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There is a great interest in the behavior of diatomic molecular solids
under extremely high-pressure conditions that lead to pressure-
induced metallization, molecular dissociation, and formation of
atomic phase. The consensus has been that the phase-transition
sequence that happened in both solid bromine and iodine is from
a molecular phase (phase I), to an incommensurate phase (phase V),
and then to an atomic phase (phase II), with increasing pressure.
However, a puzzle remains unresolved for both solids: pressure-
induced X and Y bands were observed in the Raman spectra in the
molecular phase at low pressures, even before the onset of phase
V. Here, we suggest a phase for solid iodine in such a low-pressure
range (designated as phase I�) in which two different covalent
intramolecular bonds coexist, based on first-principles calculations
and later corroborated by x-ray diffraction experiments. The pres-
sure dependence of the X and Y bands and other vibrational
frequencies measured experimentally can be explained nicely by
combining the vibrational modes of phase I and phase I�. These
results help improve our understanding on the pressure-induced
molecular dissociation and metallization in diatomic solids and
may shed some light on the investigation of similar phenomena in
solid H2.

high pressure � molecular dissociation

Molecular hydrogen was predicted to undergo a transition
from a proton-paired insulator to a monatomic metal

under sufficiently strong compression by Wigner and Hunting-
ton in 1935 (1). Although many experiments have tried to
achieve this (2–5), a direct and convincing experimental obser-
vation of metallic hydrogen in the solid form has yet to be seen.
However, there has been remarkable progress in the study of
other diatomic molecular solids at high density, especially for
bromine and iodine. This includes the observation of pressure-
induced metallic transition, molecular dissociation, and atomic
phase (6–14). The consensus has been that the phase-transition
sequence that happened in both bromine and iodine is from a
molecular phase (phase I), to an incommensurate phase (phase
V), and then to an atomic phase (phase II), with increasing
pressure (6–8).

However, a puzzle remains unresolved. Two bands, X band
and Y band, have been observed experimentally (7, 12) in the
Raman spectra for both iodine and bromine at a much lower
pressure before the onset of phase V, implying that some
structural change may have occurred. These Raman peaks could
not be explained by phase I alone. The pressure dependence of
X band behaves like Ag(L) mode, and that of Y band like B3g(L)
mode of phase I, but they could not be assigned to the vibrational
modes of either phase I or phase V. Recent x-ray absorption
spectroscopy experiments (15) indicate a possibility that a phase
may exist between phase I and phase V in solid bromine, but
there is no detailed structural information.

Here, we present results of our study that a phase of solid
iodine may exist between phase I and V based on first-principles
calculations and later corroborated by x-ray diffraction (XRD)
experiments. This phase has two different covalent intramolec-

ular bonds in molecular solid iodine (hereafter designated as
phase I�), and it exists before the onset of phase V. This finding
provides us with a key step toward the understanding of how the
molecular phase changes to the incommensurate phase and
delineates a picture for the process of pressure-induced molec-
ular dissociation, which could have a significant impact on the
investigation of similar phenomena in solid H2.

Results and Discussion
The new phase (I�) exists between �12.5 GPa, the pressure at
which the X and Y bands start to emerge in the Raman spectra,
and �23.5 GPa, the pressure at which the molecular phase starts
to transform to phase V. This phase I� has a crystal structure as
shown in Fig. 1. It is a C-centered monoclinic Bravais lattice
(space group of C2/M) with eight atoms in a unit cell. The
calculated lattice parameters at 23 GPa are: a � 3.951 Å, b �
5.768 Å, and c � 9.787 Å with � � 113.719°. The two non-
equivalent iodine atoms in the unit cell are at (0.3331, 0.0000,
0.1244) and (0.5849, 0.5, 0.3760). The structure of phase I� can
be understood as a distorted phase I, where C2/M is a subgroup
of Cmca.

