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Summary
Nerves and blood vessels often follow parallel trajectories as they course through the body to their
distal targets. Proteins that regulate the process of axon guidance have likewise been shown to play
a critical role in blood vessel migration. With the recent description of the endothelial tip cell as an
analog of the axonal growth cone, the nerve-vessel analogy seems complete. Notwithstanding these
considerable similarities, one critical difference remains between neural and vascular guidance.
While a navigating axon is but a single cell, a sprouting vessel is composed of multiple cells that
must be coordinately regulated. Recent studies of the Dll4-Notch1 signaling pathway have provided
valuable insight into how the vasculature accomplishes this critical task.
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Introduction
Formation of the vertebrate vasculature is a complex process that is orchestrated by a
constellation of growth factors and guidance cues [1]. During vasculogenesis, the initial phase
of vascular development, endothelial cells differentiate, migrate and coalesce to form the
central axial vessels, the dorsal aortae and cardinal veins. The second phase, called
angiogenesis, is characterized by the sprouting of new vessels from the nascent plexus to form
a mature circulatory system. Following this angiogenic remodeling, the endothelium secretes
platelet-derived growth factor (PDGF), which induces the recruitment and differentiation of
vascular smooth muscle cells [2]. Subsequently, the vascular smooth muscle cells secrete
angiopoietins, which ensure proper interaction between endothelial and vascular smooth
muscle cells [3,4]. Finally, the vascular smooth muscle cells deposit matrix proteins, such as
elastin, that inhibit vascular smooth muscle cell proliferation and differentiation, thereby
stabilizing the mature vessel [5,6]. Thus, to establish and maintain a mature vascular network,
the endothelial and smooth muscle compartments of a vessel must interact via autocrine and
paracrine signaling.

Significant strides have been made in deciphering the molecular mechanisms underlying
vasculogenesis and angiogenesis. However, we are only beginning to appreciate the guidance
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programs utilized by vertebrates to generate the highly stereotypical pattern of the mature
vascular network.

Neural guidance pathways
Our knowledge of the way attractive and repulsive cues mediate organ system patterning has
emerged from studies of the nervous system. At the cellular level, growing axons must navigate
through a complex microenvironment to enervate a distal target tissue. The ability of the axon
to reach this destination is predicated upon its ability to sense and respond to an array of
guidance cues, both long-range diffusible factors and short-range membrane–bound proteins
[7]. It is difficult to strictly classify these factors as attractive or repulsive due to the fact that
a given molecule can elicit either response under different circumstances. The ultimate choice
is dependent upon the complement of receptors expressed by the axon, the intracellular state
of the growth cone, and the presence of other guidance molecules in the extracellular milieu.
Thus, the context in which an axon encounters this relatively small number of factors can define
the path choices required to establish complex neural connections [8,9].

There are four major classes of guidance cues, which include the secreted Semaphorins,
Netrins, Slits, and the membrane-bound Ephrins. Each of these ligands activates cognate
transmembrane receptors to affect attraction or repulsion of growing axons. Semaphorins
primarily function as short-range inhibitory cues by stimulating receptors from the plexin and
neuropilin families [10]. Netrins interact with Unc5, Neogenin, and DCC (deleted in colorectal
cancer) receptor families, or combinations thereof, and may repel or attract axons depending
on the type of neuron and complement of receptors that are expressed on the surface of the
growth cone. For example, Unc5 signaling exclusively specifies repulsion, while DCC can
mediate either repulsion or attraction to netrin [11,12]. The Slit proteins activate the
Roundabout (Robo) family of transmembrane receptors to predominantly mediate
chemorepulsion of growing axons [13]. The Ephrins are membrane-bound ligands for the Eph
family of receptor tyrosine kinases and mediate short-range repulsive juxtacrine signaling
[14,15,16]. In addition, Notch signaling, although principally associated with cell-fate
determination, also regulates neurogenesis through inhibition of neurite outgrowth [17,18,
19]. Together, these ligand-receptor pairs establish the precise pattern of synapses that are
required for a functional neural network.

Neural and vascular guidance pathways share common signaling
mechanisms

Over the past decade it has become apparent that molecular mechanisms underlying
development of the nervous system have been co-opted by the vasculature. In fact, each of the
aforementioned classes of axon guidance molecules has been shown to regulate some facet of
vascular patterning, although the precise role of some of these proteins remains controversial.

