
Although great progress has been made in our
understanding of the active properties of neuronal
dendrites in recent years (reviewed by Häusser et al.
2000), controversy and uncertainty remain about the
passive membrane properties of neurons. This debate is
still relevant since the passive membrane properties
largely determine the propagation and summation of
synaptic potentials (Rall, 1964; Spruston et al. 1994), and
must also be taken into account when performing
voltage-clamp studies of synaptic currents. Furthermore,
the activation of dendritic voltage-gated currents and the

resulting dendritic electrogenesis, which can affect
neuronal output patterns, rely crucially on the properties
of the passive electrotonic ‘skeleton’ (Pinsky & Rinzel,
1994; Mainen & Sejnowski, 1996; Vetter et al. 2001).
Determining the passive membrane properties of neurons
and constructing accurate passive compartmental models
therefore continues to be of central importance to our
understanding of neuronal function.

The representation of the electrotonic structure of the
neuron as a series of compartments, each with an
intracellular resistivity (Ri), specific membrane resistance
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1. Simultaneous dendritic and somatic patch-clamp recordings were made from Purkinje cells in
cerebellar slices from 12- to 21-day-old rats. Voltage responses to current impulses injected via
either the dendritic or the somatic pipette were obtained in the presence of the selective Ih

blocker ZD 7288 and blockers of spontaneous synaptic input. Neurons were filled with biocytin
for subsequent morphological reconstruction.

2. Four neurons were reconstructed and converted into detailed compartmental models. The
specific membrane capacitance (Cm), specific membrane resistance (Rm) and intracellular
resistivity (Ri) were optimized by direct fitting of the model responses to the
electrophysiological data from the same cell. Mean values were: Cm, 0.77 ± 0.17 µF cm_2

(mean ± S.D.; range, 0.64–1.00 µF cm_2), Rm, 122 ± 18 kΩ cm2 (98–141 kΩ cm2) and Ri,
115 ± 20 Ω cm (93–142 Ω cm).

3. The steady-state electrotonic architecture of these cells was compact under the experimental
conditions used. However, somatic voltage-clamp recordings of parallel fibre and climbing fibre
synaptic currents were substantially filtered and attenuated.

4. The detailed models were compared with a two-compartment model of Purkinje cells. The
range of synaptic current kinetics that can be faithfully recorded using somatic voltage clamp
is predicted fairly well by the two-compartment model, even though some of its underlying
assumptions are violated.

5. A model of Ih was constructed based on voltage-clamp data, and inserted into the passive
compartmental models. Somatic EPSP amplitude was substantially attenuated compared to
the amplitude of dendritic EPSPs at their site of generation. However, synaptic efficacy of the
same quantal synaptic conductance, as measured by the somatic EPSP amplitude, was only
weakly dependent on synaptic location on spiny branchlets.

6. The passive electrotonic structure of Purkinje cells is unusual in that the steady-state
architecture is very compact, while voltage transients such as synaptic potentials and action
potentials are heavily filtered.
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(Rm) and specific membrane capacitance (Cm), originates
from the work of Rall (1964). More recent compartmental
models have combined electrophysiological and
morphological data from the same cell (Redman &
Walmsley, 1983; Clements & Redman, 1989; Major et al.
1994; Rapp et al. 1994; Chitwood et al. 1999) or from the
same cell type (Johnston & Brown, 1983; Shelton, 1985;
Spruston & Johnston, 1992; Mainen et al. 1996) to provide
more reliable estimates of the model parameters. While
these models have proved extremely useful, many of
them suffer from serious non-uniqueness in the model
parameters; that is, there exist a variety of combinations
of parameters which provide equally good fits to the
available data (Stratford et al. 1989; Major et al. 1993).

The great majority of previous passive modelling studies
have gathered electrophysiological data from somatic
recordings only, and one potential solution to the problem
of non-uniqueness in the model parameters is to record
simultaneously from two points on the same neuron
(Stuart & Spruston, 1998). This configuration has several
important advantages. First, it provides data from two
distinct locations on the same cell, increasing the amount
of information against which the model must be
constrained. Second, the attenuation of signals between
one recording site and the next is highly sensitive to the
electrotonic structure, particularly the intracellular
resistivity (Major, 1993). Third, reciprocity relations
between the two current injection sites can provide an
important test of the linear behaviour of the neuron
(Major et al. 1993; Ulrich & Stricker, 2000; Berger et al.
2001). Fourth, recording from multiple sites can provide
information about non-uniformities in the membrane
properties (Stuart & Spruston, 1998; Berger et al. 2001).
Finally, since one electrode records signals while the other
injects current, at least at one recording site the entire
waveform is largely unaffected by pipette artifacts
related to current injection, which can seriously
compromise estimation of Ri (Major et al. 1994).

Here we use the patch-clamp technique to make
simultaneous recordings from two sites on the same
Purkinje cell (Stuart & Häusser, 1994; Häusser & Clark,
1997), with one pipette located at the soma and another
pipette located on a dendrite. This offers the additional
advantage that the shunt associated with microelectrode
recording can be neglected due to the high (gigaohm)
resistance of the patch-clamp seal (Major et al. 1994). We
construct compartmental models based on complete
morphological reconstructions of the cells recorded from,
and determine their electrical parameters by direct
fitting of dendritic and somatic impulse responses. To
assess the reliability of the models we use resampling
techniques (Efron & Tibshirani, 1993) to estimate
statistical and systematic errors in the best-fit model
parameters. The error analysis demonstrates that
predictions of the models, such as the attenuation of
EPSCs or EPSPs from their dendritic origin to the soma,

may be more robust than suggested by the uncertainties
in individual electrical and morphological parameters,
which trade off against each other. We also test the
assumptions and predictions of a reduced two-
compartment model of Purkinje cells (Llano et al. 1991)
by comparing it with our detailed multicompartmental
models. Preliminary results from this study have been
presented in abstract form (Roth & Häusser, 1999).

METHODS
Experiments

Electrophysiology. Simultaneous whole-cell patch-clamp recordings
were made from the dendrites and somata of visually identified
Purkinje cells in rat cerebellar slices as previously described (Stuart et
al. 1993; Stuart & Häusser, 1994). Wistar rats aged 12–21 days
postnatal (P12–21) were killed by decapitation in accordance with
local regulations and sagittal slices (250–300 µm) were cut on a
vibratome (Dosaka, Kyoto, Japan) in ice-cold extracellular solution
containing (mM): 125 NaCl, 2.5 KCl, 25 glucose, 25 NaHCO3, 1.25
NaH2PO4, 2 CaCl2 and 1 MgCl2. The slices were incubated at 34 °C for
45 min and then kept at room temperature before transfer to the
recording chamber. Purkinje cells were viewed using an upright
microscope (Axioskop FS, Zeiss, Göttingen, Germany; w 60, 0.9 NA
water-immersion objective, Olympus, Tokyo, Japan) and infrared
differential interference contrast (IR-DIC) videomicroscopy (Stuart
et al. 1993). Experiments were carried out at room temperature
(23 ± 1 °C).

Recordings in current-clamp mode were made using two Axoclamp 2B
amplifiers (Axon Instruments, Foster City, CA, USA). Pipettes
(5–7 MΩ) were coated with Sylgard 184 (Dow Corning, Midland, MI,
USA) to reduce their capacitance. The internal patch-pipette solution
contained (mM): 100 potassium gluconate, 20 KCl, 10 Hepes, 10
EGTA, 4 Na2ATP, 4 MgCl2 and 0.5 % biocytin (295 mosmol kg_1; pH
adjusted to 7.3 with KOH). The external solutions contained
30–50 µM ZD 7288 (Tocris Cookson, Bristol, UK) to block the
hyperpolarization-activated cation current (Ih) (Harris & Constanti,
1995). Spontaneous synaptic activity was blocked using 10 µM

CNQX, 50 µM picrotoxin and 30 µM SR 95531. Seal resistances before
break-in were > 5 GΩ. To generate impulse responses, brief (0.5 ms)
positive and negative current pulses (0.5–1 nA) were injected via
either the somatic or dendritic pipette at 1.017 Hz. Somatic and
dendritic impulses, and impulses of different polarity, were
interleaved. Bridge balance was monitored continuously (series
resistance was 7–15 MΩ at the somatic pipette and 15–50 MΩ at the
dendritic pipette) and optimal capacitance compensation was
employed. Voltages were filtered at a bandwidth of 5 kHz (_3 dB)
using an 8-pole low-pass Bessel filter and sampled at 20 kHz using
pCLAMP software (Axon Instruments). The calibration of the
stimulation and recording apparatus was verified using artificial
neurons consisting of networks of resistors and capacitors in
conjunction with computer models of these neurons.

Somatic voltage-clamp recordings were made from P12–14 Purkinje
cells using an Axopatch 200B amplifier (Axon Instruments). The
same internal solution was used as for the current-clamp recordings.
In order to isolate the hyperpolarization-activated current, Ih, the
external solution contained 1 µM TTX, 0.1 mM CdCl2, 1 mM

4-aminopyridine, 5 mM TEA, 5 µM CNQX and 30 µM SR 95531, and
lacked ZD 7288. Series resistances were 5–8 MΩ before
compensation, and were compensated by 80–90 %. Ih was activated
by 5 s voltage-clamp steps to different test potentials from a holding
potential of _50 mV. Deactivation and the reversal potential of Ih

were measured by holding at _110 mV for 5 s and then jumping to
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different test potentials. Membrane potentials were not corrected for
the liquid junction potential. All drugs were from Sigma unless
otherwise indicated.

Electrophysiological data were analysed using macros in IGOR Pro
(Wavemetrics, Lake Oswego, OR, USA), and the program Synaptix
(kindly provided by Boris Barbour). During analysis of impulse
responses, each sweep was inspected, and sweeps containing
significant noise artifacts were rejected. Data are given as
means ± S.D.

Histology. At the end of the recording period (< 30 min), pipettes
were withdrawn from the cell to form outside-out patches in order to
preserve the integrity of the membrane and confirm the integrity of
the gigaohm seal. Slices were fixed for 24 h in cold 100 mM

phosphate-buffered saline (PBS, pH 7.4) containing 4 %
paraformaldehyde. Fixed slices were not dehydrated or resliced in
order to minimize tissue shrinkage and/or distortion. After fixation,
slices were rinsed several times in PBS and endogenous peroxidases
were blocked by incubation of slices for < 10 min in solution
containing 1 % H2O2, and 10 % methanol in PBS. After washing in
PBS, sections were incubated for 2 h in avidin-biotinylated
horseradish peroxidase (ABC-Elite, Vector Labs, Peterborough, UK).
Following incubation, sections were washed several times in PBS,
briefly incubated in a solution containing 0.015 % diaminobenzidine,
and developed under visual control using a brightfield microscope
until all processes of the cells were clearly visible (usually after
2–4 min). The reaction was stopped by transferring the sections into
cold PBS, and slices were mounted in Mowiol (Clariant, Sulzbach,
Germany).

