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    I N T R O D U C T I O N 

 The PC12 clonal cell line is derived from a cancer of rat 

adrenal chromaffi n cells, a pheochromocytoma ( Greene 

and Tischler, 1976 ). Rapidly dividing PC12 cells are re-

garded as chromaffi n cell – like, having dense-core secre-

tory granules and the ability to release catecholamines 

upon stimulation. The cells undergo a marked phenotypic 

change in response to nerve growth factor (NGF) and cer-

tain other substances: they stop dividing, extend numer-

ous neural processes (neurites), and up-regulate several 

neural markers ( Greene and Tischler, 1976 ;  Vaudry et al., 

2002 ). Thus, PC12 cells also could be considered models 

of sympathetic neurons and of neural differentiation. 

 Almost 2,000 publications concern calcium effects in 

this cell line. Much is therefore known about protein 

expression, including Ca 2+  channels and transporters, 

yet in neither undifferentiated nor differentiated PC12 

cells is much known about the Ca 2+  transport itself. This 

is surprising, as these excitable cells are so often used as 

models for chromaffi n cells or sympathetic neurons. We 

have characterized Ca 2+  transport in PC12 cells in order 

to answer the following questions. What are the princi-
  Abbreviations used in this paper: BHQ, tert-butylhydroquinone; 

GPN, glycyl phenylalanyl  � -napthylamide; MtU, mitochondrial Ca 2+  

uniporter; NCX, Na + -Ca 2+  exchanger; NGF, nerve growth factor; 

PMCA, plasma membrane Ca 2+  ATPase; SERCA, sarcoplasmic endo-

plasmic reticulum Ca 2+  ATPase; SPCA, secretory pathway Ca 2+  ATPase; 

TG, thapsigargin. 

pal pathways for Ca 2+  clearance? Do they change in re-

sponse to NGF? Does this Ca 2+  clearance resemble 

clearance in chromaffi n cells or in sympathetic neu-

rons? We used Ca 2+  photometry and electrophysiology 

to characterize Ca 2+  buffering and transport in both un-

differentiated and NGF-differentiated PC12 cells, and 

we focus on the four canonical transport mechanisms 

commonly found in mammalian cells: sarco/endoplas-

mic reticulum Ca 2+  ATPases (SERCA), mitochondrial 

uniporter(s) (MtU), plasma membrane Ca 2+  ATPases 

(PMCA), and Na + /Ca 2+  exchangers (NCX). 

 M AT E R I A L S  A N D  M E T H O D S 

 All chemicals were obtained from Sigma-Aldrich unless other -
wise noted. 

 Culture and Differentiation of PC12 Cells 
 PC12 D19 cells were a gift from Sandra Bajjalieh in the Depart-
ment of Pharmacology, University of Washington (the lineage 
of these cells is traced in the online supplemental material). 
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     Many studies of Ca 2+  signaling use PC12 cells, yet the balance of Ca 2+  clearance mechanisms in these cells is un-
known. We used pharmacological inhibition of Ca 2+  transporters to characterize Ca 2+  clearance after depolariza-
tions in both undifferentiated and nerve growth factor-differentiated PC12 cells. Sarco-endoplasmic reticulum 
Ca 2+  ATPase (SERCA), plasma membrane Ca 2+  ATPase (PMCA), and Na + /Ca 2+  exchanger (NCX) account for al-
most all Ca 2+  clearance in both cell states, with NCX and PMCA making the greatest contributions. Any contribu-
tion of mitochondrial uniporters is small. The ATP pool in differentiated cells was much more labile than that of 
undifferentiated cells in the presence of agents that dissipated mitochondrial proton gradients. Differentiated 
PC12 cells have a small component of Ca 2+  clearance possessing pharmacological characteristics consistent with se-
cretory pathway Ca 2+  ATPase (SPCA), potentially residing on Golgi and/or secretory granules. Undifferentiated 
and differentiated cells are similar in overall Ca 2+  transport and in the small transport due to SERCA, but they dif-
fer in the fraction of transport by PMCA and NCX. Transport in neurites of differentiated PC12 cells was qualita-
tively similar to that in the somata, except that the ER stores in neurites sometimes released Ca 2+  instead of clearing 
it after depolarization. We formulated a mathematical model to simulate the observed Ca 2+  clearance and to 
describe the differences between these undifferentiated and NGF-differentiated states quantitatively. The model 
required a value for the endogenous Ca 2+  binding ratio of PC12 cell cytoplasm, which we measured to be 268  ±  85. 
Our results indicate that Ca 2+  transport in undifferentiated PC12 cells is quite unlike transport in adrenal chromaf-
fi n cells, for which they often are considered models. Transport in both cell states more closely resembles that of 
sympathetic neurons, for which differentiated PC12 cells often are considered models. Comparison with other cell 
types shows that different cells emphasize different Ca 2+  transport mechanisms. 
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To prevent contamination of signals collected from neurites 
with nearby somata, we recorded from neurites only when we 
could exclude all somata completely from the fi eld of view. It is 
likely that the neurites from several cells were in the same fi eld 
of measurement. 

 Inhibition of Ca 2+  Transporters 
 SERCA were inhibited by adding 1  μ M thapsigargin (TG) to the 
fura-loading medium. After TG treatment, [Ca 2+ ] cyt  became re-
sponsive to extracellular Ca 2+ , demonstrating activation of store-
operated currents and indicating successful SERCA inhibition 
( Ufret-Vincenty et al., 1995 ). The MtU was inhibited by applying 
2  μ M CCCP to the cells both during the KCl depolarization and 
throughout Ca 2+  clearance ( Herrington et al., 1996 ). In later ex-
periments, 5  μ M oligomycin (EMD BioSciences) was added either 
concomitantly with CCCP or 30 s before depolarization and main-
tained through the rest of the experiment. For the inhibition of 
MtU in neurites, cells were pretreated with 10  μ M Ru360 (EMD 
BioSciences) for 30 min before Ca 2+  measurement ( Thomas et al., 
2006 ). For the inhibition of plasma membrane Ca 2+  ATPases 
(PMCA), extracellular pH was raised to 9.0 during clearance by 
replacing the HEPES buffer in the nominally Ca 2+ -free modi-
fi ed Ringer ’ s with 20 mM Trizma, pH 9.0 ( Xu et al., 2000 ). NCX 
were inhibited by replacing the NaCl in the nominally Ca 2+ -free 
modifi ed Ringer ’ s with LiCl. Any experiment in which only one 
transporter is blocked is referred to as a  “ 1-blocked ”  experiment. 
Our results are generally displayed as Ca 2+  transport curves by 
plotting the rate of change of free Ca 2+  ( � d[Ca 2+ ] cyt /dt) as a 
function of [Ca 2+ ] cyt . To obtain the Ca 2+  transport curve for the 
inhibited mechanism in a 1-blocked experiment, we subtracted 
the 1-blocked Ca 2+  transport curve from the control Ca 2+  trans-
port curve. In many experiments, we combined two of these treat-
ments (2-blocked), three of these treatments (3-blocked), or all 
four (4-blocked). When combining treatments, TG was always 
used to inhibit SERCA, CCCP to inhibit MtU (unless otherwise 
noted), pH 9.0 to inhibit PMCA, and LiCl to inhibit NCX. In 
some experiments, we added a fi fth inhibitor to the 4-blocked 
protocol, 10  μ M tert-butylhydroquinone (BHQ), to inhibit secre-
tory pathway Ca 2+  ATPases (SPCA), as well as SERCA. The Ca 2+  
peak heights and rise times were unaffected by these inhibitors of 
Ca 2+  transport. Also, some cells were pretreated with 50  μ M glycyl 
phenylalanyl  � -napthylamide (GPN) for 20 min before Ca 2+  mea-
surements ( Duman et al., 2006 ). 

 Determination of the Ca 2+  Binding Ratio of Cytoplasm ( �  i ) 
 For every free cytoplasmic Ca 2+  ion,  �  i  ions are bound revers-
ibly to intracellular buffers.  �  i  was determined using simulta-
neous fura-2 photometry and standard whole-cell recording of 
inward Ca 2+  currents (I Ca ). The intracellular solution contained 
(in mM): 125 cesium glutamate, 5 NaCl, 2 Mg � ATP, 0.3 Na 2 GTP, 
1 MgCl 2 , 0.2 fura-2, and 20 HEPES, pH 7.2 with CsOH. The 
extracellular solution contained (in mM): 140 NaCl, 2.8 KCl, 
10  d -glucose, 1.2 MgCl 2 , 2 CaCl 2 , and 10 HEPES, pH 7.4 with 
NaOH. PC12 cells were clamped at  � 80 mV and depolarized 
to 0 mV for 1 s to elicit Ca 2+  infl ux through voltage-gated Ca 2+  
channels. Whole-cell currents (with P/4 subtraction) and fura 
fl uorescence (as above) were recorded, and  �  i  was calculated 
using the equation: 

   κ i Ca
2+= ( I (t)dt)/zFv [Ca ],− ⋅∫ Δ    (1) 

 where I Ca (t) is empirically measured current using the patch 
clamp, z is the valence of Ca 2+ , F is Faraday ’ s constant, v is cellular 
volume calculated from the capacitance of the cell assuming 
a sphere, and  � [Ca 2+ ] is the peak increase determined from 
the fura-2 measurements.  �  i  represents the contributions of all 

Cells were cultured in Dulbecco ’ s Modifi ed Eagle Medium with 
high glucose, L-glutamine, pyridoxine hydrochloride, and sodium 
pyruvate (Invitrogen), supplemented with 10% horse serum 
(Gemini Bioproducts), 5% FBS (Gemini Bioproducts), 44 mM 
sodium bicarbonate, and 25 mM HEPES, pH to 7.3 with NaOH. 
Cells were maintained in a 5% CO 2  atmosphere and passaged 
1:20 with Ca 2+ - and Mg 2+ -free PBS (Invitrogen) weekly. Cells 
were subcultured onto polyornithine-coated number 0 glass 
cover slips for experiments. 