The Ephrin/Eph signaling pathway appears to play an important role in regulating endothelial
cell migration, analogous to its task of guiding axons in the nervous system. Studies in both
mice and frogs have revealed that intersomitic blood vessels express Eph receptors, while the
somites express Ephrin ligands. Juxtracrine interactions between this ligand-receptor pair
mediate repulsive guidance signaling that prevents the intersomitic vessel from invading the
somitic compartment [20,21].

Like the Ephrins, the Semaphorins and their cognate receptors have been implicated in the
regulation of vascular development. It was reported that knockdown of Sema3a1 in zebrafish
[22] or targeted ablation in mice [23] resulted in defective formation of the intersomitic vessels.
More recently, positional cloning of the zebrafish out-of-bounds (OBD) mutation, which causes
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highly arborized intersomitic vessels, identified the semaphorin receptor Plexin-D1 [24]. In a
companion report, gene targeting of the Plexin-D1 locus in mice resulted in blood vessel and
cardiovascular defects [25]. Interestingly, independent knockdown of the presumptive Plexin-
D1 ligands, Sema3a1 and Sema3a2, caused only moderate intersomitic vessel phenotypes when
compared to OBD mutants or Plexin-D1 morphants, suggesting either functional redundancy
or an alternative ligand [24]. Indeed, a subsequent study showed that another Semaphorin
family member, Sema3e, but not Sema3a, formed a high affinity complex with Plexin-D1, and
targeted inactivation of Sema3e caused intersomitic vessels defects that phenocopied a null
allele of Plexin-D1 [26]. These data suggest that Sema3e-Plexin-D1 signaling is critical for
mammalian vascular patterning.

There is ample, albeit contradictory evidence that the protypical axonal attractant Netrin is
involved in vascular development. Our laboratory has demonstrated that, similar to their role
in the nervous system, Netrins stimulate migration of endothelial cells [27,28]. Furthermore,
we have shown that knockdown of Netrin1a in zebrafish embryos prevents formation of the
parachordal vessel, and overexpression of Netrin1 ameliorates defects in a murine model of
ischemia [27]. However, Lu et al. [29] has reported that deletion of the Netrin receptor
Unc5b, which is expressed in the vasculature of the mid-gestational mouse, causes excessive
branching in multiple arterial vascular beds. They argue that this increased peripheral resistance
in the arterial system leads to heart failure and lethality in Unc5b−/− animals [29]. These data
suggest that Netrin-Unc5b signaling specifies a repulsive cue to the endothelium. Future studies
will be needed to precisely define the role of Netrin and Unc5b in regulating vascular
development.

The most recent ligand-receptor pair to be implicated in regulating endothelial cell behavior
is Slit-Robo. Three Robo family members have been described in the nervous system, and we
and others, identified a fourth member of the family, named Magic Roundabout or Robo4
[30,31]. Unlike Robo1-3, Robo4 is expressed in the endothelium of the embryonic and adult
mouse, and appears to be up regulated in the vessels of human neoplastic lesions [32]. Studies
from our laboratory showed that Robo4 interacts with Slit2 to suppress migration of HEK cells
ectopically expressing the receptor, and primary human endothelial cells, which express
endogenous Robo4 [31]. These data have been corroborated by a recent report showing that
recombinant Slit2, or overexpression of Robo4 is sufficient to inhibit the migration of
endothelial cells [32]. Cumulatively, these observations suggest that Slit-Robo signaling
mediates chemorepulsion in the vascular endothelium. There are, however, several studies that
imply an alternate function for Robo4. Suchting et al. [33] showed that Robo4 was unable to
interact with recombinant Slit1-3 using BiaCore analysis and immunoprecipitation, indicating
that Robo4 is not a receptor for Slit proteins. They also provided evidence that excess soluble
Robo4 ectodomain could inhibit the migration and tube formation of endothelial cells,
suggesting that Robo4 promotes angiogenesis via an unknown or unappreciated ligand. Along
these lines, Ramchandran and colleagues have proposed that Robo4 induces angiogenesis in
the zebrafish through activation of the Rho GTPases [34]. These contradictory findings
illuminate the need for additional analysis of Robo4 signaling in the vascular system. Perhaps
characterization of Robo4 null mice will provide necessary insight into this interesting paradox.