Two covalent intramolecular bonds exist in phase I�. Fig. 2
shows the pressure dependence of the two bond lengths (bond
1 and bond 2). The calculated bond lengths of bond 1 and bond
2 are slightly different at pressures �16 GPa. They both become
longer and the difference between their lengths becomes larger
as the pressure increases. The bond lengths increase abruptly at
�23.5 GPa, indicating the first-order phase transition from
molecular phase to phase V. Different bonds coexist in phase I�
that do not occur in phase I or phase II. This phase is an
important intermediate step for the pressure-induced molecular
dissociation and the cause for the emergence of X and Y bands
in the Raman measurements.

Pressure dependence of our calculated vibrational frequencies
of Raman-active modes is shown in Fig. 3. Our results show that
both the X and Y bands can be assigned to the vibrational modes
of phase I�. From the phonon eigenvectors, we find that the
Ag(L)-2 (or X band) mode and the B3g(L)-2 (or Y band) mode
of phase I� are essentially the same as the soft mode [Ag(L)
mode] and B3g(L) mode of phase I, respectively. The calculated
pressure dependence of vibrational frequencies agrees well with
experiments if the effect of this phase is taken into account. The
difference of both high-frequency Ag(S) and B3g(S) modes
between phase I and phase I� is not significant here, as shown in
Fig. 3a Inset, but it was observed in the experiments (7). The
analogies between the modes of both phases can be easily
understood because the interatomic distances in the two systems
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are very similar. At �23.5 GPa, solid iodine starts to transform
to phase V. The calculated frequency of Ag(L)-2 changes
abruptly to �40 cm�1 at pressures �23.5 GPa, showing softening
behavior. It can be concluded that phase I and phase I� coexist
in the pressure range from �12.5 to 23.5 GPa before the onset
of phase V.

The XRD experiments of iodine under several pressure
points were performed. The XRD patterns at 21.1 and 22.8
GPa are shown in Fig. 4 a and b, respectively. The XRD spectra
were refined by the quantitative phase analysis Rietveld
method. The refined analysis shows that solid iodine at these
pressure points is a mixture of phase I with a Cmca space group
and phase I� with a C2/M space group, corroborating our
conjecture. Phase I has a single covalent bond whereas phase
I� has two different covalent bonds. Our XRD experimental
results also show that the content of phase I� increases with
increasing pressure, suggesting that phase I� is indeed an
intermediate phase coexisting with phase I before the onset of
phase V.

Conclusions
We have used both first-principles calculations and high-
pressure x-ray diffraction experiments to show that a new phase
(I�) of solid iodine exists in the pressure region �12.5–23.5 GPa.
This new phase has two different covalent intramolecular bonds,
and it coexists with phase I until the onset of phase V at 23.5
GPa. The existence of such new phase nicely explains the

emergence of the X and Y bands in the Raman spectra and other
vibrational frequencies observed experimentally.

Methods
We used the pseudopotential plane wave method together with Norm-
conserving pseudopotentials (16–18) to perform the calculation and the
generalized gradient approximation (GGA) (19) to describe the exchange-
correlation effect among electrons. The GGA results are in better agreement
with the experimental results than those of local density approximation (LDA)
for this system, especially under high pressures (20). Phonons at � point were
calculated by using the finite-displacement method (21). The XRD data were
obtained by using a Bruker’s SMART-APEX with 4K CCD and 2KW sealed-tube
molybdenum target x-ray generator, and a diamond anvil cell (DAC) was used
to obtain high pressures.
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Fig. 3. Pressure dependence of vibrational frequencies of Raman-active
modes. (a) Our calculated results of phase I and phase I�. (b) The experimental
data from ref. 7.
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Fig. 1. The unit cell of phase I� at 23 GPa (bond1 � 2.775 Å and bond2 �
2.767 Å).
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Fig. 2. Pressure dependence of two calculated bond lengths in phase I� with
pressure.
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Fig. 4. The XRD patterns of solid iodine at 21.1 GPa (a) and 22.8 GPa (b).
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