 To differentiate cells, we subcultured them onto the coated 
coverslips at a low density and cultured them in the normal cul-
ture medium for 2 h. We then replaced this medium with me-
dium supplemented with 50 ng/ml NGF (gift of M. Bothwell, 
University of Washington). NGF medium was renewed every third 
day for a minimum of 15 d. Neurite extension was evident as early 
as day 3, but we waited longer in order to reach a stage of differ-
entiation in which all neural markers would be up-regulated. 

 Ca 2+  Photometry 
 Cytoplasmic Ca 2+  measurements were done at elevated tempera-
ture by ratiometric fura-2 or fura-4F (Invitrogen) photometry. 
Cells were loaded with the acetoxymethyl (AM) ester of the de-
sired dye dispersed in 10% pluronic and diluted to 10  μ M in mod-
ifi ed Ringer ’ s solution (in mM: 130 NaCl, 2.5 KCl, 1 MgCl 2 , 2 
CaCl 2 , 10 glucose, and 10 HEPES, pH 7.3) at room temperature 
for 20 – 25 min and transferred into a recording chamber perfused 
with the modifi ed Ringer ’ s solution using a local perfusion device 
heated to 37 ° C. To determine the [fura-2] in PC12 cells, we 
loaded cells with known concentrations of fura-2 salt using whole-
cell patch confi guration (see below). By comparing the amount 
of light collected from resting cells so loaded to similarly sized 
cells loaded with fura-2-AM, we estimated that the average PC12 
cell contains 300 nM fura-2 under our loading conditions. This 
number was used in our mathematical model and in translating 
the rate of change of [Ca 2+ ] cyt  into absolute fl uxes. We used a 3-s 
or, in  Fig. 1 C  only, 30-s exposure to high-K +  depolarizing solution 
to impose a cytoplasmic Ca 2+  load. This solution contained in 
mM: 70 KCl, 67 NaCl, 2 CaCl 2 , 1 MgCl 2 , 10 glucose, and 10 HEPES, 
pH 7.3. In control experiments, a nominally Ca 2+ -free solution 
(modifi ed Ringer ’ s without CaCl 2 ) was applied to the cells as they 
recovered from depolarization. The composition of this clear-
ance solution and of the high K +  solution was sometimes changed 
as noted. Nominally Ca 2+ -free Ringer ’ s solution was adequate to 
prevent store-operated currents activated by thapsigargin from 
contaminating the measurements (Fig. S1). We recorded only 
from one cell on each coverslip to ensure that each recorded cell 
was  “ na ï ve ”  with respect to previous Ca 2+  elevations. 

 Fura fl uorescence was excited by 10 ms of 340-nm illumination 
followed immediately by 10 ms of 380-nm illumination (TILL 
Photonics), and emission at 505 nm was collected by a photo-
diode controlled by PatchMaster software (HEKA Electronics). 
The fi rst 2 ms of each collection was discarded to allow time for 
the optical transitions of the illuminator. [Ca 2+ ] cyt  was calculated 
from the background-corrected fl uorescence ratio R = F 340 /F 380  
using the standard calibration equation: [Ca 2+ ] cyt  = K*[(R  �  
R min )/(R max   �  R)], where R is the measured ratio, and the calibra-
tion parameters K*, R min , and R max  were experimentally deter-
mined as previously reported ( Chen et al., 2003 ). Fura-2 and 
fura-4F required separate calibrations. For Ca 2+  transport mea-
surements, which used fura-2, all points  > 1500 nM Ca 2+  were dis-
carded as unreliable. 

 The setup included a viewfi nder that allowed us to exclude 
some regions of the fi eld of view from the measurements. We took 
advantage of this to restrict measurements to the soma or to a 
fi eld of neurites (in NGF-differentiated cells). Due to the larger 
volume of the somata, fura fl uorescence collected from them 
was substantially larger than fl uorescence collected from neurites. 
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 R E S U LT S 

 Preliminary Observation of Ca 2+  Clearance 
 PC12 cells were depolarized with 3-s pulses of 70 mM 

KCl to induce Ca 2+  entry, and the cytoplasmic Ca 2+  

([Ca 2+ ] cyt ) was monitored using fura-2 preloaded into 

cells in its acetoxymethyl ester form.  Fig. 1  A shows the 

Ca 2+  time course for an experiment on a single cell that 

exhibited average rates of Ca 2+  clearance (black line, 

control).  During KCl treatment, [Ca 2+ ] cyt  increased rap-

idly, and then upon removal of KCl it fell back more 

slowly to the baseline, representing Ca 2+  clearance. 

In this fi gure and elsewhere we have also drawn smooth 

curves (red, simulated control) derived from a mathe-

matical model of the transport mechanisms described 

in Appendix. The black circles in  Fig. 1 B  (control) 

show the time derivative of [Ca 2+ ] cyt  during the clear-

ance phase plotted versus [Ca 2+ ] cyt  as a Ca 2+  transport 

curve for the same cell. As expected, the net clearance 

rate  � d[Ca 2+ ] cyt /dt fell from its peak value (top right) 

as [Ca 2+ ] cyt  fell. Results from many cells were pooled 

and binned by the [Ca 2+ ] cyt  values in the abscissa to ob-

tain the black curve in  Fig. 1 C . This method of analysis 

allowed us to pool results from many cells despite differ-

ences in peak cytoplasmic Ca 2+ . 

 Before resolving the mechanistic components of this 

clearance, we need to consider whether Ca 2+  transport 

rates depend only on instantaneous [Ca 2+ ] cyt  or are also 

infl uenced by the past history of Ca 2+  exposure. To look 

for history dependence, we lengthened the KCl pulse to 

30 s ( Fig. 1, D – F , blue line). As was typical of several re-

peats of this protocol, Ca 2+  continued to increase well 

above the useful level for fura-2 for 8 – 10 s during the 

pulse and then  “ sagged ”  ( Fig. 1 D ).  Fig. 1 D  compares 

30-s and 3-s depolarizations. After the 30-s depolariza-

tion, clearance was slower and Ca 2+  cyt  remained above 

baseline, even 70 s later. Transport curves for these two 

cells are compared in  Fig. 1 E , and mean values for 

pooled data from many cells are shown in  Fig. 1 F . Clear-

ance rates after 30 s are less that half those after 3 s. 

A possible explanation for the slowing is that the Ca 2+  

level in intracellular stores rises during prolonged 

Ca 2+  elevation, altering their ability to continue to clear 

Ca 2+  or even causing Ca 2+  to be released from the stores, 

further blunting apparent Ca 2+  clearance. We tested 

whether this might involve the ER by pretreating the 

cells with thapsigargin (TG) to inhibit SERCA and to 

empty ER Ca 2+  stores; however, TG did not change the 

Ca 2+  clearance seen after a 30-s depolarization ( Fig. 1 F ). 

These experiments indicate that (a) Ca 2+  clearance 

in PC12 cells is slower after long depolarizations, (b) 

SERCA pumps do not serve to clear Ca 2+  after 30-s depo-

larization (in contrast to 3-s depolarization, see below), 

and (c) release of Ca 2+  from the ER during clearance 

does not contribute to the apparent slowing of Ca 2+  

clearance after long depolarizations. The unexplained 

buffers in the cell, including fura-2. To extract the contribution 
of endogenous buffers, we split  �  i  into  �  i endo  and the known 
fura-2 component: 

  
κ κi i endo

D, fura-2 D, fura-2
2+

1cyt

=  + 

[fura-2]*K /(K  + [Ca ] )((K  + [Ca ] ),D, fura-2
2+

2cyt

  (2) 

 where  �  i, endo  is the endogenous Ca 2+  binding ratio of the cyto-
plasm, and [Ca 2+ ] 1cyt  and [Ca 2+ ] 2cyt  represent [Ca 2+ ] cyt  recorded 
before and after membrane depolarization (Zhou and Neher, 
1993). The concentration of fura-2 in the intracellular pipette so-
lution is 200  μ M and its dissociation constant for Ca 2+  (K D ) was 
taken as 224  μ M. 

 Data Analysis 
 Fluorescence intensities were recorded using PatchMaster, cor-
rected for background, and converted into ratios and then free 
Ca 2+  using IGOR Pro (Wavemetrics). For each individual Ca 2+  
trace, we considered only the clearance phase that follows Ca 2+  
loading and used IGOR to calculate the derivative d[Ca 2+ ] cyt /dt for 
each data point during Ca 2+  clearance. The derivative was calcu-
lated as the slope of the line between the point immediately before 
the desired point and the point immediately after; points were 
0.5 s apart. The fi rst two to three points on all traces were discarded. 
During net clearance, d[Ca 2+ ] cyt /dt has a negative value by conven-
tion. To simplify the presentation, we plot  � d[Ca 2+ ] cyt /dt, so that 
as the rate of Ca 2+  transport out of the cytoplasm falls, the curve 
falls.  Fig. 1  A shows typical time courses of Ca 2+  in cells that under-
went KCl depolarization and clearance, and  Fig. 1 B  shows the 
derivatives obtained from these single cells. 

 The error bars and statistics given for means represent SEM. 
To combine data from multiple cells, we binned data points by the 
values of [Ca 2+ ] cyt . The bins were 100 nM wide from 0 to 1000 nM, 
and 200 nM wide above 1000 nM. We then averaged the binned 
data from a pool of cells — [Ca 2+ ] cyt  for the abcissae and d[Ca 2+ ] cyt /dt 
for the ordinates — and report the average value in the fi gures. 
Note that due to a large spread in peak Ca 2+  values ( Fig. 5 ), 
not every cell that we measured contributed to every bin. All of 
these mean Ca 2+  transport curves (d[Ca 2+ ] cyt /dt vs. [Ca 2+ ] cyt ) are 
shown  ±  SEM of both x and y values. At times, we performed 
mathematical operations on Ca 2+  transport curves. Most fre-
quently, this involved addition and subtraction operations. To add 
or subtract curves, we averaged the concentrations and per-
formed the desired operation on the transport rates for each bin. 
SEMs combined according to the standard formula for addition 
( Goldstein, 1964 ). 