Morphological reconstruction. The mounted neurons were digitally
reconstructed using a w 100, 1.4 NA oil-immersion objective on a Zeiss
Axioplan microscope and Neurolucida software (MicroBrightField,
Colchester, VT, USA), which records the visually determined
diameters and three-dimensional coordinates of all neurites. To assess
possible distortion caused by histological processing (Jaeger, 2001),
the diameters and lengths of several dendritic sections measured
during the experiment were compared with the same values
measured from the fixed neuron; errors were less than 5 % in all
cases, and therefore no shrinkage correction was applied to the
reconstructed morphology. The position of the dendritic recording
site with respect to major branch points was determined visually
during the experiment and implemented accordingly in the
reconstruction. Possible errors in dendritic diameters and lengths, as
well as the position of the dendritic recording pipette, were
considered in the analysis of systematic errors in the model (see
below). 

Theory

Compartmental modelling. All modelling was carried out using
NEURON 3.2.3 and 4.1.1 (Hines & Carnevale, 1997, 2000) running on
Sun Sparcstations (Sun Microsystems, Palo Alto, CA, USA) and an
SGI Origin 2000 server (Silicon Graphics, Mountain View, CA, USA).
Reconstructions were converted from Neurolucida to NEURON
format using a program written in C. Dendritic and axonal sections
were subdivided into compartments (‘segments’) whose length limit
was scaled proportional to the square root of the local diameter; the
maximum compartment length was 8.3 µm. The number of
compartments was increased in dendritic sections adjacent to the
somatic and dendritic recording sites. Somata were assumed to be
rotationally symmetric and represented by 10 compartments. The
total number of compartments was 1190, 1084, 1463 and 2758 for
Cell 1 to Cell 4, respectively (see Table 2). Membrane parameters Cm,
Rm and Ri were assumed to be uniform across each cell, unless
specified differently. The integration time step for all simulations
was 10 µs.

Spine densities. Spines were incorporated by scaling membrane
capacitance and conductances (Shelton, 1985; Holmes, 1989). Regions
of high spine density in the spiny branchlets, and low spine density
along the main dendrites were delineated by visual inspection of each
cell in the light microscope (LM). In the spiny branchlets, spine counts
in LM indicated that spine densities per dendritic length were
proportional to the mean dendritic diameter (see also Larkman, 1991,
his Fig. 3), suggesting that spine density per dendritic shaft area is
approximately constant. However, in absolute terms spine densities
estimated in LM were, as expected, lower than those obtained from
electron microscopic (EM) studies (Harris & Stevens, 1988; Napper &
Harvey, 1988). Thus, to calculate scale factors for Cm and 1/Rm in the
spiny branchlets of the older cells (Cell 3 and Cell 4), we used spine
densities from Harris & Stevens (1988, their Fig. 2). Scale factors
were given by F = (NspineAspine + πdl)/(πdl), where Nspine is the number
of spine origins on a reconstructed dendritic segment, Aspine

(= 1.12 µm2) is the mean membrane area of a spine (Harris & Stevens,
1988), and d and l are the mean diameter and length of the dendritic
segment, respectively. The mean scale factor, calculated for the
dendritic segments reconstructed by Harris & Stevens (1988), was
5.34. For the P14 cells (Cell 1 and Cell 2), we used spine counts from a
3-D reconstruction of a P14 Purkinje cell spiny branchlet obtained
from serial ultrathin sections (A. Roth, Z. Nusser & M. Häusser,
unpublished data), yielding a scale factor of 3.5. In regions of low
spine density along the main dendrites, the scale factor was
1.2 throughout, corresponding to ~2 spines per micrometre
(R. J. Harvey, personal communication). Some axonal sections in Cell
4 were unstained and assumed to be myelinated. Thus, membrane
capacitance and conductances in these sections were reduced by a
factor of 10 to account for myelination.

Pipette models. Optimal capacitance compensation is expected to
cancel the effects of most of the pipette capacitance. However, the
capacitance of the pipette tip remains largely uncompensated due to
series resistance (Thurbon et al. 1998). Therefore, the pipette tips
were included explicitly in the compartmental model. Somatic
pipette tips were modelled as a conical arrangement of sections, with
an initial diameter of 2 µm, a final diameter of 256 µm, and a total
length of 2.55 mm (cf. Major et al. 1994). They were subdivided into
80 compartments. Dendritic pipette tips were constructed
analogously, but diameters were reduced by a factor of 1.58. The
value of Ri in each pipette model was chosen such that the series
resistance of the model matched the series resistance of the respective
pipette in the experiment, as determined from the setting of the
bridge balance during collection of impulse responses. The
capacitance per unit length of each pipette was assumed to be
constant, as would be expected if the local wall thickness of the
pipette tip is scaled proportional to the local outer diameter
(Sakmann & Neher, 1995). Values of this parameter for each pipette
model (range, 0.15–1.75 pF mm_1) were estimated by including it in
direct fits of impulse responses (see below). The conductivity of the
pipette wall was assumed to be zero.

Direct fitting. The free parameters of the compartmental models,
usually Cm, Rm and Ri, were determined simultaneously by direct
fitting of the averaged impulse responses measured experimentally
in the same cell (Clements & Redman, 1989; Major et al. 1994; Stuart
& Spruston, 1998; Thurbon et al. 1998). The baseline of the averaged
experimental responses was determined over a 50 ms period ending
6.5 ms before the beginning of the impulse and then subtracted from
the experimental average. Squared differences between impulse
responses predicted by the model and those measured experimentally
were minimized using a multidimensional optimization method built
into NEURON. The algorithm, PRAXIS, uses the principal axis
method (Brent, 1973; Press et al. 1992) to efficiently solve non-linear
fit problems in which some parameters are strongly correlated or
anticorrelated (such as Cm and Rm).
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To account for low-pass filtering of the experimental responses,
model responses were convolved with a Gaussian filter kernel
corresponding to a cutoff frequency of 4.93 kHz (Colquhoun &
Sigworth, 1995). Local voltage responses, measured by the electrode
injecting a current pulse, and transfer responses to both somatic and
dendritic current injection were fitted simultaneously, unless
specified differently. The standard fit interval started with the
beginning of the current pulse and ended 100 ms later, except for
local responses where it started 2 ms after the beginning of the
current pulse to avoid pipette artifacts due to the large voltage drop
across the current-injecting electrode (Major et al. 1994). Fits were
tested for convergence by restarting them with different sets of
initial parameter values. In addition, at the end of each fit a grid
search was performed by independently varying the fit parameters
by ± 0.1 % around their best-fit values.

Statistical and systematic errors. Statistical errors in the best-fit
parameters were estimated by balanced resampling of the measured
traces (Efron & Tibshirani, 1993). Each pair of local and transfer
responses to a somatic or dendritic current pulse was indexed by an
integer from 1 to nsoma or 1 to ndend, respectively, where nsoma is the
number of somatic current pulses, and ndend is the number of dendritic
current pulses for which pairs of experimental impulse responses
were available (in our experiments, nsoma ranged from 55 to 343 and
ndend from 36 to 351). The index sets for the original averages were
then given by the range of all integers from 1 to nsoma and 1 to ndend.
To generate 100 synthetic, resampled data sets, these index sets were
repeated 100 times each to form two lists of length 100 w nsoma and
100 w ndend. Random permutations were applied to these lists, such
that each index still occurred 100 times in each list, but at random
positions. Finally, each list was partitioned into 100 sublists of length
nsoma and ndend, respectively, each sublist representing an index set for a
resampled average impulse response (see also Supplementary material
on the website; http://jphysiol.org/cgi/content/full/535/2/445). After
baseline subtraction, resampled averages were fitted in NEURON
with the same procedure as the original averages, yielding 100
parameter sets for Cm, Rm and Ri, whose distribution is an estimate of
the distribution of statistical errors in the original best-fit
parameters. To estimate the influence of these errors on predictions
of the model, such as the attenuation of EPSCs originating in the
dendrites recorded by somatic voltage clamp, EPSCs were simulated
(see below) for five synaptic locations (illustrated in Fig. 6A and D) in
each cell for each of the 100 parameter sets, and the distribution of
EPSC peak amplitudes and half-widths was determined for each
synaptic location.

The influence of possible systematic errors on best-fit model
parameters and predictions was investigated in a similar way. The
eight most likely independent sources of systematic errors were
considered. Error variables were assumed to be normally distributed
around the mean given by the original morphology and pipette

models, with standard deviations estimated according to the
expected experimental uncertainties (Table 1).

Normally distributed random numbers were used to generate 100
sets of error variables according to Table 1. Physical constraints were
imposed such that lengths, capacitances, spine densities and
diameters were positive. For each set of error variables, modified
morphologies and pipette models were constructed, and the original
average impulse responses were fitted in NEURON, yielding 100
parameter sets for Cm, Rm and Ri whose distribution gives an estimate
of the systematic errors in the original best-fit parameters. To
estimate the influence of systematic errors on predictions of the
model, again EPSCs were simulated for five synaptic locations in
each cell for each of the modified morphologies with its best-fit values
of Cm, Rm and Ri, and the distribution of EPSC peak amplitudes and
half-widths was determined for each synaptic location. Mathematica 4
(Wolfram Research, Champaign, IL, USA) was used in all operations
involving random numbers, for automatic code generation for
NEURON, and in the analysis of the distributions of statistical and
systematic errors.

Voltage-clamp simulations. Somatic voltage clamp was simulated
in NEURON assuming a residual uncompensated series resistance of
1 MΩ. Cells were clamped at their resting potential (_70 mV) unless
specified differently. Multiexponential fits of somatic clamp currents
and dendritic voltage responses were done using DISCRETE 2B
(Provencher & Vogel, 1980), a program for the automatic analysis of
discrete sums of exponential decays. DISCRETE is capable of fitting
sums of up to nine exponentials and can automatically determine the
number of exponentials most likely to describe the data based on a
modified F test.

Synaptic conductances activated by single parallel fibre (PF) inputs
were simulated as a sum of two exponentials, one for the rise (0.2 ms)
and one for the decay (3 ms) unless otherwise indicated. The peak
conductance was 1 nS, and the synaptic reversal potential was 0 mV.
To simulate the synaptic conductance activated by the climbing fibre
(CF), 500 of these conductances (Silver et al. 1998) were placed on the
main dendrites (grey region in Fig. 3A), in agreement with the known
distribution of CF contacts, at a constant density per dendritic
length.

Single-exponential fits of the decay of EPSCs recorded at the soma
were performed in NEURON. The fit interval (length, ~5 decay time
constants) started at the time point after the peak where the EPSC
had decayed to 95 % of its peak amplitude. DISCRETE was used to
fit the rise and decay phases simultaneously with a double
exponential, one for the rise and one for the decay. The fit interval of
the double-exponential fits started at the time point before the peak
where the EPSC had reached 50 % of its peak amplitude, and ended
at the same time point as the interval for the single-exponential fits.

