedimentary structures, including cross stratification, pebble imbri-
cation, and ripple crest orientation. The orientations of paleocurrent indicators
were measured in the field with a Brunton compass. For planar paleocurrent
indicators (cross-strata, pebble-cobble imbrication), the strike and dip of the
planar feature were measured. Structural restoration of paleocurrent data were
made by using a computer-based stereonet program.

Radiolarian Biostratigraphy. Ten radiolarian samples were analyzed at the Insti-
tute of Geological Sciences (Jagiellonian University, Krakow, Poland). Samples
were processed following the procedures described in ref. 57. Samples were

treated with 50% hydrochloric acid for 48 h to remove calcium carbonate and
organic carbon and finely sieved (61 �m) with water to remove the fine
fraction. The radiolarian species present and abundances were recorded
following ref. 58.
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