 Throughout the manuscript, curves that were obtained directly 
from experimental data are shown with open symbols and solid 
lines; the lines may connect the symbols or may represent output 
of a model. Points from mathematical operations performed on 
experimental results are shown with closed symbols and dotted 
lines. With the exception of the control Ca 2+  transport curves, 
curves that have appeared in previous fi gures are shown as lines 
and error bars without symbols. In  Fig. 9 , we bypassed some of 
our rules and switched to closed symbols in panels A, B, C, and D 
for clarity. 

 Online Supplemental Material 
 The online supplemental material is available at http://www.jgp.
org/cgi/content/full/jgp.200709915/DC1. Figs. S1 and S2 show 
the responsiveness of baseline [Ca 2+ ] cyt  to extracellular Ca 2+  after 
TG treatment and theoretical calculations of local depletion of 
Ca 2+  near the plasma membrane when Ca 2+  transporters are at 
work. Additional supplementary text describes the provenance of 
the PC12 cells we used and lists the computer program used in 
the calculation of local Ca 2+  depletion. 
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by the massive, unphysiological Ca 2+  elevation. We chose 

to avoid these complications in the rest of this paper by 

focusing only on recovery after 3-s depolarizations and 

by using only  “ naive ”  cells that had never been exposed 

to previous KCl pulses. 

 Ca 2+  Clearance in Undifferentiated PC12 Cells 
 We dissected the contributions of various Ca 2+  trans-

porters to total Ca 2+  clearance after 3-s depolarizations 

using the conditions described in Materials and meth-

ods to inhibit each mechanism. SERCA was inhibited by 

pretreatment with 1  μ M thapsigargin (TG), MtU was in-

hibited by acute application of 2  μ M CCCP, PMCA was 

inhibited by acutely lowering extracellular proton con-

centration (pH raised to 9.0), and NCX was inhibited 

by replacing extracellular Na +  with Li + . We started by 

blocking all four mechanisms simultaneously to deter-

mine whether they accounted for the observed Ca 2+  

transport. The results of these 4-blocked experiments 

are shown in  Fig. 1  as gray symbols.  Fig. 1  A shows a 

sample time course of intracellular Ca 2+ , and  Fig. 1 B  

shows the derivatives obtained from that cell. Although 

Ca 2+  transport is much slower in the 4-blocked cell, 

[Ca 2+ ] cyt  does eventually return to baseline in this cell. 

Of the 62 cells treated with the 4-blocked protocol, 43 

( � 70%) returned to baseline within 90 s, albeit with 

greatly slowed kinetics. The remaining cells arrested be-

fore reaching the baseline, at an average [Ca 2+ ] cyt  of 

 � 650 nM. This arrest is not due to Ca 2+  entering through 

a store-operated pathway activated by TG because the 

clearance phase was performed in nominally Ca 2+ -free 

Ringer ’ s, and we observed that TG-treated cells main-

tained under this condition did not have elevated basal 

[Ca 2+ ] cyt . The pooled 4-blocked transport curve from 

the 62 experiments is compared with that for 88 con-

trols in  Fig. 1 C . Blocking the four transporters inhibits 

over 90% of the Ca 2+  transport above 300 nM [Ca 2+ ] cyt . 

Thus most Ca 2+  transport in PC12 cells is accounted 

for by the four classical mechanisms. We refer to the 

small remaining transport as  “ residual Ca 2+  transport. ”  

It could represent additional minor Ca 2+  clearance 

mechanisms, possible slow binding to some cytoplasmic 

buffers, and imperfect block of the classical transport 

mechanisms. For example, pH 9.0 should block only 

93% of the PMCA activity, leaving a residual of 7% 

( Xu et al., 2000 ). 

 We then assessed the capacity of each of these classes 

of transporters by performing 3-blocked experiments in 

which we blocked three classes of transporters and ex-

amined the ability of the unblocked transporter to clear 

Ca 2+ . The results of these experiments are shown in  Fig. 2 .  

In each panel, the control curve represents transport in 

the absence of inhibitors, and the remaining curves in 

 Fig. 2 (A and B ) show the transport when only one of 

the classical mechanisms is operating alone; these 

curves have been corrected for the small residual Ca 2+  

slowing could be due to release of Ca from other stores 

that fi ll during the extended depolarization or to modi-

fi cations (phosphorylations?) of transporters induced 

 Figure 1.   Four canonical Ca 2+  transporters account for most 
Ca 2+  clearance in undifferentiated PC12 cells. (A) Representa-
tive time course of [Ca 2+ ] cyt  in two single undifferentiated PC12 
cells in response to KCl depolarization (black bar). The control 
cell is shown in black, and the 4-blocked cell (see text) is in gray. 
Colored lines superimposed on these two traces are simulated 
time courses of Ca 2+  clearance using a kinetic model with four ca-
nonical transport mechanisms and residual transport discussed in 
Appendix .  (B) Transport curves of Ca 2+  clearance,  � d[Ca 2+ ] cyt /dt, 
calculated from the clearance phases of the cells in A and plot-
ted against [Ca 2+ ] cyt . In 4-blocked cells, transport is greatly slowed. 
(C) Mean clearance rates for control (black open circles,  n  = 88) 
and 4-blocked (gray open circles,  n  = 62) cells. (D) Representative 
time course of [Ca 2+ ] cyt  in single undifferentiated PC12 cells in re-
sponse to 3-s (black line) and 30-s (blue line) KCl depolarizations. 
(E) Ca 2+  clearance, plotted as in B, for the two cells shown in D. 
(F) Mean clearance rates for 3-s depolarized (black,  n  = 88), 30-s 
depolarized (blue,  n  = 12), and TG-treated and 30-s depolarized 
(green,  n  = 9) cells, shown as in C.   
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The panels on the left show the 1-blocked transport 

curves in gray and the control curves in black. The pan-

els on the right show the activity curves for each mecha-

nism, i.e., the differences between the two curves in the 

left panel, in gray, compared with the capacity curves 

obtained from the 3-blocked experiments ( Fig. 2 ) in 

black. The activity curves are quite noisy as each point 

represents a small difference between two large num-

bers. For SERCA pumps, the capacity and activity curves 

are not obviously different, transport remaining small 

until [Ca 2+ ] cyt  rises above 1000 nM ( Fig. 3, A and B ). 

Likewise, for the MtU, the curves seem similar and small 

at all but high ( ≥ 800 nM) values of [Ca 2+ ] cyt  ( Fig. 3, 

C and D ). For PMCA, on the other hand, the calculated 

activity falls well below the capacity for fi ve consecutive 

data points below 800 nM [Ca 2+ ] cyt  ( Fig. 3, E and F ). 

Under these 1-blocked conditions, the NCX was the 

most robust transporter of Ca 2+ , and it operated at 

capacity until  � 1000 nM Ca 2+ ; where it fell below the 

capacity curve ( Fig. 3, G and H ). These calculations in-

dicate that the canonical Ca 2+  transporters transport at 

or a little below capacity over the tested range of [Ca 2+ ] cyt , 

explaining why the sum of individual transport capac-

ities slightly exceeds the observed total transport at 

higher values of [Ca 2+ ] cyt  ( Fig. 2 C ). The deviation from 

additivity for the NCX, for example, might imply that 

when the other transporters are operating, the NCX ex-

periences a lower local [Ca 2+ ] cyt  than the average value 

that fura-2 dye reports (see Discussion). 

 In addition to the four canonical mechanisms of Ca 2+  

transport, SPCAs can transport Ca 2+  into the Golgi and 

perhaps into distal secretory compartments. SPCAs are 

not inhibited by TG but are reported to be inhibited by 

high concentrations of BHQ ( Wuytack et al., 2002 ). We 

performed a 5-blocked experiment in which we blocked 

SPCA with added 10  μ M BHQ after blocking the other 

four mechanisms of Ca 2+  transport with the 4-block 

cocktail. Surprisingly, adding BHQ slightly speeded Ca 2+  

transport that remains in the 4-blocked experiments 

( Fig. 1 C ). We call the results of these experiments 

 “ capacity curves ”  because they show what one transport 

mechanism could accomplish essentially alone.  Fig. 2  A 

shows the capacity of the two intracellular Ca 2+  trans-

porters. Compared with overall transport, the SERCA 

makes little contribution except above 800 nM [Ca 2+ ] cyt . 

The MtU component is practically negligible, being 

comparable to the residual transport component of 

4-blocked experiments ( Fig. 1 ).  Fig. 2 B  shows the 

capacities of the two plasma-membrane transporters. 

The PMCA and NCX each account for almost half of 

the total Ca 2+  transport up to 900 nM [Ca 2+ ] cyt . In accor-

dance with work on other cells, at higher concentra-

tions, the PMCA appears to saturate, whereas the NCX 

rate continues to rise and accounts for  � 70% of the to-

tal Ca 2+  transport.  Fig. 2 C  shows the sum of the capacity 

curves for these four transporters plus the residual Ca 2+  

transport compared with the observed transport in the 

control. Together, these data show that the Ca 2+  trans-

porting capacity of PC12 cells is dominated by the two 

plasma membrane transporters and that, up to 1000 nM 

[Ca 2+ ], the transporters are operating near capacity. 

 Are Clearance Mechanisms Independent? 
 If the four clearance mechanisms operated indepen-

dently, any combination of them should be additive. 

To verify additivity and to cross-check the conclusions 

of our 3-blocked measurements, we performed a series 

of 1-blocked experiments in which only one transporter 

was inhibited at a time. The  “ activity ”  of that transporter 

was determined by subtracting the 1-blocked curve from 

the control curve. We refer to the subtracted curves as 

 “ activity curves ”  ( Fig. 3 ).  An activity curve differs from a 

capacity curve in that the former is intended to show 

what a given transporter accomplishes while working 

in concert with other Ca 2+  transporters, whereas the lat-

ter shows the results of that transporter working alone. 