Modelling Ih. A Hodgkin-Huxley-type model of the hyper-
polarization-activated current, Ih, was constructed in Mathematica
and implemented in NEURON. Activation and deactivation of the
conductance underlying Ih was described by a single gating variable,
h, according to (Hodgkin & Huxley, 1952):

dh/dt = a(1 _ h) _ bh,

where t is time. The rate constant for activation (a) is given by:

a = a exp(_b (V _ V1/2)),

and the rate constant for deactivation (b) is given by: 

b = a exp(c (V _ V1/2)).

V is the membrane potential. The free parameters of the model, a, b,
c and V1/2, were determined by fitting the experimentally measured
voltage dependence of the steady-state activation, h•, and the time
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Table 1. Sources of systematic errors

Estimated
Error variable S.D.

Scale factor for lengths in the morphological
reconstruction 0.05

Additive error in reconstructed diameters (µm) 0.3
Multiplicative error in reconstructed diameters 0.1
Error in spine scale factor in regions of low spine density 0.1
Error in spine scale factor in regions of high spine density 1.0
Position of dendritic recording pipette (µm) 1.0
Capacitance of somatic pipette tip (pF mm_1) 0.15
Capacitance of dendritic pipette tip (pF mm_1) 0.15



constant of activation or deactivation, r, which in terms of the model
are given by:

h• = a/(a + b),

and

r = 1/(a + b).

Fitting was done using the FindMinimum function built into
Mathematica. Data points were first weighted by the inverse of their
variance. Then, to ensure that the steady-state activation is well
represented by the model, the weight of the data points of the
steady-state activation curve was increased by a factor of 10. The
model with best-fit parameters was implemented in NMODL (Hines
& Carnevale, 2000) and inserted into the passive Purkinje cell models
in NEURON. The density of the conductance underlying Ih, which
was assumed to be homogeneous, was calibrated by fitting
experimental voltage responses to long (1.5 s) somatic current pulses.

RESULTS
Electrophysiology

Whole-cell patch-clamp recordings were made from
Purkinje cells in sagittal slices of cerebellar cortex in order
to preserve the integrity of the dendritic architecture.
Purkinje cells are spontaneously active even in the
absence of excitatory synaptic input (Rapp et al. 1994;
Häusser & Clark, 1997; Raman & Bean, 1999), and
therefore constant hyperpolarizing current was used to
hold neurons below action potential threshold. At
subthreshold potentials, the membrane behaviour of
Purkinje cells is dominated by the hyperpolarization-
activated cation current, Ih, which causes a pronounced
time-dependent rectification, or ‘sag’, in response to
injection of hyperpolarizing or depolarizing currents
(Crepel & Penit-Soria, 1986; Rapp et al. 1994). Bath
application of the selective Ih blocker ZD 7288 (Harris &
Constanti, 1995) completely abolished sag (Fig. 1A). In
control conditions the extent of sag measured in responses
to long current steps at the soma was 0.59 ± 0.10 (n = 11;
ratio of steady-state vs. peak voltage response), while in
ZD 7288 (30–50 µM) no sag was detectable. Blocking Ih

also hyperpolarized the neurons to a resting potential of
_73.6 ± 7.3 mV, and caused a dramatic increase in the
input resistance and membrane time constant of the
Purkinje cells. In control conditions, the peak and steady-
state input resistance was 106.2 ± 51.9 and
59.3 ± 38.4 MΩ, respectively, while in ZD 7288 the input
resistance was 267.8 ± 157.5 MΩ. The apparent membrane
time constant (rm) estimated from the responses to brief
(0.5 ms) current injections, was 64.6 ± 17.2 ms in control
conditions and 116.9 ± 56.1 ms in the presence of
ZD 7288. As Ih thus affected the responses to both short
and long current pulses, experiments to determine the
parameters of passive compartmental models were
performed in the presence of ZD 7288. The biophysical
properties of Ih were determined separately (see below) in
order to later incorporate this conductance into the model.

Simultaneous somatic and dendritic recordings were
made in order to measure attenuation of voltage between

two locations in the Purkinje cell (Stuart & Häusser,
1994). In the presence of ZD 7288, attenuation of steady-
state membrane potential was slight (< 5 %), even at the
most remote dendritic recording locations (> 150 µm
from the soma). Since this is within the measurement
error for determining bridge balance for the injecting
electrode, this made it difficult to use the steady-state
attenuation to accurately determine the intracellular
resistivity (Stuart & Spruston, 1998). We therefore
examined the spread of the transient voltage response to
brief (0.5 ms) current pulses injected via either the
dendritic or the somatic pipette. These transients
attenuated significantly between somatic and dendritic
recording electrodes, even at relatively small separations
(< 100 µm; Fig. 1C), thus providing a sensitive index of
the electrotonic structure of the neuron (Major et al.
1993).

We performed several tests in order to verify linear
behaviour of the Purkinje cells in response to these brief
current injections. First, the amplitude of the current
injections was varied, and the individual responses were
scaled and superimposed. Second, pulses of different
polarities were inverted and superimposed. Both of these
tests demonstrated linear behaviour in the presence of
ZD 7288 (Fig. 1B). Finally, another important test of the
linear behaviour of a system is the ability to show
reciprocity between two recording sites (Major et al. 1993).
Responses to identical current injections at somatic and
dendritic locations, recorded at the second electrode
located either at the soma or in the dendrites, were
superimposable (Fig. 1C), consistent with linear
behaviour of the membrane under these conditions.

Morphology

Neurons were filled with biocytin during the
electrophysiological recording, and then later processed to
reveal their morphology. Four of these neurons were
selected for complete morphological reconstruction
(Fig. 2) based on the quality of both the
electrophysiological and anatomical data. The four
neurons chosen reflected the range of morphological and
electrophysiological variation present in the whole
dataset. The anatomical features of the reconstructed
neurons are presented in Table 2. As described previously
(Palay & Chan-Palay, 1974; Rapp et al. 1994), the
dendritic tree of the Purkinje cell was elaborated almost
exclusively in the sagittal plane, with the maximal
variation in the z-direction being less than 50 µm. This
confirms that the entire dendritic architecture of the
Purkinje cell can be preserved intact in the sagittal slice
preparation. All four cells had a large primary dendrite
(~4 µm diameter) which bifurcated rapidly within 40 µm
from the soma, giving rise to two or more large secondary
dendrites and numerous smaller branches. The extent of
branching and length of the branches varied with
development (Altman, 1972; Berry & Bradley, 1976),
with the two younger (P14) cells having a shorter total
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length, fewer branches, and consequently smaller total
membrane area than the more mature (P15–P21) cells.
(Note that granule cell migration, which defines the
depth of the molecular layer and thus the height of the
Purkinje cell dendritic tree, is complete by P21, although
Purkinje cells can still exhibit modest increases in number

of branches after this age; Altman, 1972; Berry &
Bradley, 1976.) The dendritic tree could be subdivided
based on direct visual inspection into larger ‘smooth’
branches with few spines (grey region in Fig. 3A),
corresponding to the termination zone of climbing fibre
(CF) contacts (Palay & Chan-Palay, 1974), and the smaller
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Figure 1. Linearity and reciprocity of voltage responses in Purkinje cells with Ih blocked

A, somatic recording from a cerebellar Purkinje cell, injecting a long (1.5 s) or brief (0.5 ms)
hyperpolarizing current pulse under control conditions or in the presence of 50 µM ZD 7288. B, somatic
recording from the same Purkinje cell as in A, injecting brief (0.5 ms) current pulses of different polarity
and amplitude. The response to three pulses is shown: _1.0, _0.5 and +0.5 nA. The right-hand panels
show the superimposed traces after normalizing by the injected current. C, simultaneous somatic and
dendritic recording (75 µm from the soma), injecting a _1.0 nA brief (0.5 ms) current pulse either at the
dendritic (left panel) or somatic (centre panel) electrode (traces have been inverted). The right-hand panel
shows a superimposition of the traces from the somatic and dendritic recording site when the same current
pulse is applied via the independent electrode.



‘spiny branchlets’, corresponding to the innervation zone
of the parallel fibres (PF). The spiny branchlets comprised
the overwhelming majority of the dendritic tree,
representing 95.0 ± 1.3 % of total dendritic length and
96.5 ± 1.1 % of total dendritic area (including spines). The
terminal branches were all of the spiny branchlet type.
Interestingly, in the younger (P14) cells some terminal
branches ended in thin filaments, probably corresponding
to the motile filopodia recently observed in imaging
studies (Jontes & Smith, 2000).

Compartmental models

Compartmental models of the four Purkinje neurons were
constructed by combining morphological and electro-
physiological data from the same cell. The reconstructed
morphology, including the axon, was imported directly
into NEURON, and spines were incorporated into the
model by scaling membrane capacitance and conductances
where appropriate (Shelton, 1985; Holmes, 1989; see
Methods). Voltage responses to brief (0.5 ms) current
pulses (Major et al. 1994) injected either by the somatic or
dendritic recording pipette were then used to probe the
free parameters of the model, Cm, Rm and Ri.

Direct fitting. The standard fit procedure is illustrated
in Fig. 3. Best-fit values of Cm, Rm and Ri were determined
simultaneously by direct fitting of impulse responses (see
Methods). To use as much information about the passive

structure of the cell as possible, four voltage responses
were fitted simultaneously with equal weight: the
somatic and dendritic voltage response to somatic current
pulses (Fig. 3B and C) and the somatic and dendritic
voltage response to dendritic current pulses (Fig. 3D and
E). Note that the transfer responses are identical in a
linear system, and thus in theory they do not provide
independent constraints for a passive model, but in
practice they cause the fitted response to interpolate
between them. In most cases the fits converged easily to a
local minimum in the x2 function, even for poor choices of
starting values. The fitted responses (black lines in
Fig. 3B–E) superimpose well with the experimentally
measured responses, confirming that under these
conditions, the cell is well described by a passive
compartmental model with uniform parameters. Using
this standard fit procedure, Cm was 0.77 ± 0.17 µF cm_2

(n = 4), Rm was 122 ± 18 kΩ cm2 and Ri was 115 ± 20 Ω cm.

Which features in the data constrain which parameter,
and why do the fits converge easily? In the
semilogarithmic plots of somatic and dendritic voltage
responses (Fig. 3C and E) two phases can be distinguished.
In the first phase, which is characterized by a difference
between the voltages recorded at the somatic and
dendritic recording sites, charge injected via an electrode
is redistributed within the cell. In the second phase, in
which somatic and dendritic voltage are approximately
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Figure 2. Three-dimensional
reconstructions of rat Purkinje cells

Two-dimensional projections of the three-
dimensional digital reconstructions of the four
cells selected for modelling. Cell 1 and Cell 2
were from 14-day-old, Cell 3 from 15-day-old
and Cell 4 from 21-day-old animals. Axons,
which were also reconstructed, are omitted for
clarity.



equal, the membrane potential decays homogeneously
back to the resting potential with time constant
rm = RmCm. The two phases were well separated in
Purkinje cells as charge redistribution lasted only a few
milliseconds (up to 20 ms for dendritic current injection;
Fig. 3D and E) while rm was 94 ± 31 ms in the four
selected cells under passive conditions (see Table 3). From
the second phase, the product rm = RmCm was very well
constrained. Its individual factors were also well
constrained as Cm can be estimated by extrapolating the
voltage response of the second phase back to the time of
the end of the current pulse, when all charge has entered
the cell and Cm is determined by the ratio of charge and
(monoexponentially extrapolated) voltage response.
Finally, the single remaining free parameter, Ri, was
constrained by both the amplitudes and the time courses
of the voltage responses during the first phase. Thus, each
of the free parameters was well constrained by
independent features in the data, and the fits did not
suffer from nonuniqueness.