Dll4-Notch1 signaling and the tip cell
Although functionally distinct, the nervous and vascular systems are remarkably similar at the
anatomical level. The information presented thus far has elaborated upon this likeness to
include the molecular mechanisms underlying neural and vascular guidance. These similarities
can be further extended based on the recent characterization of the endothelial tip cell [36].
Analogous to the axonal growth cone, the tip cell is a highly dynamic structure that uses
filipodial protrusions to sample the extracellular environment and dictate the direction in which
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the vascular plexus will expand [36]. Unlike the growth cone, which must initiate extension
of a single axon, the tip cell must coordinate the expansion of the proliferating stalk cells that
comprise the vascular plexus. A series of elegant experiments led to a model where heparin
generated gradients of immobilized vascular endothelial growth factor (VEGF-A) induce tip
cell formation and direct cell migration, whereas local concentrations of VEGF-A control stalk
cell proliferation and growth of the plexus [35,36].

If a gradient of VEGF-A is all that is required to form a tip cell, what prevents all endothelial
cells from adopting this phenotype? The answer to this question has emerged from analysis of
Delta-like ligand 4 (Dll4)-Notch1 signaling in the murine retina and zebrafish embryo [37–
41]. Dll4 is an endothelial-specific ligand that interacts with its cognate receptor Notch1 on
the surface of endothelial cells. The outcome is the γ–secretase-dependent proteolysis of the
Notch1 intracellular domain (NICD), resulting in translocation of the NICD to the nucleus and
subsequent changes in gene expression [42]. The fundamental significance of Dll4 function
in vivo was established by gene targeting experiments, which showed that ablation of a single
copy of Dll4 resulted in severe vascular defects and embryonic lethality [43,44]. Additionally,
global or vascular-specific deletion of the Dll4 receptor Notch1 also resulted in vascular
anomalies and lethality [45,46], indicating the fundamental requirement for Dll4-Notch1
signaling during vascular development.

The haploinsufficient phenotype of Dll4 is reminiscent of the extreme dosage sensitivity for
VEGF-A during murine embryogenesis [47,48], and studies have determined that VEGF is
epistatic to Notch signaling in a genetic pathway that regulates arterial identity [49]. In
agreement with this idea, Lobov et al. [39] found that Dll4 is up regulated in murine retinas
following intraocular injection of VEGF-A. Using an ICR mouse strain to decrease embryonic
lethality associated with Dll4 happloinsufficiency, they and others demonstrated that Dll4+/−

animals exhibit increased numbers of filipodial protrusions at the sprouting front of the retinal
vascular plexus, and in the peripheral vascular plexus, which is normally devoid of such
structures [37,39,41]. As filipodial protrusions are a unique characteristic of the endothelial tip
cell, these data indicate that loss of Dll4 leads to an increased number of tip cells. Accordingly,
Siekmann and Lawson [40] reported that loss of an essential Notch signaling component,
recombining binding protein suppressor of hairless (Rbpsuh) in zebrafish, caused all of the
endothelial cells in the segmental arteries to adopt tip cell behavior. The consequence, in both
the murine retina and embryonic zebrafish, is an abnormally patterned vascular bed that is
characterized by excessive branching [37–41]. Intraocular injection of γ-secretase inhibitors,
which suppress activation of the Dll4 receptor Notch1, caused a similar increase in filipodial
extensions [37,41], suggesting that a principal function of the Dll4-Notch1 pathway is to restrict
the tip cell phenotype to a precise number of cells at the sprouting front of the vascular plexus.
This role of Notch1 in the vasculature is similar to its role in limiting axon sprouting in the
nervous system, providing further evidence that the neural and vascular networks utilize similar
molecular mechanisms.

Conclusions
The identification of distinct endothelial cell populations (tip and stalk cell) within the retinal
vascular plexus, along with the demonstration that the Dll4-Notch1 pathway acts to prevent
the stalk cell from adopting a tip cell fate heralds a new beginning in our ongoing quest to
understand endothelial biology. These seminal discoveries suggest that signal transduction
specifically within the stalk cells has an important role in regulating the patterning, and perhaps
function of the vascular system. In the future it will be important to identify and characterize
signaling networks that operate within the stalk cells. Of particular interest will be determining
whether the neural/vascular guidance molecules and their cognate receptors can regulate stalk
cell-specific signaling.
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Figure 1.
DLL4-Notch1 signaling enforces the stalk cell phenotype. In the developing murine retina,
activation of VEGFR2 by VEGF-A initiates expression of DLL4 in the tip cell. As DLL4 is
membrane restricted, juxtracrine signaling between DLL4 and Notch1 on an adjacent cell leads
to induction of gene expression programs that enforce the stalk cell phenotype. The
consequence is precise control of the number of tip cells at the sprouting front of the vascular
plexus.
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