 Figure 2.   Plasma membrane 
Ca 2+  transporters have higher 
capac ities than intracellular Ca 2+  
trans porters in undifferenti-
ated PC12 cells. Clearance rate, 
 � d[Ca 2+ ] cyt /dt, is plotted against 
[Ca 2+ ] cyt  for cells treated with 
3-blocked proto cols that allow 
only one transporter to work at 
a time. All gray data points are 
corrected for residual Ca 2+  trans-
port after 4-blocked ex periments. 
Black curves represent data from 
control cells, as shown in  Fig. 1  
( n  = 88). (A) Capacities of the 

intracellular transporters, SERCA (squares,  n  = 15) and MtU (triangles,  n  = 24). (B) Capacities of the plasma membrane transporters, 
PMCA (inverted triangles,  n  = 16) and NCX (diamonds,  n  = 16). (C) The sum of the four capacity (gray) curves in A and B plus the 
residual Ca 2+  transport from  Fig. 1  is compared with the control curve. The smooth curves superimposed on the gray data points of A and B 
and on the black points of C are calculated from the individual functions of a kinetic model with four canonical transport mechanisms 
and residual transport discussed in Appendix.   
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by the dipeptide GPN ( Duman et al., 2006 ). Therefore 

we wanted to see whether the BHQ-sensitive compart-

ment in PC12 cells also was disturbed by pretreatment 

for 20 min with 50  μ M GPN. Below 800 nM [Ca 2+ ] cyt , 

clearance was completely unaltered by GPN ( Fig. 4 B ). 

Unfortunately, we were unable to collect data from high 

Ca 2+  ranges because these cells exhibited lower peak 

Ca 2+  values than control cells did. The experiment was 

therefore not conclusive. 

 Ca 2+  Clearance from Somata of Differentiated PC12 Cells 
 We next asked whether cellular Ca 2+  clearance mecha-

nisms are changed when PC12 cells are differentiated 

by  > 15 d culture in 50 ng/ml NGF (see Materials and 

methods). With undifferentiated cells, the KCl-induced 

peak of [Ca 2+ ] cyt  sometimes rose above the reliable 

range of the fura-2 indicator; and with differentiated 

cells this happened more often. Therefore we turned to 

the lower-affi nity Ca 2+  dye fura-4F for more reliable mea-

surements of the height of [Ca 2+ ] cyt  peaks. Both differ-

entiated and undifferentiated cells showed a wide range 

of peak heights in response to KCl depolarization ( Fig. 5 ).  

The average, maximal, and range of peak heights were 

clearance above 800 nM [Ca 2+ ] cyt  ( Fig. 4 A ).  This might 

occur if SPCAs normally fi ll some compartment with 

Ca 2+  that releases the Ca 2+  when [Ca 2+ ] cyt  is high; BHQ 

would prevent this compartment from being full, so 

that less Ca 2+  is released into the cytoplasm during the 

clearance phase in the presence of BHQ. The effect is 

small. In a previous study, we observed that dense core 

secretory granules release Ca 2+  after plasma membrane 

depolarization in pancreatic  �  cells and were disrupted 

 Figure 3.   Most Ca 2+  transporters work at or near capacity in un-
differentiated PC12 cells. In each panel of the left column (A, C, 
E, and G), Ca 2+  transport curves from various 1-blocked experi-
ments are shown in gray, and control Ca 2+  transport curves from 
 Fig. 1  ( � d[Ca 2+ ] cyt /dt vs. [Ca 2+ ] cyt ) are shown in black. In each 
panel in the right column (B, D, F, and H), the activity of a given 
transporter, calculated as the difference between the control Ca 2+  
transport curve and the 1-blocked Ca 2+  transport curve to the left, 
is shown in gray. The capacity trace obtained from the 3-blocked 
experiments of  Fig. 2  is shown in black. (A and B) SERCA was 
inhibited with 1  μ M TG ( n  = 12). (C and D) MtU was inhibited by 
treatment with 2  μ M CCCP ( n  = 16). (E and F) PMCA was inhib-
ited by raising extracellular pH to 9.0 ( n  = 16). (G and H) NCX 
was inhibited by replacing extracellular Na +  with Li +  ( n  = 16).   

 Figure 4.   Effects of BHQ and GPN on undifferentiated PC12 
cells. Ca 2+  transport curves ( � d[Ca 2+ ] cyt /dt vs. [Ca 2+ ] cyt ) are shown. 
(A) The light gray data points show cells treated with 10  μ M BHQ 
in addition to the 4-blocked protocol ( n  = 15). The dark gray 
data points show residual transport in the 4-blocked cells of  Fig. 1  
with a superimposed smooth curve calculated from the residual 
transport function in a kinetic model discussed in Appendix. 
(B) The gray curve shows cells treated with GPN, whereas the 
black curve shows a truncated version of the control Ca 2+  trans-
port curve from  Fig. 1 .   
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and transported little net Ca 2+  below 1000 nM [Ca 2+ ] cyt  

( Fig. 7 D ). Clearly in differentiated cells the 1-blocked 

(CCCP) experiments are not correctly extracting the 

mitochondrial component of fl ux seen with the three 

blocked experiments (high pH, TG, Li + ). 

 Why does CCCP block so much clearance activity in 

the 1-blocked experiments? We suggest that even a short 

CCCP treatment stops not only the MtU but also the 

two ATP-requiring transporters. CCCP collapses the 

mitochondrial proton gradient, stopping formation of 

new ATP by mitochondria and allowing cellular ATP to 

deplete if glycolysis cannot keep up with ATP demand. 

Treatment with oligomycin can be used to keep the F 1 F 0  

ATPase from breaking down ATP once the proton gra-

dient is gone ( Babcock et al., 1997 ). However, addition 

of 5  μ M oligomycin, either coincident with CCCP or as 

a 30-s preincubation before CCCP was added, only 

weakly restored some missing Ca 2+  transport ( Fig. 8 A ).  

Oligomycin had little effect on residual Ca 2+  transport 

in 4-blocked experiments ( Fig. 8 B ). To determine 

all markedly higher in NGF-differentiated cells. Higher 

[Ca 2+ ] cyt  peaks might be expected from the greater 

surface-to-volume ratio of differentiated cells and from 

a reported increase in Ca 2+  current ( Black et al., 2003 ). 

  Fig. 6  A compares the Ca 2+  transport curves for somata 

of NGF-differentiated (black line) and undifferentiated 

cells (gray line).  They are very similar, with that for un-

differentiated cells lying slightly above that for differen-

tiated cells. When the 4-blocked protocol was applied to 

differentiated cells, we found that it abolished virtually 

all transport when [Ca 2+ ] cyt  was  < 1000 nM but left some 

residual Ca 2+  transport above this value ( Fig. 6 B ). Add-

ing 10  μ M BHQ on top of the 4-blocked protocol (i.e., 

a 5-blocked experiment) decreased residual Ca 2+  trans-

port by  � 50% ( Fig. 6 C ). Thus, differentiation intro-

duces a measurable component of Ca 2+  clearance fl ux 

(out of the cytoplasm) that is not eliminated by TG but 

is BHQ sensitive. This fl ux could represent SPCA trans-

porters on non-ER organelles of the secretory pathway. 

Unlike undifferentiated cells, the differentiated cells 

showed no depression of maximal Ca 2+  rise after GPN 

treatment. GPN pretreatment had no effect on Ca 2+  

transport ( Fig. 6 D ), suggesting that the putative SPCA-

containing compartment is not lysosomal. 

 We determined the capacity of the four canoni cal 

transporters in differentiated cells by performing 3-

blocked experiments, and we determined their activ-

ities when other transporters were active using 1-blocked 

experiments. As shown in  Fig. 7 , the capacity curves 

nearly overlaid the noisier activity curves for SERCA, 

PMCA, and NCX in differentiated cells.  However, the 

component of transport attributed to MtU is clearly 

discrepant between the two measures. Application of 

CCCP at the moment of the KCl treatment diminished 

subsequent Ca 2+  transport by almost 50% at [Ca 2+ ] cyt  val-

ues above 1000 nM ( Fig. 7 C ). At face value, this result 

contrasted with our 3-blocked experiments, which sug-

gested that the mitochondria might even release a little 

Ca 2+  into the cytoplasm at these high values of [Ca 2+ ] cyt  

 Figure 5.   NGF-differentiated PC12 cells have greater Ca 2+  rises 
in response to depolarization than undifferentiated cells. Peak 
[Ca 2+ ] cyt  for PC12 cells loaded with fura-4F and depolarized with 
70 mM KCl are shown for both undifferentiated (No NGF,  n  = 20) 
and differentiated (NGF,  n  = 13) cells. Open gray circles repre-
sent individual cells, and closed black circles are means.   

 Figure 6.   Global Ca 2+  transport in NGF-differentiated PC12 cells 
is similar to that in undifferentiated PC12 cells. (A) Total Ca 2+  
transport with no Ca 2+  transporters blocked is shown for undiffer-
entiated (gray curve,  Fig. 1 ) and NGF-differentiated (black curve, 
 n  = 48) PC12 control cells. (B) Ca 2+  transport is shown for control 
(black curve, from A) and 4-blocked (gray curve,  n  = 62) NGF-dif-
ferentiated PC12 cells. (C) Ca 2+  transport is shown for NGF-dif-
ferentiated PC12 cells treated with the 4-blocked protocol (light 
gray circles, from B) or with the 4-blocked protocol plus 10  μ M 
BHQ (dark gray triangles,  n  = 16). The difference between these 
two curves (gray circles) might represent SPCA activity. (D) Ca 2+  
transport is shown for NGF-differentiated cells treated with the 
4-blocked protocol (circles, from B) or pretreated with 50  μ M GPN 
and then treated with the 4-blocked protocol (triangles,  n  = 18).   
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we compare a 2-blocked experiment in which MtU and 

SERCA are inhibited (black line) with the calculated 

sum of the capacities of NCX, PMCA, and the residual 

Ca 2+  transport (gray line). The two curves are similar, 

suggesting that the fl uxes allowed to operate in this ex-

periment are not strongly affected by CCCP. In  Fig. 8 D , 

which non-MtU transporters were affected by CCCP, we 

performed a series of 2-blocked experiments, treating 

the cells with both CCCP and one other inhibitor and 

allowing the other two mechanisms to function. We 

compared these results to curves calculated from the 

3-blocked experiments in  Fig. 7 . For example, in  Fig. 8 C , 

 Figure 7.   Capacities and activities of Ca 2+  transporters in NGF-
differentiated PC12 cells. Results are shown as Ca 2+  transport 
curves ( � d[Ca 2+ ] cyt /dt vs. [Ca 2+ ] cyt ). In the left column (A, C, 
E, and G), data from 1-blocked experiments for each of the four 
canonical Ca 2+  transport mechanisms (gray lines and symbols) 
are compared with control NGF-differentiated cells (black lines 
and circles) from  Fig. 6 . In the right column (B, D, F, and H), 
the capacity of each transporter, obtained from 3-blocked experi-
ments and corrected for residual Ca 2+  transport, is shown in black. 
The activity of each Ca 2+  transporter type, calculated as the dif-
ference between the two traces in the lefthand panel, is shown in 
gray: (A and B) SERCA ( n  = 33 for 1-blocked experiments,  n  = 17 
for 3-blocked experiments); (C and D) MtU ( n  = 21 for 1-blocked 
experiments,  n  = 17 for 3-blocked experiments); (E and F) PMCA 
( n  = 17 for 1-blocked experiments,  n  = 16 for 3-blocked experi-
ments). (G and H) NCX ( n  = 19 for 1-blocked experiments,  n  = 16 
for 3-blocked experiments).   