Variations of the standard fit procedure. To assess the
robustness of the model, and to test alternative models,
several modifications to the fit procedure were tested.

When only somatic voltage responses to somatic current
pulses were fitted, Cm was 0.77 ± 0.16 µF cm_2 (n = 4), Rm

was 121 ± 16 kΩ cm2 and Ri was 138 ± 27 Ω cm (see also
Table 3). When the first 2 ms after the beginning of the
current pulse were skipped also in the transfer responses,
as they may also suffer from pipette artifacts (Thurbon et
al. 1998), Cm was 0.77 ± 0.17 µF cm_2 (n = 4), Rm was
122 ± 18 kΩ cm2 and Ri was 131 ± 27 Ω cm. Thus, fits to
part of the available experimental data gave similar
results as the standard fits, confirming the consistency of
the model. Changes to the spine density in spiny
branchlets were tested for Cell 3 (P15). When it was fitted
with P14 spine densities, Cm was scaled up and Rm was
scaled down by a factor of 1.48 as expected for this change
of effective membrane area, to 0.97 µF cm_2 and
86 kΩ cm2, respectively, but Ri was 94 Ω cm, very similar
to the standard value for this cell of 93 Ω cm (see Table 3).

Error analysis. Both statistical and systematic errors may be
responsible for the differences in the values of the best-fit
parameters obtained with variations of the standard fit
procedure. Statistical errors due to noise in the experimentally
measured voltage responses were estimated by the bootstrap
method (Press et al. 1992; Efron & Tibshirani, 1993), which
involves creation of synthetic average voltage responses by
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Table 2. Morphological characterization

Cell 1 Cell 2 Cell 3 Cell 4

Total surface area (without spines; µm2) 15 786 11 788 25 768 40 821
Cell volume (without spines; µm3) 8085 6157 13 161 20 084

Soma 
Soma major axis (µm) 25.7 24.5 27.8 29.3
Soma minor axis (µm) 15.9 15.4 17.6 21.7
Soma perimeter (µm) 66.1 64.6 69.8 78.8
Soma surface area (µm2) 1041 938 1240 1635

Dendrites 
Maximum width of dendritic tree (µm) 176 138 131 193
Maximum height of dendritic tree (µm) * 122 137 154 210
Total number of dendritic compartments 1151 1064 1168 2455
Number of dendritic branch points 306 273 348 567

Maximum branch order 18 26 21 23
Number of dendritic terminals 307 274 349 568
Total dendritic length (µm) 4041 3538 5048 9854
Average dendritic path length (soma–tip; µm) 103.1 117.7 135.0 159.5

Maximum dendritic path length (µm) 166.4 181.5 204.5 269.1
Total dendritic surface area (µm2) ** 46 307 34 366 109 421 180 780
Dendritic/somatic surface area 44.5 36.6 88.2 110.6
Total spine surface area (µm2) 32 062 23 627 86 797 144 267

Length of ‘spiny dendrites’ (µm) 3855 3375 4704 9474
Surface area of ‘spiny dendrites’ (µm2) ** 44 454 32 685 106 120 176 664
Surface area of ‘smooth dendrites’ (µm2) ** 1853 1681 3301 4116
Ratio of ‘spiny’/‘smooth’ surface area 24.0 19.4 32.1 42.9

Axon 
Total number of axonal compartments 29 10 285 293
Total axonal length (µm) 148 47 1087 1282
Total axonal surface area (µm2) 500 111 1904 2673

* Measured from the origin of the dendrite; ** including spines
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Figure 3. Direct fits of impulse responses

A, morphological reconstruction of the dendritic arbor of Cell 4. Regions of low spine density along the
main dendrites (see Methods) are indicated in grey. Positions of the somatic (red) and dendritic recording
pipette (blue) are shown symbolically. B, average somatic (red) and dendritic (blue) voltage responses
measured in the cell shown in A in response to somatic current pulses (0.5 ms, +1 nA, time course shown
at the top of the panel). The somatic and dendritic voltage responses to the same current pulse, simulated
in the model with best-fit parameters, are superimposed (black traces). To skip the pipette artifact, the fit
of the somatic trace starts 2 ms after the beginning of the current pulse. C, same transients as in B, but
plotted with logarithmic voltage scale over the entire fit interval (100 ms). D, average dendritic (blue) and
somatic (red) voltage responses to dendritic current pulses (same parameters as in B). Responses simulated
in the model with best-fit parameters are superimposed in black. The fit of the dendritic voltage response
starts 2 ms after the beginning of the current pulse. E, same traces as in D, plotted semilogarithmically.



resampling the original sweeps (see Methods). Using the
standard fit procedure, relative errors (estimated S.D./mean)
were estimated to be less than 6 % in any fit parameter in any
cell (Table 3). The mean relative error was 0.9 % in Cm (range,
0.4–1.6 %; n = 4), 3.5 % in Rm (range, 2.2–5.7 %) and 2.5 % in Ri

(range, 1.3–4.1 %). The effect of statistical errors on predictions
of the model, such as the somatic amplitude of simulated EPSCs
arising from a dendritic location, was also small. For a typical
synaptic location, e.g. that labelled ‘3’ in Fig. 6A and D, the
mean relative error was only 1.6 % (range, 0.9–2.2 %). However,
a slight increase in the relative error in Ri was observed when
only somatic voltage responses to somatic current pulses were
included in the fits during the bootstrap procedure, indicating
that Ri is more susceptible to experimental noise when data from
a single somatic electrode are used for fitting.

In contrast to statistical errors, systematic errors (Table 1; see
Discussion) had the major effect on the best-fit model parameters.
With the standard fit procedure, the mean relative error was 45 % in
Cm (range, 35–54 %; n = 4) and 35 % in Rm (range, 29–41 %; see
Table 3). This is expected, e.g. since large changes in spine density,
one of the assumed sources of systematic errors (Table 1), imply large
changes in the effective membrane area of a cell, which are then
compensated by rescaling Cm and Rm. However, the membrane time
constant, rm = RmCm, was little affected by systematic errors (mean
relative error, 0.4 %; range, 0.2–0.8 %). Thus, while ‘raw’ model
parameters (Major et al. 1994) such as Cm and Rm were severely
affected by systematic errors, ‘core’ model properties like rm were
much more reliable. The mean relative error in the third raw fit
parameter, Ri, was 31 % (range, 25–36 %), similar to the errors in Cm

and Rm. The core model as a whole, however, was less affected as
judged by the prediction for the somatic amplitude of simulated
EPSCs, whose mean relative error was only 6.9 % (range, 3.4–11.3 %).
In conclusion, if morphological data and impulse responses from the
same cell are used for building a passive model, the core model
properties as well as predictions of the model may be more accurate
than suggested by the errors in the raw model parameters Cm, Rm, Ri

and the morphology of the cell (Major et al. 1994).

The relative influence of the various sources of systematic errors
(Table 1) on the best-fit parameters was assessed by calculating the
Pearson correlation coefficient r between the (random) setting of an
error variable and the value of a best-fit model parameter across the
100 sets of error variables (see Methods). The best-fit value of Ri, for
example, was strongly correlated with additive and multiplicative
errors in the reconstructed diameters. With the standard fit
procedure, the mean value of r for the four cells was 0.69 (range,
0.63–0.74) for additive errors, and 0.51 (range, 0.43–0.61) for
multiplicative errors in diameter. Interestingly, Ri was affected only
weakly by the other sources of systematic errors ( | r | < 0.17 in any of
the four cells). When only somatic voltage responses to somatic
current pulses were fitted, r was 0.69 (range, 0.56–0.77) for additive
errors, and 0.54 (range, 0.43–0.68) for multiplicative errors, very
similar to the correlation coefficients obtained with the standard fit
procedure, in which both somatic and dendritic voltage responses
were used for fitting. Again, all other sources of systematic errors
had only a weak influence on Ri ( | r | < 0.17 in any of the four cells).

In contrast to statistical errors, systematic errors generally had a
similar influence on the best-fit model parameters as well as the
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Table 3. Best-fit model parameters, and estimated statistical and systematic errors

Cell 1 Cell 2 Cell 3 Cell 4
————————— ————————— —————————— ——————————

Best S.D. S.D. Best S.D. S.D. Best S.D. S.D. Best S.D. S.D.
fit stat sys fit stat sys fit stat sys fit stat sys

All available data
Cm (µF cm_2) 0.78 0.01 0.40 1.00 0.01 0.54 0.66 0.00 0.23 0.64 0.01 0.25
Rm (kΩ cm2) 97.8 5.5 38.2 141.0 4.6 58.4 127.0 2.8 37.2 120.2 3.2 38.7
Ri (Ω cm) 113.6 4.7 40.7 112.1 1.5 36.7 92.9 1.8 26.4 141.9 3.4 36.0
rm (ms) 76.3 4.3 0.1 141.4 4.7 0.4 83.4 1.8 0.3 76.8 2.0 0.6
EPSC (pA) * _32.43 0.73 1.98 _25.80 0.23 1.74 _20.11 0.25 2.28 _10.75 0.24 0.37 

Somatic electrode only
Cm (µF cm_2) 0.78 0.01 0.40 0.99 0.01 0.53 0.67 0.01 0.23 0.65 0.01 0.26
Rm (kΩ cm2) 98.8 5.6 38.5 134.1 4.8 55.6 128.9 4.5 37.8 120.6 5.1 38.8
Ri (Ω cm) 154.6 11.3 47.6 159.1 3.4 50.0 100.0 2.6 23.9 139.9 4.8 36.9
rm (ms) 76.6 4.4 0.1 133.0 4.9 0.3 86.1 3.2 0.1 78.5 3.3 0.5
EPSC (pA) * _28.31 1.16 1.27 _21.71 0.30 1.82 _19.06 0.36 0.21 _10.71 0.35 0.33

* Somatic amplitude of a simulated EPSC arising from a dendritic location corresponding to that
labelled ‘3’ in Fig. 6A and D (see Methods).