 Figure 8.   CCCP inhibits primary active transporters in NGF-
differentiated PC12 cells. Results are shown as Ca 2+  transport curves 
( � d[Ca 2+ ] cyt /dt vs. [Ca 2+ ] cyt ). (A) Data from control NGF-differ-
entiated cells (from  Fig. 7 ) are shown as black lines and circles, 
and data from 2  μ M CCCP-treated cells ( Fig. 7 ) are shown as a 
gray line. CCCP-treated cells were also concomitantly treated with 
5  μ M oligomycin (gray lines and triangles,  n  = 28). We obtained 
the same results when cells were treated with oligomycin for 30 s 
before application of CCCP as with continuing application of 
oligomycin (data not shown). (B) Residual Ca 2+  transport in NGF-
differentiated cells (gray line, from  Fig. 6 ) and NGF-differenti-
ated cells treated with 5  μ M oligomycin (black line and triangles, 
 n  = 16). (C – E) Ca 2+  transport curves for 2-blocked experiments 
(black lines and symbols) and estimated results of these experi-
ments based on transporter capacities shown in  Fig. 7  (gray lines 
and symbols). Residual Ca 2+  transport (from  Fig. 6 ) is shown as a 
gray line in E. In C, cells were treated with CCCP and TG ( n  = 15) 
and compared with the sum of the transport curves for NCX, 
PMCA, and residual Ca 2+  transport. In D, cells were treated with 
CCCP and pH 9.0 ( n  = 16) and compared with the sum of the 
transport curves for NCX, SERCA, and residual Ca 2+  transport. 
In E, cells were treated with CCCP and Li +  ( n  = 20) and compared 
with the sum of the transport curves for SERCA, PMCA, and re-
sidual Ca 2+  transport.   
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we inhibited both MtU and PMCA (black line) and 

compared the transport curve to the sum of the capac-

ities of SERCA, NCX, and the residual Ca 2+  transport. 

Once again, the curves are quite similar with CCCP 

 Figure 9.   Comparison of Ca 2+  transport capacities between un-
differentiated and NGF-differentiated PC12 cells. Experimental 
Ca 2+  transport curves ( � d[Ca 2+ ] cyt /dt vs. [Ca 2+ ] cyt ) are shown as 
symbols. Black symbols are from undifferentiated cells and red 
symbols are from NGF-differentiated cells. Capacity data from 
undifferentiated cells are reproduced from  Fig. 2 . The capacity 
data for MtU and residual Ca 2+  transport in differentiated cells 
are reproduced from  Figs. 8 and 7 , respectively. Smooth black 
and red curves represent fi tted functions from the mathematical 
model in Appendix using the same color code. (A) Capacities 
and fi ts of SERCA. The NGF-differentiated points result from 
2-blocked experiments where PMCA and NCX were inhibited, 
corrected for MtU and residual Ca 2+  transport ( n  = 11). (B) Ca-
pacities and fi ts of MtU. (C) Capacities and fi ts of PMCA. The 
NGF-differentiated curve is the result of 2-blocked experiments 
in which SERCA and NCX were inhibited, corrected for MtU and 
residual Ca 2+  transport ( n  = 16). (D) Capacities and fi ts of NCX. 
The NGF-differentiated curve points result from 2-blocked exper-
iments in which SERCA and PMCA were inhibited, corrected for 
MtU and residual Ca 2+  transport ( n  = 12). (E) Capacities and fi ts 
of the residual Ca 2+  transport. (F) The NGF-differentiated control 
values (black) are shown with the sum of the fi ve capacity curves 
from NGF-differentiated cells (blue) from A – E and the sum of 
the fi tted functions (red).   

 Figure 10.   Ca 2+  transport in neurites of NGF-differentiated PC12 
cells. (A) Typical time course of Ca 2+  clearance in neurites of a PC12 
cell (gray line). Due to the noisiness of the traces, we fi tted the origi-
nal data with a double exponential (black line) to calculate Ca 2+  
transport curves. (B) Ca 2+  transport curves for control and 4-blocked 
experiments in neurites (black lines with circles, and gray lines with 
triangles, respectively,  n  = 13). Data from cell somata are shown as 
well (broken black line is control from  Fig. 10 , broken gray line is 
4-blocked from  Fig. 10 ). (C) Ca 2+  transport curves for the BHQ-
dependent fl uxes in NGF-differentiated cells. The dotted gray line 
and triangles are from neurites ( n  = 10), the solid gray line are from 
cell somata ( Fig. 6 ), and the black line represents the residual Ca 2+  
transport for neurites (B). (D) Ca 2+  transport capacity curves for 
SERCA. The two different shades of gray lines and squares represent 
the SERCA data for neurites sorted into two classes ( n  = 11 each) 
(N). The black line represents SERCA Ca 2+  transport in soma from  
Fig. 9 (S) . (E – G) Ca 2+  transport curves for MtU (E), PMCA (F), and 
NCX (G). Gray line and symbols are from neurites ( n  = 16, 13, 11, 
respectively), and the black lines represent capacity data from 
somata ( Fig. 9 ). (H) The control total Ca 2+  transport curve from 
neurites (black line,  Fig. 10 B ) is compared with the sum of the indi-
vidual activities obtained from neurites (gray line).   

being only slightly lower. However, when we inhibited 

NCX in addition to CCCP treatment, we obtained the 
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ciably after NGF differentiation ( Fig. 9 E ). As was the 

case for the undifferentiated cells, the sum of the four 

capacity traces and the residual Ca 2+  transport trace for 

differentiated cells gives a reasonable estimate for ob-

served total cellular Ca 2+  transport ( Fig. 9 F ), although 

with some indication that transporters are working be-

low capacity above 800 nM [Ca 2+ ] cyt . 

 To describe the changes between differentiated and 

undifferentiated cells quantitatively, we fi tted the capac-

ity curves with mathematical functions that describe 

Ca 2+  transport due to each mechanism (see Appendix 

for details). The smooth lines in  Fig. 2, Fig. 4 A, and 

Fig. 9  show these functions using the parameters given 

in  Table I .  A small increase in apparent cooperativity 

(refl ected in the Hill coeffi cient, n Hill ) was the most 

marked change in SERCA caused by differentiation. 

PMCA underwent an almost twofold increase in maxi-

mal velocity ( M  max ), a decrease in Ca 2+  affi nity, and an 

increase in cooperativity. NCX affi nity for activation by 

cytoplasmic Ca 2+  affi nity fell as did the rate of transport. 

Adding these theoretical capacity curves together also 

provided a reasonable estimate of total cellular Ca 2+  

transport ( Fig. 9 F ). When combined into a mathemati-

cal simulation of Ca 2+  decay, these fi ts also replicated 

the observed time course of Ca 2+  clearance in control 

cells and in 4-blocked cells ( Fig. 1 A ). 

 Ca 2+  Clearance from the Neurites of Differentiated 
PC12 Cells 
 We tried to measure Ca 2+  transport in the extensive net-

work of neurites that emerged from our cells upon NGF 

differentiation. The Ca 2+  signals from thin neurites were 

quite noisy compared with those from the much larger 

somata because the fl uorescence was much dimmer. 

Therefore, before taking the derivatives of these traces, 

we fi tted the Ca 2+  clearance phase for each fi eld of neu-

rites with a double exponential function ( Fig. 10 A ) and 

unambiguous result that the remaining transport was 

far below that expected for the sum of SERCA, PMCA, 

and the residual Ca 2+  transport ( Fig. 8 E ). In fact, the 

observed transport was virtually identical to residual 

Ca 2+  transport. These results indicate that both SERCA 

and PMCA are inhibited by CCCP treatment, as might 

be expected since both require ATP, and that when only 

one of these two transporters is working, a differenti-

ated cell can supply almost enough ATP to keep up, but 

when both are operating it cannot. 

 The results in  Fig. 8  cast suspicion on the capacity 

measurements made in  Fig. 7 , since some were based on 

3-blocked experiments that contained CCCP. Therefore, 

we redetermined capacity for canonical transporters in 

differentiated cells using another series of 2-blocked 

experiments. (The capacity measurement for MtU was 

unaffected, however, because this was the one 3-blocked 

experiment that did not contain CCCP.) For determina-

tion of the capacity of each transporter, we inhibited the 

other two non-MtU transporters. We then corrected the 

resulting transport curve for the contributions of both 

MtU and residual Ca 2+  transport. We compared these 

fl uxes with capacity curves obtained from 3-blocked ex-

periments performed on undifferentiated cells ( Fig. 2 ). 