Table 4. Predicted electrotonic structure

Cell 1 Cell 2 Cell 3 Cell 4

Average electrotonic path length 0.074 0.070 0.071 0.123
Average attenuation factor soma ⁄ tips 0.972 0.973 0.942 0.864
Average attenuation factor tips ⁄ soma 0.749 0.792 0.794 0.431
Asymmetry index * 0.771 0.814 0.843 0.499
Average terminal input resistance (MΩ) 280.5 511.1 142.3 167.1
Somatic input resistance (MΩ) 210.1 408.9 119.6 75.1
Total cell capacitance (pF) 373.3 355.0 738.8 1177

* Average attenuation factor tips ⁄ soma/average attenuation factor soma ⁄ tips.



predicted somatic amplitude of simulated EPSCs both for the
standard fit of all available data and the restricted fit of data
obtainable with a single somatic electrode only. This is summarized in
Table 3, which illustrates that the differences in the values of the
best-fit parameters obtained with variations of the standard fit
procedure (see above) are consistent with the size of the estimated
systematic errors.

Steady-state electrotonic structure of Purkinje cells. The
dendritic tree of Purkinje cells is characterized by

an extremely high density of branch points
(0.14 ± 0.02 µm_1; range, 0.12–0.15 µm_1; n = 4). The
branching density was similar on the main dendrites and
in the region of the spiny branchlets. The length of
individual spiny branchlets (including their terminal
segments) is relatively short, such that the tip of the
spiny branchlet is typically only < 50 µm from its parent
main dendrite.
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Figure 4. Steady-state voltage attenuation

A, colour-coded representation of steady-state voltage control of the dendrites by a voltage-clamp
electrode located at the centre of the soma, simulated in the best-fit passive models of Cell 1 and Cell 4.
Each dendritic location is coloured according to the value of (Vlocal _ Vrest)/(Vsoma _ Vrest) w 100 %, where
Vlocal is the membrane potential at that location, Vrest is the resting potential of the cell (_70 mV), and Vsoma

is the membrane potential at the centre of the soma, imposed by the somatic voltage-clamp electrode.
B, colour-coded representation of steady-state voltage control of the soma from various dendritic
locations. Same models as in A. Each dendritic location is coloured according to the value of
(Vsoma _ Vrest)/(Vlocal _ Vrest) w 100 %, where Vlocal is the local membrane potential imposed by the dendritic
voltage-clamp electrode, and Vsoma is the membrane potential at the centre of the soma. Colour bar,
100 µm.



The diameter of the main dendrites is large compared to
that of the spiny branchlets. Together with the high
branching density, this results in a pronounced
asymmetry between the steady-state voltage attenuation
in the somatofugal (soma ⁄ dendrite; Fig. 4A) and
somatopetal (dendrite ⁄ soma; Fig. 4B) direction. The

steady-state voltage control of the dendritic tips from the
soma is very good, especially for P14 Purkinje cells (mean
attenuation factor, 0.97; Table 4; Fig. 4A). Most of the
voltage drop occurs within the main dendrites; there is
little attenuation from a given location on a main
dendrite to the terminal tips of the local spiny branchlets
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Figure 5. Comparison with a reduced, two-compartment model of Purkinje cells

A, voltage responses (thin lines) at the soma and at five dendritic locations (indicated by arrows in Fig. 6A)
to a 10 mV somatic voltage-clamp step in the best-fit passive model of Cell 1. The prediction (thick line;
rfi2 = 2.18 ms) of the two-compartment model of Llano et al. (1991) is shown superimposed. B, somatic
clamp current injected during the voltage-clamp step shown in A. The truncated clamp current waveform
(continuous line) is shown again in the upper panel of the inset, together with a double-exponential fit
(dotted line) of its decay phase. The corresponding fit residual is shown in the lower panel of the inset.
C, voltage responses (thin lines) at the soma and at five dendritic locations (indicated by arrows in Fig. 6D)
to a 10 mV somatic voltage-clamp step in the best-fit passive model of Cell 4. The thick line represents the
prediction of the two-compartment model (rfi2 = 9.83 ms). D, somatic clamp current injected during the
protocol shown in C. The truncated clamp current waveform (continuous line) is shown again in the upper
panel of the inset, together with a double-exponential fit (dotted line) of its decay phase. The
corresponding fit residual is shown in the lower panel of the inset.

Figure 6. Dendritic regions corresponding to the two compartments of the reduced model

Voltage responses to a 10 mV somatic voltage-clamp step were simulated as in Fig. 5. The voltage
response in each dendritic compartment was recorded and fitted with up to two exponentials in
DISCRETE. The fit interval (95 ms) started at the time of the voltage-clamp step. A–C, colour-coded
representation of the relative amplitude of the fast exponential, the time constant of the fast
exponential, and the time constant of the slow exponential of double-exponential fits obtained with
DISCRETE for each dendritic compartment of Cell 1. In the grey regions, the voltage response was
classified as single exponential, either because DISCRETE reported a single exponential as the best
solution, because the fast and slow time constants differed by less than 1 ms, or because the relative
amplitude of the fast exponential was between _10 and +10 %. A negative amplitude of the fast
exponential indicates a delayed onset of the voltage response (see Fig. 5A, traces 4 and 5). D–F, same as
A–C but simulated in the model of Cell 4. Voltage responses were classified as single exponential (grey) if
DISCRETE reported this as the best solution, if the fast and slow time constants differed by less than
3 ms, or if the relative amplitude of the fast exponential was between _10 and +10 %. Colour bars,
100 µm.



connected to it. Thus, steady-state voltage control of
Purkinje cell dendrites from the soma decayed relatively
uniformly with location in the molecular layer from the
Purkinje cell layer to the pia. In contrast, the steady-state

voltage control of the soma from the dendritic tips is poor,
especially at P21 (mean attenuation factor, 0.43; Table 4;
Fig. 4B). For distal inputs, most of the voltage drop
occurs in the thin spiny branchlets. The attenuation
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Figure 6. For legend see facing page
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within the thicker main dendrites is small, particularly in
the proximal main dendrites where attenuation in the
somatopetal direction is even smaller than in the
somatofugal direction. This means that somatopetal
attenuation is best described as a function of distance
from the soma, measured along the dendritic branches,
rather than a function of distance from the pia.

Comparison with a reduced model of Purkinje cells.
Llano et al. (1991) proposed a two-compartment model for
Purkinje cells based on their analysis of somatic voltage-
clamp recordings. They demonstrated that the capacitive
current measured in response to somatic voltage steps can
(in some cases) be satisfactorily fitted by a sum of two
exponentials, and interpreted these components using an
equivalent electrical circuit comprising two compartments.
They used this model to evaluate the quality of space-
clamp in their experimental measurements of EPSCs. We
tested this model by comparing it with our detailed
compartmental models.

We first tested the assumption that the decay phase of
capacitive currents resulting from somatic voltage-clamp
steps in Purkinje cells can be fitted by the sum of two
exponentials. Capacitive transients in response to
+10 mV somatic voltage-clamp steps in the models of Cell 1
and Cell 4 are shown in Fig. 5B and D, respectively.
Double-exponential fits of the transient of Cell 1 looked
acceptable, but fits for Cell 4 clearly deviated from the
transient (see insets). However, unlike simulated
transients, experimentally measured capacitive
transients are noisy, and whether a description by a sum
of two exponentials is statistically adequate will depend
on both the shape of the underlying transient and the
noise level. Therefore we added Gaussian noise (S.D.,
6.5 pA) to the simulated transients and used the program
DISCRETE (Provencher & Vogel, 1980) to statistically
determine the number of exponentials necessary to fit the
data. DISCRETE fits showed that for both cells, a sum of
five exponentials was the best solution. The approximate

probability that this solution was better than the second-
best solution (4 exponentials) was given as 1.000 in both
cases. When the series resistance was increased from the
standard value of 1 MΩ to 7 MΩ, i.e. when series resistance
compensation was effectively ‘turned off’, a sum of five
exponentials was still the best solution for Cell 1, while a
sum of four exponentials was reported as the best solution
for Cell 4. Here, the approximate probability that four
exponentials were a better description of the data than
the second-best solution (5 exponentials) was 0.999. This
indicates that, particularly for the older Purkinje cells,
the basic assumption required to construct the two-
compartment model does not hold.

We next compared the time course of dendritic voltage
changes in response to the somatic voltage-clamp step
predicted by the two-compartment model with those in
the detailed compartmental models. The voltage response
at the soma and at five dendritic locations in Cell 1 and
Cell 4 is shown in Fig. 5A and C, respectively. As
expected, the overall time course of the voltage response
was slower at more distal dendritic sites, as the amplitude
of its initial fast component became smaller and even
negative for the most distal locations. In the two-
compartment model, the voltage response in the distal
compartment is described by a single exponential with a
time constant given by the slow time constant of the
somatic capacitive transient (rfi2, as determined using
double-exponential fits of the capacitive transient shown
in Fig. 5B and D; Llano et al. 1991). The time course of this
prediction (thick lines) is comparable to that of the
transients observed in the detailed models at
intermediate distances from the soma.

The detailed spatial distribution of the time course of the
dendritic voltage response is shown in Fig. 6, which maps
the results of double-exponential fits of the voltage
response at each dendritic location. This provides an
indication of the physical equivalents of the two
compartments of the reduced model. The figure illustrates
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Figure 7. Attenuation of quantal EPSCs in a P14 Purkinje cell

Somatic voltage clamp of EPSCs originating in the dendrites was simulated in the best-fit passive model
of Cell 1. The synaptic conductance had an amplitude of 1 nS and a reversal potential of 0 mV, and its
time course was described by the sum of a rising exponential (time constant, 0.2 ms) and a decaying
exponential (time constant, 3 ms, unless specified differently). A, EPSC recorded at the soma (red trace),
EPSC expected under conditions of ideal clamp (black trace), and local voltage escape in voltage clamp
(blue trace) and current clamp (green trace) for the synaptic location indicated by the proximal arrow in
E. B, relationship between time constants obtained by fitting the EPSC waveform recorded at the soma,
and the decay time constant of the synaptic conductance located at the same point as in A. Red trace,
single time constant fitted to the decay phase of the EPSC. Blue and green traces, rise and decay time
constant of a double-exponential fit of the EPSC. The identity line is shown in black, and the value of rfi2

(2.18 ms in the model of Cell 1) is indicated by the dashed lines. C and D, same as A and B but simulated
for the synaptic location indicated by the distal arrow in E. The cyan trace in D represents the mean of
the rise and decay time constants of a double-exponential fit of the EPSC in a region where the two time
constants are very similar. E, colour-coded representation of the 20–80 % rise time, peak amplitude and
decay time constant (when fitted with a single exponential) of the EPSC recorded at the soma, as well as
the local voltage escape (in voltage clamp) for synaptic locations simulated successively in each dendritic
compartment of Cell 1. Colour bars, 100 µm.
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that the fast component of the somatic capacitive current
predominates (relative amplitude > 50 %) only in the
first 50 µm of the dendritic tree, and thus corresponds to
the charging of the soma and the primary dendritic trunk
up to the first branch point. The slow component
predominates at intermediate distances (grey regions in
Fig. 6). In the distal dendrites a fast component
reappears, but with a negative amplitude (sigmoidal
onset Fig. 5A and C, traces 4 and 5). Somewhat
surprisingly, there is no clear gradient between the main
dendrites and the adjacent spiny branchlets. Moreover,
when examining the time constant of the slow component
of the dendritic response, considerable differences were
observed between the time constant and amplitude of
components in different parts of the dendritic tree. For
example, in the P14 neuron, over 50 % differences were
observed for the kinetics of voltage responses in the
terminal segments of proximal and distal spiny
branchlets. Interestingly, as for the steady-state voltage
control of the dendrite from the soma (Fig. 4A), the
relative amplitude of the fast component, but not the
time constants, appeared to be well described by a
function of distance from the pia.