Strikingly, differentiation left many aspects of Ca 2+  

clearance unchanged. Not only are the overall control 

transport curves for undifferentiated and NGF-differ-

entiated cells scarcely distinguishable from each other 

( Fig. 6 A ), the capacity curves for SERCA are essentially 

the same in both undifferentiated and NGF-differenti-

ated cells ( Fig. 9 A ), and they are small.  The mitochon-

dria remain a negligible component showing no net 

uptake in differentiated cells ( Fig. 9 B ). However, the 

capacities of both PMCA and NCX change appreciably 

and reciprocally with differentiation. PMCA capacity 

increases and NCX capacity decreases ( Fig. 9, C and D ). 

Finally, residual Ca 2+  transport does not change appre-

 TA B L E  I 

 Parameters for Model of Ca 2+  Clearance in PC12 Cells 

Mechanism Parameter Undifferentiated Differentiated Units

SERCA M max 61 58  μ mol � Ca 2+  l  � 1  � s  � 1 

K m 1.3 1.3  μ M

n Hill 2.9 3.4

MtU Slope 8  � 8  μ mol � Ca 2+  l  � 1  � s  � 1  �  μ M  � 1 

PMCA  M  ma   x  77 141  μ mol � Ca 2+  l  � 1  � s  � 1 

 K  m 0.71 0.97  μ M

 n  Hill 2.0 3.4

NCX  M  rate 560 470  μ mol � Ca 2+  l  � 1  � s  � 1 

 K  CaAct 0.5 0.85  μ M

Parameter values were obtained using the Virtual Cell model in Appendix to fi t the empirical data collected in this study. Values are given for the MtU, 

but we regard these small numbers as being in the noise level and ill determined. These adjusted parameters were used to generate the smooth traces 

shown in  Fig. 1 A and Figs. 2, 4, and 9 . Units of  M  max  and  M  rate  are micromoles of Ca 2+  pumped from the cytoplasm of a liter of cells per second. Because 

the cytoplasm contains Ca 2+  buffers, these numbers are about 300 times higher than the observed rates of fall of free Ca 2+  seen in transport curves and 

 Table II . Referred to a unit area of the plasma membrane, the  M  max  of 77  μ mol � Ca 2+  l  � 1  � s  � 1  for PMCA for example is about equivalent to 27,000 � Ca 2+  ions 

pumped �  μ m  � 2  � s  � 1  and might require 100-200 PMCA molecules  μ m  � 2  of membrane and consumption of 77  μ mol � ATP l  � 1  � s  � 1 .
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( Fig. 10 F ), and NCX ( Fig. 10 G ), overall Ca 2+  clearance 

in neurites was statistically indistinguishable from that 

in the cell soma, but the power of the test was poor be-

cause of the standard errors. Adding the Ca 2+  transport 

curves representing SERCA, MtU, PMCA, NCX, and 

residual Ca 2+  transport together gave a reasonable ap-

proximation of total transport in neurites if we chose 

the SERCA Ca 2+  transport curve that shows positive val-

ues of clearance ( Fig. 10 H ). These results show that the 

Ca 2+  transport due to MtU, PMCA, and NCX is similar 

in cell soma and neurites, but that due to SERCA may 

vary in different neurites. 

 Endogenous Ca 2+  Binding Ratio of the Cytoplasm in 
PC12 Cells 
 Finally, we determined the endogenous Ca 2+  binding 

ratio of PC12 cytoplasm. Only a small fraction of Ca 2+  in 

cells is free; the rest is bound to and buffered by a num-

ber of intracellular species. The Ca 2+  binding ratio ( � ) 

is the number of bound Ca 2+  ions per free Ca 2+  ion. 

To lower the free Ca 2+  of a buffered cell by a given 

amount, the Ca 2+  transport machinery of the cell must 

move 1 +  �  times as many Ca 2+  ions out of the cytoplasm 

as it would if there were no buffer. We determined  �  

for PC12 cells by measuring Ca 2+  currents and [Ca 2+ ] cyt  

simultaneously in cells under the whole-cell confi gura-

tion. Current measurements give the total amount of 

Ca 2+  that entered the cell ( Fig. 11 , gray line), and fura-2 

measurements give the change in free Ca 2+  that oc-

curred as a result ( Fig. 11 , black line).  Using this tech-

nique and Eqs. 1 and 2 of Materials and methods, we 

determined that the endogenous  �  in undifferentiated 

PC12 cells is 268  ±  85 ( n  = 9). 

 D I S C U S S I O N 

 Using Ca 2+  photometry and a pharmacological dissec-

tion, we have measured the contributions of several Ca 2+  

transport mechanisms to Ca 2+  dynamics in PC12 cells. 

In these cells, the two plasma membrane transporters, 

NCX and PMCA, account for the majority of the clear-

ance from cytoplasm. As [Ca 2+ ] cyt  rises above 900 nM, the 

PMCA tends to saturate, whereas the NCX continues to 

speed up, becoming dominant at the highest [Ca 2+ ] cyt . 

This is in accord with the oft-repeated generalization 

that the PMCA is a high-affi nity, low-capacity transporter, 

whereas the NCX is a low-affi nity, high-capacity trans-

porter. The two organellar transporters, SERCA and MtU, 

contribute less. SERCA pumps account for a small but 

signifi cant component of clearance, and the MtU con-

tributes little. There is also a residual Ca 2+  clearance ac-

tivity even with our cocktail to block the four canonical 

mechanisms that is larger than we have seen in other 

cells. The overall transport remains virtually unchanged 

by differentiation with NGF. The NCX contribution 

is lowered, the PMCA contribution is raised, and the 

 Figure 11.   Determination of  �  in PC12 cells. Time courses of 
simultaneous fura-2 photometry and standard whole-cell record-
ing used to determine  �  in PC12 cells. Cytoplasmic Ca 2+  (black 
line, left axis) and Ca 2+  current (gray line, right axis) were moni-
tored before and after depolarization from  � 80 to 0 mV for 1 s as 
described in Materials and methods. The black arrow marks the 
onset of the depolarization, and the gray arrow indicates the base-
line for the current measurement. This result is typical of nine 
cells used for such experiments.   

used these functions in our subsequent analysis instead 

of the original data.  Even so, the variability in the Ca 2+  

transport curves was higher than for somata ( Fig. 10 B , 

black lines) and the results must be regarded as some-

what qualitative. The control transport curve for neu-

rites was statistically indistinguishable from the control 

curve for somata. The 4-blocked protocol showed that 

the residual Ca 2+  transport of neurites and somata also 

are similar ( Fig. 10 B , gray lines). We next compared 

the additional BHQ-sensitive transport. As shown in  Fig. 

10 C , BHQ increased Ca 2+  clearance in neurites relative 

to the 4-blocked protocol. This effect is similar to that 

seen in undifferentiated PC-12 cells, but unlike that re-

corded from the somata of differentiated cells ( Fig. 10 C ). 

This was the fi rst indication of differences in Ca 2+  han-

dling in the neurites versus the somata of differentiated 

PC12 cells. 

 The SERCA transport data from 1-blocked experi-

ments with TG-treated neurites clustered into two statis-

tically distinct pools when [Ca 2+ ] cyt  exceeded 400 nM. 

We split these two pools and plot both their ensemble 

Ca 2+  transport curves in  Fig. 10 D  (gray symbols and 

lines), along with the somatic Ca 2+  capacity curve due to 

SERCA. According to this dissection, in one population 

of neurites, Ca 2+  is transported by SERCA pumps into 

the ER, aiding clearance, but in the other Ca 2+  emerges 

from the TG-sensitive ER after depolarization, oppos-

ing Ca 2+  clearance. Possibly the latter would represent 

Ca 2+ -induced Ca 2+  release. Neglecting the two pools, the 

summed TG-sensitive transport in neurites is not statisti-

cally different from that in somata. The Ca 2+  transport 

data did not fall into multiple pools in any of the other 

1-blocked experiments. For MtU ( Fig. 10 E ), PMCA 
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 We saw that the massive Ca 2+  loads induced by 30-s de-

polarizations reduced total clearance rates compared 

with those after the 3-s depolarizations that we have 

emphasized in this paper. It is already known that com-

ponents of transporters can be regulated through changes 

of phosphorylation state ( Toyofuku et al., 1993 ;  Bozulic 

et al., 2007 ). The summed model equations we give 

describe the clearance after 3-s well. We hope that they 

can be used for other physiological stimulus protocols 

but have not tested the limits of their use. 

 Strategies for Ca 2+  Clearance in Excitable Cells 
 We can now compare Ca 2+  transport properties of PC12 

cells with those of other excitable cells including two rat 

cells from related catecholaminergic lineages: chromaf-

fi n cells ( Herrington et al., 1996 ) and superior cervical 

ganglion (SCG) neurons ( Wanaverbecq et al., 2003 ). 

 Table II  summarizes the overall rates of Ca 2+  clearance 

and the contributions of the four classical mechanisms 

to clearance measured at 1000 nM [Ca 2+ ] cyt  for a variety 

of excitable cells.  

 Initial Ca 2+  clearance in rat chromaffi n cells is domi-

nated by the mitochondria above 500 nM [Ca 2+ ] cyt . The 

Ca 2+  accumulated by mitochondria later returns to the 

cytoplasm and exits the cell via the slower PMCA and 

NCX ( Herrington et al., 1996 ). In contrast, in undiffer-

entiated PC12 cells, mitochondria take up little Ca 2+  

over most of the range of [Ca 2+ ] cyt  that we measured 

( Fig. 3, C and D ), and each of the other mechanisms of 

transport is more than twice as fast as in chromaffi n 

cells at 1000 nM [Ca 2+ ] cyt . Thus the balance of Ca 2+  

transport mechanisms is remarkably different between 

undifferentiated PC12 cells and chromaffi n cells, al-

though the overall Ca 2+  clearance rate during initial 

clearance is about the same. 

 NGF-differentiated PC12 cells are a somewhat closer 

mimic of the Ca 2+  transport properties of SCG neurons, 

but signifi cant differences remain. Both have at most 

minor mitochondrial transport components. The neu-

rons have almost equal contributions from PMCA, 

NCX, and SERCA pumps, whereas differentiated PC12 

apparent Ca 2+  affi nity decreases for both transporters. 