Space-clamp errors associated with somatic recording
of quantal EPSCs. The highly filtered dendritic response
to somatic voltage steps suggests that synaptic currents
originating at dendritic synapses may be considerably
filtered and attenuated when recorded by somatic
voltage clamp. The two-compartment model predicts that
if the decay time constant of the current entering the cell
at a dendritic synapse is slower than the slower time
constant of the capacitive current at the soma (rfi2), then
the decay of the EPSC is faithfully recorded at the soma.
We tested this prediction by simulating EPSCs in the
best-fit full models, using synaptic conductances with
various decay kinetics at different locations in the
dendritic tree, and examining the filtering of the
resulting somatic voltage-clamp current. The results of
these simulations are shown in Figs 7–9.

To separate distortions of the somatic EPSC due to
dendritic filtering from attenuation due to local voltage
escape at the synapse, which reduces the driving force for
the synaptic current, we first tested space-clamp for
small synaptic conductances (peak, 1 nS), comparable to
the conductances evoked by a single quantum of
transmitter (Barbour, 1993; Silver et al. 1998). Somatic
voltage clamp was unable to adequately control the
dendritic voltage response (compare blue and green traces
in Figs 7A and C and 8A and C) during a quantal synaptic
conductance. However, the local voltage escape was
usually small, in the range of 0.5–4 mV (except at some

dendritic tips where it could reach 24 mV; see Figs 7E and
8E, lower right panels). For excitatory synapses located
on Purkinje cell spines, an additional voltage escape
occurs due to the resistance of the spine neck. Assuming a
spine neck resistance of 44 MΩ (Häusser et al. 1997) and a
dendritic membrane potential ≥ _70 mV, this amounts
to an additional depolarization of less than 3 mV for a
1 nS synaptic conductance with a reversal potential of
0 mV. Consequently, for most excitatory synapses the
driving force changes by less than 10 % during a single
quantal EPSC, despite the poor voltage control offered by
somatic voltage clamp. Synaptic voltage escape is thus
not a major problem when recording quantal PF EPSCs
with a somatic electrode (although it can become a serious
issue when many quanta are released; see below).

Dendritic filtering of the synaptic current, however,
caused significant distortions of the EPSC waveform
recorded at the soma. The rise was slowed, the peak was
attenuated and delayed, and the decay was prolonged in
a similar fashion both for a proximal synaptic location on
the main dendrite (Fig. 7A) and a more distal location on
a spiny branchlet (Fig. 7C; locations indicated by arrows
in Fig. 7E, upper left panel). EPSCs simulated in the P21
cell (Fig. 8A and C) were distorted more strongly, as
expected from the more elaborate dendritic morphology
at this age.

The dependence of the measured somatic EPSC decay on
the decay kinetics of the synaptic conductance is shown in
Figs 7B and D and 8B and D (same synaptic locations as
in Figs 7A and C and 8A and C, respectively). Somatic
EPSCs were fitted either with a single exponential
describing the decay phase, or with double exponential
fits of both the rising and decaying phase. Decay time
constants (red traces) determined using monoexponential
fits of the decay phase of the somatic EPSC were
systematic overestimates of the actual decay time
constant of the synaptic conductance. Decay time
constants of fast quantal conductances (1 ms; Häusser,
1994) were overestimated by a factor of ~3 in Cell 1, and
a factor of ~5 and ~13 for the two synaptic locations in
Cell 4, respectively. The relative error in the estimate of
the decay time constant was generally smaller for slower
conductances, but the absolute error was still
considerable; it even increased for fast to intermediate
time constants at proximal synaptic locations (Figs 7B
and 8B). Decay time constants (green traces) determined
using biexponential fits of both the rising and decay
phases of somatic EPSC were better estimates of the
decay time constants of the synaptic conductance. Here,
significant absolute errors were indeed restricted to
synaptic conductance time constants smaller than rfi2
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Figure 8. Attenuation of quantal EPSCs in a P21 Purkinje cell

Same simulations as shown in Fig. 7, but performed with the best-fit passive model of Cell 4. See legend
of Fig. 7 for details.



(dashed lines; 2.18 and 9.83 ms in Cell 1 and Cell 4,
respectively), as predicted by the two-compartment
model (Llano et al. 1991). Also in accordance with the two-
compartment model, the rising time constants (blue
traces) in the biexponential fits approximated rfi2 for large
values of the decay time constant of the synaptic
conductance. However, for intermediate values of the
decay time constant of the distal synaptic conductances
(Figs 7D and 8D) the values of the rising time constants in
the biexponential fits first approached the values of the
respective decay time constants, creating a region (cyan
traces) where the values of the fitted rising and decay
time constants were very similar. In this region, the
somatic EPSC waveform is difficult to represent and to
fit as a sum of two exponentials since the two
exponentials of increasingly large amplitude and opposite

sign nearly cancel each other out, leading to severe
numerical problems when using conventional fitting
algorithms (but not with DISCRETE). For larger synaptic
decay time constants, the two time constants of the
biexponential fit separated again such that the decay
time constant approached the true decay time constant of
the synaptic conductance from below, and the rising time
constant moved towards rfi2 (horizontal dashed lines in
Figs 7D and 8D) from above. Interestingly, the cyan
traces cross the unity lines (black traces) close to the
points where the synaptic conductance decay time
constants are equal to rfi2.

To investigate the dependence of somatic EPSC kinetics
and amplitude on synaptic location, and to study the
location dependence of the local voltage escape, we
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Figure 9. Attenuation of CF EPSCs

To simulate CF EPSCs, 500 quantal conductances were distributed along the main dendrites (grey region
in Fig. 3A) at a constant density per dendritic length and activated synchronously. A, the CF EPSC
recorded at the soma of the best-fit passive model of Cell 1 (red trace) is strongly attenuated compared to
the EPSC expected under conditions of ideal clamp (black trace). B, colour-coded representation of peak
dendritic depolarization during voltage clamp of the CF EPSC. C and D, same as A and B but simulated
in the best-fit passive model of Cell 4. Colour bar, 100 µm.



simulated EPSCs for synaptic conductances placed
successively in each compartment of the models of Cell 1
(Fig. 7E) and Cell 4 (Fig. 8E). The colour-coded
representations illustrate that the rise, peak and decay
are increasingly distorted with distance from the soma.
While the rise time for synapses located in the proximal
main dendrite is still relatively fast, the decay time
constants and especially the peak amplitude change very
quickly upon leaving the soma and remain relatively
constant throughout the dendritic tree. Thus, the
20–80 % rise time is not a reliable predictor of the quality
of space-clamp in Purkinje cells as judged by the
distortions in peak amplitude and decay time constant of
the EPSC waveform recorded at the soma.

Space-clamp errors associated with somatic recording
of CF EPSCs. While quantal synaptic conductances,
especially those at proximal dendritic locations, cause
little voltage escape in Purkinje cell dendrites (see above),
this may no longer be true for large, multiquantal
synaptic conductances such as those associated with CF
activation. We therefore simulated somatic voltage clamp
of CF EPSCs in the best-fit passive models of Cell 1 and
Cell 4. While the rising phase of the somatic EPSCs (red
traces in Fig. 9A and C) was relatively fast (20–80 % rise
time, 0.36 and 0.42 ms in Cell 1 and Cell 4, respectively),
the peak was severely attenuated to 26.5 % of the
amplitude expected under conditions of ideal clamp in
Cell 1, and to 13.4 % in Cell 4. In addition, the decay
phase was prolonged (decay time constant, 5.20 ms in
Cell 1 and 11.05 ms in Cell 4).

The severity of the space-clamp problem encountered
when recording CF EPSCs was caused by a substantial
drop in driving force at the synapse due to a large
dendritic voltage escape (Fig. 9B and D), with the local
voltage deviating by up to 45 mV from the resting
potential of _70 mV. However, the local voltage escape
(and thus the actual synaptic driving force) was not
homogeneous. This creates an additional problem for
quantal analysis of CF EPSCs, as the presence of a
gradient in synaptic driving force within the CF region is
likely to cause large inter-site (type II) quantal variance
(see Discussion). Similar problems may arise when many
PF synaptic contacts are activated simultaneously.

A model of the hyperpolarization-activated cation
current Ih. The compartmental models described above
were constructed based on experiments done in the
presence of a blocker of Ih, which exerts a powerful
influence on the subthreshold excitability of Purkinje
cells. In order to re-incorporate this conductance, we
constructed a biophysical model of Ih based on somatic
voltage-clamp measurements from Purkinje cells. As
described previously (Crepel & Penit-Soria, 1986),
hyperpolarizing voltage commands from a holding
potential at _50 mV triggered a slowly activating inward
current (Fig. 10A) that was identified as Ih on the basis of
its insensitivity to millimolar concentrations of 4-AP and
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Figure 10. A model of Ih in Purkinje cells

A, leak-subtracted traces of Ih activation in response
to hyperpolarizing current steps from a holding
potential of _50 mV. Somatic recording from a P12
Purkinje cell in the presence of TTX (1 µM), CdCl2

(100 µM), 4-AP (1 mM), TEA (5 mM), CNQX (5 µM) and
SR 95531 (30 µM). B, steady-state activation of Ih,
normalized by driving force (unity at _100 mV; error
bars, S.D.). The continuous line illustrates the
prediction of the model of Ih (see Methods;
a = 0.63 s_1, b = 0.063 mV_1, c = 0.079 mV_1 and
V1/2 = _73.2 mV). C, kinetics of Ih activation (0) and
deactivation (1) at different command potentials.
The corresponding curves from the model are
superimposed.



TEA, and sensitivity to Cs+ and ZD 7288. The current
had an apparent reversal potential of _34.4 ± 3.47 mV
(n = 5) and a half-maximal activation voltage of
_73.2 mV (Fig. 10B). The behaviour of the current could
be reproduced by a simple Hodgkin-Huxley scheme with
activation and deactivation described by single-
exponential kinetics (Fig. 10B and C).