In differentiated cells, half of the residual Ca 2+  transport 

is inhibited by addition of BHQ to the 4-block cocktail, 

suggesting SPCA activity. The NGF-differentiated cells 

show more Ca 2+  infl ux with depolarization and have a 

higher dependence on oxidative metabolism than un-

differentiated cells. Finally, neurites of differentiated 

cells show similar overall Ca 2+ -transporting activity to so-

mata, but the SERCA component and a BHQ-sensitive 

cellular compartment show differences in detail. 

 In two cases, we found small differences between the 

transport capacity curves obtained from 3-blocked exper-

iments and the activity curves obtained from 1-blocked 

experiments. The capacity curves were slightly higher 

than the activity curves for the PMCA and NCX in undif-

ferentiated cells ( Fig. 2 C and Fig. 3, F and H ). A plausi-

ble explanation considers possible local Ca 2+  gradients. 

The PMCA and the NCX are the fastest transporters, 

and they are both in the plasma membrane. When two of 

them are operating, [Ca 2+ ] near the plasma membrane 

would be reduced below the mean cytoplasmic level re-

ported by the fura dye, and both mechanisms will be 

slightly slowed. When one of the two transporters (NCX 

or PMCA) is inhibited, the other will speed up since the 

local Ca 2+  depletion is reduced. This will have the effect 

that capacity curves will be overestimated and activity 

curves will be underestimated. In the Appendix and 

the online supplemental material (available at http://

www.jgp.org/cgi/content/full/jgp.200709915/DC1) 

we develop calculations showing that the local [Ca 2+ ] at 

the cell surface can be reduced 7 – 36% by pumping at 

the membrane under various assumptions. As described 

there, the predicted reduction depends strongly on 

the actual diffusion coeffi cient for free calcium in the 

cytoplasm and on the equilibration time for the reac-

tion between Ca 2+  and buffering molecules (Fig. S2). 

Hence, the calculation shows plausibility of the con-

cept but not the exact amount of the effect. This effect, 

which occurs even without postulating restricted spaces 

in the cytoplasm, may need to be considered in other 

transport work. 

 TA B L E  I I 

 Rates of Ca 2+  Clearance in Five Excitable Cell Types 

Rate of [Ca 2+ ] cyt  fall (nM/s) @ 1000 nM Ca 2+ 

Cell type T ( ° C)  �  (s) Total SERCA MtU PMCA NCX

PC12 cells (undiff.) 37 2.5 520 75 22 148 275

PC12 cells (diff.) 37 2.7 420 67  � 22 214 153

Chromaffi n cells 27 2 – 3 575 0 440 80 55

SCG neurons 33 2.2 320 110  < 40 80 120

 � -cells 35 1.7 500 290 0 105 105

Sperm 21 – 23 45 – 55 8 0 1.5 4.9 1.6

Time constants of [Ca 2+ ] cyt  decay  �  were obtained from exponential fi ts of Ca 2+  clearance time courses. The rates of [Ca 2+ ] cyt  fall at 1000 nM Ca 2+  were 

obtained from smoothed transport curves. Mitochondrial values from the present study are small and in the noise level. The results for mouse sperm 

( Wennemuth et al., 2003 ), rat pancreatic  �  cells ( Chen et al., 2003 ), rat chromaffi n cells ( Herrington et al., 1996 ), and PC12 cells (this article) were 

collected in this laboratory. The results for rat superior cervical ganglion (SCG) neurons are from Wanaverbecq et al. (2003).
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and Meldolesi, 1996 ), the general housekeeping and 

neuro  endocrine-specifi c mammalian SERCA isoforms, 

respectively ( Wuytack et al., 2002 ), and NGF is reported 

to reduce overall SERCA protein levels ( Keller and 

Grover, 2000 ). This accords with our fi nding that the 

SERCA component of transport activity falls a little with 

differentiation ( Table I ). PMCAs 1b, 2b, 3a, 3b, 3c, and 

4b are present in undifferentiated PC12 cells, and NGF 

causes up-regulation of PMCAs 1c, 2a, 2c, and 4a ( Hammes 

et al., 1994 ). Overall, PMCA protein is increased in NGF-

differentiated cells ( Hammes et al., 1994 ;  Keller and 

Grover, 2000 ). This fi ts with our fi nding of a 70% in-

crease in PMCA transport rate at 1000 nM Ca 2+ . Little is 

known about NCX isoforms in PC12 cells, except that 

an NCX-mediated Ca 2+  infl ux was observed in Na + -

loaded, NGF-differentiated PC12 cells ( Ay et al., 2005 ). 

The large slowing of Ca 2+  clearance upon removal of 

extracellular Na +  in our experiments indicates that NCX 

is the most signifi cant component of the Ca 2+  transport 

machinery of undifferentiated PC12 cells and its activ-

ity falls a little during NGF differentiation whereas the 

PMCA rises ( Table II ). 

 In summary, the effects of differentiating PC12 cells 

on Ca 2+  transport are subtle. The overall transport rate 

remains the same. New isoforms of some of the trans-

porters appear and the balance of rates changes a little 

and the details of [Ca 2+ ] dependence change apprecia-

bly ( Table I ). Presumably some of the changes of gene 

expression refl ect groups of genes regulated by the neu-

ral differentiation program. Some of the genes may be 

essential for differentiation since reducing expression 

of PMCAs 2 and 3 by antisense methods slows neurite 

extension and promotes cell death in NGF-treated PC12 

cells ( Szemraj et al., 2004 ). 

 Metabolism in PC12 Cells 
 A striking difference between the differentiated and un-

differentiated cells in our study was that treatment with 

CCCP slowed PMCA and SERCA pumps in differenti-

ated cells but not in undifferentiated cells. We suggest 

that the slowing arises because of rapid CCCP-induced 

ATP depletion in differentiated cells and refl ects a 

switch to dependence on oxidative metabolism in those 

cells. The published literature supports that interpreta-

tion. Treatment of undifferentiated PC12 cells with the 

protonophore carbonyl cyanide 4-(trifl uoromethoxy)p

henylhydrazone (FCCP) depletes cellular ATP with a 

long half-time of 30 – 100 min ( Luo et al., 1997 ;  Kubota 

et al., 2005 ), too slow to affect our experiments. This is 

consistent with the general notion that undifferenti-

ated, rapidly dividing (cancerous) cells rely chiefl y on 

glycolysis for their ATP supply ( Racker and Spector, 

1981 ). Treatment with NGF changes metabolism of 

PC12 cells. After 30 h of NGF, PC12 cells increase glu-

cose consumption threefold, increase lactate and pyru-

vate production twofold, and increase CO 2  production 

cells have PMCA  >  NCX  >  SERCA. It is possible that dif-

ferent isoforms of NCX are present in these different 

cells and/or that NCX is differentially regulated since 

the dependence on [Ca 2+ ] cyt  looks different. At high val-

ues of [Ca 2+ ] cyt ,  − d[Ca 2+ ] cyt /dt for NCX rises with nega-

tive curvature (sublinear) in PC12 cells and with positive 

curvature (supralinear) in SCG neurons ( Wanaverbecq 

et al., 2003 ). 

  Table II  includes Ca 2+  transport rates for two more 

cell types, pancreatic  �  cells and sperm, for compari-

son. They differ from the others. In  �  cells the overall 

transport rate is like the other cells, but SERCA pumps 

dominate for initial Ca 2+  clearance ( Chen et al., 2003 ). 

In sperm, overall transport is only 1/25 as fast as in the 

other cells, and SERCA pumps may make no contribu-

tion ( Wennemuth et al., 2003 ). We see at least two ma-

jor lessons from these comparisons. First, PC12 cells 

and by extension other cancer cells are not quantitative 

models for the normal differentiated cells whose initial 

lineage they are thought to share. They may have many 

of the right molecules and be good systems for study of 

molecular mechanisms, but they are not close mimics 

of physiological responses that depend on the quantita-

tive balance of signals. Probably they have gone through 

many generations of selection as cancer and cultured 

cells that give them properties molded by a niche quite 

unlike that of the  “ parent ”  cell. That said, PC12 cells do 

resemble SCG neurons in their mix of Ca 2+  transporters. 

Second, different differentiated cells differ markedly in 

the balance of Ca 2+  transport mechanisms. Presumably 

the mix of transporters is complementary to the sources 

of Ca 2+  signals in each cell type. Cells that signal largely 

by Ca 2+  entry from the outside eventually will need 

to clear that Ca 2+  to the outside, and cells that signal 

largely by Ca 2+  release from intracellular stores eventu-

ally will have to replenish those stores. The number 

and mix of transporters and the relative importance 

of organelles vs. the plasma membrane also help to 

determine whether a Ca 2+  signal in that cell is local 

or widespread, fast or long lasting, large or small, and 

steady vs. oscillatory. It seems to us that the relation be-

tween these factors and cellular physiology still needs 

much clarifi cation. 

 Nonmitochondrial Ca 2+  Transporters in PC12 Cells 
 Studies using PC12 cells as a model for neural differ-

entiation have examined the expression patterns of 

various Ca 2+  transporters and how NGF changes them. 

NGF increases the N- and P/Q-type Ca 2+  current (as 

well as Na +  current) in PC12 cells ( Black et al., 2003 ); 

Ba 2+  currents are tripled. There is an increased tran-

scription of N-type but not of P/Q-type channel genes 

( Colston et al., 1998 ). Such observations agree with our 

fi nding that NGF differentiation more than doubles 

the peak [Ca 2+ ] cyt  evoked by KCl depolarization ( Fig. 6 ). 

PC12 cells express SERCA2b and SERCA3 ( Rooney 
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Evidently BHQ-sensitive stores take up Ca 2+  after depo-

larization in somata but release Ca 2+  in neurites. Perhaps 

there are different BHQ-sensitive stores in different 

regions of the cell. Second, we fi nd two behaviors of 

TG-sensitive stores. In some fi elds of neurites the ER 

stores clear Ca 2+  and in others they release Ca 2+  during 

clearance. Finally, the dichotomy in SERCA responses is 

accompanied by an overall excess of variability in the 

neurites. We feel this is not accounted for fully by the 

intrinsic noisiness of the neurite data, or by any con-

tamination with soma signals, or by the smaller statisti-

cal sample. Rather, we believe that the excess variability 

refl ects a variety of modes of Ca 2+  transport present in 

different neurites. 