In order to investigate the functional role of Ih, the model
of Ih was inserted into the passive compartmental model
of each neuron at a uniform density. Incorporation of Ih

at a peak conductance density of 25 µS cm_2, which
reproduced the experimentally observed ‘sag’ waveforms
in response to somatic current injection (Fig. 1A), did not
significantly affect the kinetics of somatically recorded
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Figure 11. Attenuation of quantal EPSPs in a P14 Purkinje cell

Synaptic potentials were simulated in a model of Cell 1 including Ih (see Methods). A, subsynaptic EPSP
(green trace) and somatic EPSP (red trace) simulated for the synaptic location indicated by the proximal
arrow in C. B, same as A but simulated for the synaptic location indicated by the distal arrow in C.
C, colour-coded representation of the 20–80 % rise time, peak amplitude and half-width (full width at
half-maximum) of the EPSP recorded at the soma, as well as the local EPSP amplitude for synaptic
locations simulated successively in each dendritic compartment of Cell 1. Colour bars, 100 µm.



EPSCs in the model (not shown). However, the presence
of Ih significantly affected the time course of EPSPs, as
expected (Fig. 1A), and thus Ih was included in all
simulations of EPSP attenuation.

Dendritic attenuation of EPSPs. The dependence of
synaptic efficacy, as measured by the EPSP amplitude at
the soma, on synaptic location was assessed in current-
clamp simulations of quantal EPSPs in the best-fit models
of Cell 1 and Cell 4 including Ih (Figs 11 and 12). While the
somatic EPSP waveforms (red traces) had similar
amplitudes in each cell, and an approximately

monoexponential decay for both proximal (Figs 11A and
12A) and distal synaptic locations (Figs 11B and 12B;
locations indicated by arrows in Figs 11C and 12C, upper
left panels, respectively), local dendritic EPSPs (green
traces) at distal locations had a larger amplitude than
local EPSPs at more proximal locations, and a clearly
biphasic decay. Thus, while the synaptic conductance is
active, charge entering at the synaptic location is
distributed across the cell, driven by the gradient
between the local EPSP (green traces) and the membrane
potential in the rest of the cell, for example at the soma
(red traces). After termination of the synaptic current,
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Figure 12. Attenuation of quantal EPSPs in a P21 Purkinje cell

Same simulations as shown in Fig. 11, but performed with a model of Cell 4 (including Ih).



this gradient dissipates and the membrane potential
decays approximately homogeneously towards the
resting potential.

The dependence of the rise time, amplitude and half-
width of somatic EPSPs on synaptic location and the
location dependence of the local dendritic EPSP
amplitude are illustrated in detail in Figs 11C and 12C.
Here we simulated EPSPs for quantal synaptic
conductances placed successively in each compartment of
the models of Cell 1 (Fig. 11C) and Cell 4 (Fig. 12C). The
colour-coded representations illustrate that the 20–80 %
rise times of somatic EPSPs increase substantially with
distance of the synapse from the soma, from 0.76 to
3.54 ms in Cell 1 and from 0.29 to 5.05 ms in Cell 4. In
contrast, the somatic EPSP amplitude was less dependent
on synaptic location. For synapses on spiny branchlets,
the somatic EPSP amplitude was 0.53 ± 0.02 mV (range,
0.46–0.58 mV) in Cell 1, and 0.17 ± 0.03 mV (range,
0.12–0.26 mV) in Cell 4. However, in Cell 4 the somatic
EPSP amplitude increases dramatically as the synaptic
location approaches the very proximal dendrites and the
soma. Concomitantly, the somatic EPSP half-width
decreases by a similar factor. A similar range of
amplitudes and time courses was observed for simulated
IPSPs (not shown). This indicates that, especially in older
Purkinje cells, the somatic waveform of synaptic
potentials of proximal origin may be shaped significantly
by the charge redistribution within the cell while the
synaptic conductance is active. Thus, synapses at or close
to the soma are in a position to control the somatic
membrane potential and influence Purkinje cell firing
with high temporal precision.

DISCUSSION
We constructed detailed compartmental models of
Purkinje cells in rat cerebellar slices. Passive cable
properties were probed by simultaneous whole-cell
recording of voltage responses to brief current pulses
injected alternately at somatic and dendritic locations.
Direct fits of the impulse responses, using models based
on detailed morphological reconstructions of the same
cells, provided sets of passive parameters that were little
affected by statistical errors but suffered from significant
systematic errors, especially due to uncertainties about
dendritic diameters and spine densities. However, core
model properties and predictions of the models, such as
the quality of space-clamp during somatic recording of
synaptic currents, were relatively insensitive to
systematic errors since morphological errors were largely
compensated by corresponding errors in the raw electrical
parameters. Comparison of the detailed models with a
two-compartment model of Purkinje cells showed that
although a central assumption of the two-compartment
model was violated for our Purkinje cells, its predictions
of the range of synaptic current kinetics that can be
faithfully space-clamped were still correct. Simulations of

synaptic potentials in detailed compartmental models
including a model of Ih indicated that individual synapses
on spiny branchlets (assuming equal conductances) are
nearly equally able to influence the somatic membrane
potential, independent of their distance from the soma.
However, especially in more mature neurons, synapses
very close to or at the soma are in a privileged position to
influence the somatic membrane potential in a
temporally precise manner.

Construction of the model

Our passive compartmental models of Purkinje cells
differ from two previous models of these neurons
(Shelton, 1985; Rapp et al. 1994) in several respects. First,
they are based not on microelectrode recordings, but
rather on whole-cell patch-clamp recordings, which allow
the possibility of a shunt conductance due to
microelectrode impalement to be neglected (Major et al.
1994). Second, as the four neurons modelled exhibited a
range of membrane time constants (rm; Table 3), we did
not attempt to fit them as a group with identical
parameters (Rapp et al. 1994), or combine electro-
physiological and morphological data from different
neurons (Shelton, 1985). Instead, we chose to construct
individual compartmental models with individual
passive parameters for each cell, based on its combined
electrophysiological and morphological properties, to
capture the inter-cell variability of both morphological
and electrical parameters.

Finally, the most significant advance of the present
model is that it is based on simultaneous somatic and
dendritic recordings, which confers several advantages as
outlined in the Introduction. In particular, when
combined with brief current pulses as test stimuli (see
below), multi-site recording allows direct measurements
of the attenuation of transient changes in membrane
potential. Compartmental models reproducing the
measured voltage transients at the soma and a dendritic
location in the reconstructed morphology can be expected
to predict the attenuation of similar voltage transients,
such as EPSPs, with high accuracy. Multi-site recording
generally contributes more information about the
electrotonic structure of a neuron than single-site
recording, thus providing tougher constraints for the
construction of compartmental models. Alternatively,
compartmental models can be constructed using only a
part of this information, while the remainder can then
serve as a consistency check to validate the models.

The electrotonic structure of Purkinje cells was assessed
using brief current pulses (Major et al. 1994; Rapp et al.
1994). This avoids the problems due to imperfect bridge
balance that can affect measurements of steady-state
attenuation (Stuart & Spruston, 1998) or frequency-
domain analysis using sinewaves (e.g. Tabak et al. 2000),
and minimizes changes in the activation state of slowly
activating voltage-dependent conductances. Conditions
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for extracting passive parameters from impulse responses
are particularly favourable in the P14–P21 Purkinje cells
studied here. Voltage responses to somatic and dendritic
current pulses were clearly biphasic, with a fast charge
redistribution phase (whose amplitude and time course
were very sensitive to the value of Ri), and a slow phase
of homogeneous decay towards the resting membrane
potential (Fig. 3). Since these two phases were temporally
well separated, direct fits of the impulse responses
converged easily, and the best-fit parameters were
affected very little by recording noise (Table 3, statistical
errors). In other cell types the situation may be less
favourable. In hippocampal CA3 interneurons, for
example, the amplitude of the charge redistribution
transient is so small that Ri could not be determined from
the data (Chitwood et al. 1999). In contrast, the long
apical dendrite of layer 5 pyramidal cells causes charge
redistribution transients with large amplitudes but
relatively slow time courses (Stuart & Spruston, 1998),
leading to poor temporal separation of the charge
redistribution phase and the homogeneous decay phase.
As a consequence, fit parameters are more difficult to
identify uniquely, and may thus be affected more
strongly by statistical errors due to recording noise.
Similar effects are observed in cases where rm is relatively
fast and therefore difficult to separate from the time
constant of charge redistribution, for example in ventral
horn neurons (Thurbon et al. 1998).

Best-fit passive parameters

The best-fit values for Cm of 0.77 ± 0.17 µF cm_2 (Table 3)
are in agreement with direct measurements of neuronal
Cm by Gentet et al. (2000) and are consistent with the
results of numerous passive modelling studies (Clements
& Redman, 1989; Major et al. 1994; Chitwood et al. 1999).
Several modelling studies have estimated Cm values
considerably in excess of 1 µF cm_2 (Stuart & Spruston,
1998; Thurbon et al. 1998), including one of Purkinje
neurons (Rapp et al. 1994). In the latter study, the high
estimate for Cm may be related to the lower spine density
assumed in these models, to tradeoffs between the
assumed high Ri and increase in Cm, or to the absence of
the axon in the reconstruction.

The specific membrane resistance estimated for Purkinje
cells (122 ± 18 kΩ cm2) is higher than that estimated for
other neuronal types (Clements & Redman, 1989;
Spruston et al. 1994; Stuart & Spruston, 1998; Thurbon et
al. 1998), although is similar to the values found for CA3
pyramidal cells (120–200 kΩ cm2; Major et al. 1994). The
relatively high value of Rm in these neurons points to a
lower density of leak conductances compared to other
neuronal types, and results in a relatively long membrane
time constant for these neurons. The effective value of
Rm, and of the membrane time constant, in the intact
brain is likely to be lower and may depend on a variety of
factors, including background synaptic activity (Häusser
& Clark, 1997), ambient levels of neurotransmitters,

modulation of leak channels and Ih, and on temperature,
as rm varies with temperature in several cell types
(e.g. Volgushev et al. 2000) and Cm is thought to be
temperature insensitive.

The value of the intracellular resistivity (Ri) is usually the
most difficult parameter to determine from this type of
experiment (Major et al. 1994; Chitwood et al. 1999). It is
constrained by relatively few data points at the
beginning of the transient responses, and depends
strongly on the accuracy of the morphological
reconstruction, especially dendritic diameters (Major et
al. 1994). Surprisingly, according to our error analysis our
estimate of Ri is less affected by systematic errors (see
below) than the values of Cm and Rm. The mean value
obtained for Ri (115 ± 20 Ω cm) is smaller than the values
reported for this parameter in several neuronal types
(170–340 Ω cm; Shelton, 1985; Major et al. 1994; Rapp et
al. 1994). It is comparable, however, to the range of
values found recently using double whole-cell recording
(68–151 Ω cm; Stuart & Spruston, 1998; 72–119 Ω cm,
Thurbon et al. 1998), and to the estimate of Stämpfli &
Hille (1976) for vertebrate axons (110 Ω cm), but is higher
than that directly measured for squid axon (35.4 Ω cm;
Hodgkin & Huxley, 1952), which is not surprising given
that squid axoplasm has a very different ionic
composition. Our value is consistent with the traditional
value of 70 Ω cm (predicted from the conductivity of
saline, assuming low mobility of the majority of anions) if
tortuosity and volume exclusion due to the presence of
organelles and the cytoskeleton in dendrites are taken
into account.