 Conclusions 
 PC12 cells provide a poor mimic of the balance of Ca 2+  

transporters observed in primary rat chromaffi n cells. 

Instead, the Ca 2+  transporters of both differentiated and 

undifferentiated PC12 cells more closely resemble those 

in sympathetic neurons. In particular, a high NCX activ-

ity distinguishes Ca 2+  clearance in PC12 cells from Ca 2+  

clearance in chromaffi n cells or sympathetic neurons, 

and the near absence of mitochondrial Ca 2+  uptake in 

PC12 cells is in marked contrast with chromaffi n cells 

where the MtU is by far the dominant transporter. 

Differentiation with NGF causes some changes in the 

kinetic details of Ca 2+  transport in PC12 cells. Changes 

in Ca 2+  transporter expression conceivably contribute 

to the neuronal differentiation of PC12 cells. However, 

although there are switches in transporter isotypes 

and changes in the observed kinetic constants, there is 

little net change in total transport. Hence, any effects 

of these changes must be local rather than global. 

Indeed, we provided indirect evidence for differences 

in local gradients at the plasma membrane between 

undifferentiated and NGF-differentiated cells. Further, 

undifferentiated PC12 cells are resistant to ATP deple-

tion by CCCP, but differentiated PC12 cells may lose 

ATP rapidly in response to CCCP; this may lead to rapid 

inhibition of those Ca 2+  transporters that directly con-

sume ATP. A BHQ-sensitive mechanism compatible with 

SPCA-containing Ca 2+  stores apparently provides small 

contributions to Ca 2+  release in undifferentiated cells 

and to Ca 2+  clearance in differentiated cells. As this 

store could be dense-core secretory granules, it merits 

further investigation. 

 A P P E N D I X 

 Modeling Four Transporters and Residual Transport 
 We modeled Ca 2+  clearance in PC12 cells using mathe-

matical functions for the four canonical Ca 2+  transporters 

that we had used in earlier studies of sperm and pancre-

atic  � -cells ( Wennemuth et al., 2003 ;  Chen et al., 2003 ) 

four- to sixfold ( Morelli et al., 1986 ). Levels of all nucle-

otides including ATP increase, and oxidative respira-

tion increases ( Morelli et al., 1986 ;  Davis and Kauffman, 

1987 ). This should make the cells more sensitive to 

CCCP. They also become more neuron-like in the sense 

that production of ATP by oxidative phosphorylation 

and glycolysis occurs in both somata and neurites of 

sympathetic neurons, with oxidative metabolism pre-

dominating ( Tolkovsky and Suidan, 1987 ). Our obser-

vation that oligomycin  “ rescues ”  the effect of CCCP only 

a little indicates that ATP pools in the differentiated cells 

turn over rapidly. 

 SPCA and Organellar Ca 2+  Transport 
 The results of our experiments using BHQ on top of the 

4-block cocktail implicate SPCA as a mechanism of Ca 2+  

transport in PC12 cells. Although BHQ is also a SERCA 

inhibitor, cells treated with BHQ were pretreated with 

TG, so most SERCA activity should have been inhibited 

already ( Wuytack et al., 2002 ). SPCA was identifi ed as a 

pump that imports Ca 2+  and Mn 2+  into the Golgi ( Wuytack 

et al., 2002 ) and subsequently found immunologically 

in membrane preparations enriched in dense-core se-

cretory granules ( Mitchell et al., 2004 ). The dense-core 

secretory granules of insulinoma cells possess a vanadate-

sensitive but thapsigargin-insensitive Ca 2+ -importing 

ATPase, suggesting a non-SERCA P-type ATPase ( Mitchell 

et al., 2001 ), which could be SPCA. The transgranular 

pH gradient should also be considered in our experi-

ments. It might contribute to Ca 2+  accumulation by 

secretory granules and would be collapsed whenever we 

applied CCCP. While dense core secretory granules can 

transport Ca 2+  in the absence of a pH gradient, the 

transport can be blunted ( Mahapatra et al., 2004 ). All of 

our BHQ experiments were conducted in the presence 

of 2  μ M CCCP, which would have collapsed the granular 

H +  gradient and perhaps led to underestimation of the 

importance of SPCA-containing compartments to over-

all Ca 2+  dynamics. Our data also do not rule out the pos-

sibility that the change in behavior of the BHQ-sensitive 

compartment(s) due to NGF results from the increased 

size of the Ca 2+  peak in response to depolarization rather 

than from some molecular change(s) of transporters. 

Identifi cation of BHQ-sensitive compartments other 

than the ER and elucidation of the precise nature of the 

changes that they undergo during NGF differentiation 

are challenges for the future. 

 Spatial Differences in Cellular Ca 2+  Transport 
 In differentiated cells, individual dye-fi lled neurites 

were too dim to record from reliably. Therefore, we se-

lected fi elds of view containing up to 20 neurites. The 

observed Ca 2+  transport differed in several ways from 

that in somata. First, the small BHQ-sensitive Ca 2+  trans-

port remaining in neurites of 4-blocked cells had the 

opposite sign from BHQ-sensitive transport in the soma. 
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equation (Eq. 2) for simulations of Ca 2+  time course 

during clearance ( Fig. 1 A ). Parameters for the individ-

ual functions ( Table II ) were optimized by comparing 

predicted transport curves to measured transport curves 

for individual mechanisms. The optimization was done 

by eye, giving no consideration to points  > 1500 nM Ca 2+ . 

The simulated Ca 2+  decays in  Fig. 1  A are from individ-

ual cells rather than from averages, so it was acceptable 

to scale the transport rates for best agreement. For the 

control cell the scale factor is 1.0 (no scaling) and for 

the 4-blocked curve the M Residual  was multiplied by 1.65 

and the four canonical transporters were multiplied by 

0.0 (turned off). 

 The Virtual Cell model is available in the public do-

main at http://www.vcell.org/ under the shared user-

name hillelab. The units of transport fl uxes there are 

molecules transported per second per square micrometer 

and all concentrations are in micromolar. These units 

were translated into the practical clearance units of  Table I  

by the conversion factors: for PMCA and NCX, 360 Ca 2+  

ions  μ m 2 s  � 1  = 1  μ mol � Ca 2+  l  � 1  � s  � 1 ; for SERCA and MtU, 

1,851 Ca 2+  ions  μ m 2 s  � 1  = 1  μ mol � Ca 2+  l  � 1  � s  � 1  .

 Modeled transport curves were scaled by the same 

factors and further divided by 1 +  �  i  (Eq. 2) to account 

for the buffering effects of binding to endogenous buf-

fers and fura. 

 Modeling Local Gradients 
 We asked whether transporters acting at the cell surface 

can deplete local [Ca 2+ ] near the plasma membrane in 

comparison to the bulk [Ca 2+ ] measured by dyes. The 

problem was simulated by a multicompartmental pla-

nar-diffusion model making many approximations to 

simplify the calculations. Cytoplasm from cell surface to 

cell center was represented by a 1- μ m-long cylindrical 

(not conical) column 1  μ m 2  in cross section and divided 

into 50 equal thin slices 0.02  μ m thick. The fi rst planar 

compartment was at the cell surface. This model had 

approximately the same surface-to-volume ratio as our 

cells. Calcium and a mobile, nonsaturable Ca 2+  buffer 

were allowed to  “ diffuse ”  between compartments in suc-

cessive time increments of 20 ns, using Euler integra-

tion. The assumed calcium binding ratio  �  for the buffer 

was 300 and the equilibration time for the reaction of 

Ca 2+  with buffer was varied. The correctness of the equa-

tions was verifi ed by showing that a calculation for ap-

plying instantaneous point sources of Ca 2+  or buffer at 

the origin resulted in diffusion profi les within 1% of the 

well-known analytical solution and that mass was con-

served within 0.0001%. 

 The pump problem was simulated by starting with 

1  μ M Ca 2+  throughout the  “ cell ”  and continuously re-

moving calcium from the juxta-membrane compartment. 

According to  Table II  the PMCA and NCX together re-

duce free [Ca 2+ ] cyt  in PC12 cells at a rate of 423 nM 

per second at 1000 nM Ca 2+ . For a cell with  �  = 300, this 

plus a function for residual transport. The functions for 

fl ux  M  were: 
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 where  M  PMCA  is a Hill function of the internal Ca 2+  

and a saturation function of the external H + . The acid 

dissociation constant  K  aPMCA  is 13.8 nM, corresponding 

to pH 7.86. 
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 where  M  NCX  depends on the membrane potential  V  and 

the usual thermodynamic constants and  Denom  is a 

complex function with many terms (Weber et al., 2001). 

Values for all parameters except  M rateNCX   and  K CaAct   are 

taken without change from Weber et al. (2001) assuming 

 V  =  � 65 mV. 
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 where  M  SERCA  is a Hill function of the internal Ca 2+ . 

  M MtU   is a broken line: 

  For [Ca] cyt   <  0.3  μ M,  MMtU = 0    (6a) 

 For [Ca] cyt   <  0.3  μ M,  M Slope CaMtU Mtu cyt= × −([ ] . )0 3    (6b) 
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 where  M  Residual  is a Hill function of the internal Ca 2+  plus 

a linear rising function that is added in only when 

internal Ca 2+  is  > 1.2  μ M. This purely empirical formula-

tion used the following parameters:  M  maxResidual  = 15.8 

 μ mol � Ca 2+  l  � 1  � s  � 1 ;  K  CaResidual  = 0.7  μ M; and  Slope  Residual  = 

44  μ mol � Ca 2+  l  � 1  � s  � 1  μ M  � 1 . 

 The equations were entered into the Virtual Cell on-

line modeling environment, solved for transport curves 

( Figs. 2, 4, and 9 ), and integrated together with the buffer 

(3)(3)

(4a)(4a)
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