Sources of error

There are several potential sources of error that may
contribute to uncertainty in the model parameters. These
can be separated into statistical and systematic errors,
each of which we considered individually. From our error
analysis we concluded that statistical errors (arising from
recording noise and from the limited number of traces
obtainable during an experiment) do not contribute
significantly to errors in the model parameters. This is
surprising (cf. Major et al. 1994) and suggests that
substantially increasing the number of traces recorded
will not significantly improve the model. Systematic
errors, on the other hand, can seriously affect the specific
values of the individual parameters. Fortunately, the
effects of systematic errors on model predictions are
relatively benign due to tradeoffs between the
parameters, indicating that while individual model
parameters may be inaccurate, the model still provides a
faithful representation of the passive behaviour of the
neuron.

Probably the most serious source of systematic errors is
the morphological reconstruction. These errors may take
several forms (Major et al. 1994; Jaeger, 2001). First,
shrinkage and swelling during tissue processing may
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contribute to errors in length and diameter estimates.
This was judged to be minimal (< 5 %) from comparison of
diameters and lengths during the recording and after the
processing procedure (see Methods). Second, the
measurement of diameter itself may be subject to
considerable error, particularly for the finest dendrites
approaching the limits of resolution of the light
microscope, and dendrites covered with spines.
Variations in diameter during the error analysis revealed
this to be an important contribution to systematic errors
in the estimation of Ri (see also Major et al. 1994). Third,
spine density is a critical parameter as spines comprise a
large fraction of total membrane area in Purkinje cells.
Our estimate of spine density is based on results from
serial EM reconstruction of Purkinje cell spiny branchlets
(Harris & Stevens, 1988; Napper & Harvey, 1988).
Finally, while we took care to include the axon of each
neuron in the reconstruction, the parameters of the axon
may be somewhat uncertain due to its fine calibre and the
presence of myelination, obscuring stretches of axon. 

The recording conditions are also associated with several
potential systematic errors. First, although great care was
taken to ensure linear and passive behaviour of the
neurons during the recording, the contribution of
voltage-gated conductances cannot be entirely ruled out.
Second, uncertainties about the exact position of
dendritic recording pipettes may introduce systematic
errors (Table 1) into the model when comparing measured
and simulated dendritic voltage transients during the fit
procedure. These were minimized by careful measurement
of the electrode position during recording, aided by the
high density of branch points in Purkinje cells, allowing
us to uniquely identify the dendritic recording site by
reference to details of the dendritic branching pattern
during and after the recording. Third, due to their smaller
size dendritic pipettes typically have large series
resistances which may change during recording. Bridge
balance was therefore monitored continuously, and sweeps
were averaged in intervals during which series resistances
were relatively stable. Realistic compartmental models of
the pipettes were used during fitting, and the series
resistances of the model pipettes matched the series
resistances observed during experiment. Finally, pipette
capacitance may be an appreciable fraction of total
cell capacitance (Major et al. 1994). To minimize their
capacitance, pipettes were coated with Sylgard, and
optimal capacitance compensation was employed.
Residual capacitance at the pipette tip, which is
distributed in parallel with the series resistance and
therefore cannot be fully compensated by the amplifier
(Thurbon et al. 1998), was included as a free parameter
during initial fits of impulse responses, and as a source of
systematic errors in the error analysis (Table 1).

A final potential source of error which is very difficult to
assess quantitatively is the structure of the model itself.
We constructed our compartmental models with the

simplest possible assumption, namely that the passive
parameters are homogeneously distributed. While this
assumption proved adequate to constrain our models
within a reasonable margin of error, it is difficult in
principle to rule out alternative models with more
complex distributions of parameters. The lower value of
somatic vs. dendritic Rm assumed in the model of Purkinje
cells constructed by Rapp et al. (1994) is not necessarily
inconsistent with our models since it could be due to a
shunt conductance associated with somatic micro-
electrode recording. Although two-site recording can give
an indication of inhomogeneities in the passive
parameters, it cannot clearly distinguish between
alternative inhomogeneous models, e.g. between an
inhomogeneity in Rm (Stuart & Spruston, 1998; London et
al. 1999) and an inhomogeneity in Ri. To exclude or
confirm an inhomogeneous distribution of Ri in dendrites,
simultaneous recording from at least three sites would be
required (Kleinle, 1998). We conclude that future
refinements of passive models of neurons will depend
primarily on improved acquisition of morphological data,
for example by combining high-resolution confocal
microscopy, deconvolution, and novel image processing
techniques allowing automated reconstruction of
neuronal morphology, as well as on multi-site recordings.

Reduced models of Purkinje cells

The two-compartment model of Purkinje cells described
by Llano et al. (1991) is easier to construct than the
detailed models presented here, and its predictions can be
calculated analytically. On the other hand, it represents a
considerable simplification and is based on certain
assumptions that need to be tested. The basic assumption
of the two-compartment model is that the capacitive
current recorded at the soma in response to a somatic
voltage-clamp step can be fitted by a sum of two
exponentials. While this assumption does not hold
statistically when tested for our detailed compartmental
models and assuming typical levels of recording noise, it
is nevertheless a good approximation since the
amplitudes of the additional exponentials are relatively
small (Fig. 5B and D, insets). The two-compartment
model correctly predicts the range of decay time courses
of synaptic currents that can be faithfully recorded at the
soma of Purkinje cells, which is its original purpose (Llano
et al. 1991). Unfortunately, as the assumption of double-
exponential somatic capacitive currents is already
violated in Purkinje cells, this cannot be used as a
criterion to decide whether the two-compartment model
is applicable to a given cell type, or whether a
multicompartmental model or a cable analysis (Jackson,
1992) is required. Clearly a two-compartmental model
also cannot correctly predict the location dependence of
steady-state (Fig. 4) and transient attenuation (Fig. 6). In
particular, the distal compartment, in which the voltage
response to a somatic voltage-clamp step is mono-
exponential, is not represented by all spiny branchlets (as
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proposed by Llano et al. 1991), but by a horizontal band
representing the distal CF region and the corresponding
intermediate PF region (Fig. 6, regions shown in grey).

Analysis of the two-compartment model highlights the importance
of fitting experimentally recorded PSC waveforms with the correct
number of exponentials (see also Llano et al. 1991). For example,
fitting slowly rising EPSCs of dendritic origin with a single decaying
exponential can overestimate the actual decay time constant by
> 30 % since the rising phase can lead to a broadening of the peak
region. Two- or three-exponential fits should therefore be routinely
applied when the EPSC rise time is significant (Barbour, 1993). This
fitting should be applied with care, as numerical difficulties can be
encountered in conventional fitting algorithms when the time
constants of the rising and decaying exponentials are similar.

Space-clamp errors in experimental studies of
synaptic currents

Our modelling results demonstrate that even though
Purkinje cells are compact under steady-state conditions,
rapid transients such as synaptic currents recorded in
voltage clamp can suffer from substantial filtering. As
expected (Johnston & Brown, 1983; Rall & Segev, 1985;
Major, 1993), this filtering is frequency dependent, with
faster synaptic currents being affected more than slower
currents. The degree of filtering also depends on the
location of the synaptic input. While the somatic 20–80 %
rise time increases rather continuously with distance of
the input from the soma, the somatic EPSC amplitude
drops abruptly for very proximal inputs and then stays
nearly uniformly low across all spiny branchlets. This
pattern is reflected in the dependence of somatic EPSP
shape on input location (see below).

Our findings have important implications for
experimental investigations of synaptic transmission in
Purkinje cells using somatic voltage-clamp recordings. In
mature Purkinje cells, even relatively slow PF synaptic
currents cannot be accurately recorded via a somatic
patch-clamp electrode, and fast synaptic currents are
substantially distorted in both their kinetics and
amplitude. Selecting somatic EPSCs based on the fastest
20–80 % rise times will not prevent the inclusion of
EPSCs whose amplitude is severely attenuated. Note also
that it will be difficult to discriminate CF and PF
miniature EPSCs on the basis of rise time: although
somatic and primary trunk contacts will contribute the
very fastest-rising EPSCs, there is substantial overlap in
rise time between EPSCs originating in the distal CF
region, and those originating at proximal spiny
branchlets (compare the CF region illustrated in Fig. 3A,
and the distribution of rise times shown in Fig. 8E).

These space-clamp problems can be circumvented in
several ways. First, their severity increases with the age
of the Purkinje cell recorded from. Recording EPSCs in
younger (less than P10) Purkinje cells should therefore
alleviate the problem. Second, EPSCs can be recorded
directly from the dendrites of Purkinje cells (Häusser,
1994), to minimize the distance from active synapses.

Third, the true time course of the synaptic current can be
reconstructed using somatic voltage jumps timed to occur
at various intervals with respect to the onset of the
synaptic conductance (Häusser & Roth, 1997). Finally,
synaptic currents can be classified as well clamped (Llano
et al. 1991) and even back-calculated using a compartmental
model (e.g. Nadeau & Lester, 2000). Best results are
expected when the voltage jump method is combined with
calculations in a compartmental model of the cell recorded
from (Häusser & Roth, 1997).

An additional complication arises when recording EPSCs
resulting from simultaneous activation of many synaptic
contacts, e.g. during compound PF and particularly
during CF stimulation. Under physiological conditions,
the CF synaptic conductance is very large and causes
substantial voltage escape (Fig. 9B and D), which adds to
the distortion of the somatic EPSC waveform by reducing
synaptic driving force in a time-dependent manner. In
addition, the voltage escape is spatially non-uniform
(Llinás & Nicholson, 1976), and thus creates an additional
component of inter-site (type II) quantal variance which
must be considered when performing quantal analysis of
CF synaptic currents (Silver et al. 1998). This effect may
be further complicated by activation of dendritic voltage-
gated conductances.

Functional architecture of the Purkinje cell dendritic
tree

The Purkinje cell has one of the most remarkable
dendritic trees of any neuronal type in the central
nervous system. Its basic features are conserved across a
wide range of species and throughout evolution.
Functionally, its passive architecture is able to perform
tasks which at first sight seem hard to reconcile. In the
somatofugal direction, the thick, short main dendrites
allow steady-state potentials to be distributed effectively
(Fig. 4A), resulting in good steady-state voltage control of
the dendrites from the soma, in agreement with direct
patch-clamp (Stuart & Häusser, 1994) and voltage-
sensitive dye measurements (Staub et al. 1994; Borst et al.
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al. 2001), somatic EPSP amplitude is only weakly
dependent on synaptic location on Purkinje cell spiny
branchlets (Figs 11 and 12). This ‘dendritic democracy’ is
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already achieved by the passive structure of Purkinje
cells and is due to the absence of a long primary dendrite
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