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The importance of neutral dynamics is contentiously debated in the ecological literature. This debate focuses

onneutral theory’s assumptionoffitness equivalency among individuals, whichconflictswith stabilizingfitness

that promotes coexistence through niche differentiation. I take advantage of competition–colonization trade-

offs between species of aquatic micro-organisms (protozoans and rotifers) to show that equalizing and

stabilizing mechanisms can operate simultaneously. Competition trials between species with similar

colonization abilities were less likely to result in competitive exclusion than for species further apart. While

the stabilizing mechanism (colonization differences) facilitates coexistence at large spatial scales, species with

similar colonization abilities also exhibited local coexistence probably due to fitness similarities allowing weak

stabilizing mechanisms to operate. These results suggest that neutral- and niche-based mechanisms of

coexistence can simultaneously operate at differing temporal and spatial scales, and such a spatially explicit

view of coexistence may be one way to reconcile niche and neutral dynamics.

Keywords: competition–colonization trade-off; microcosm; niche versus neutral dynamics; spatial scale;

species coexistence
1. INTRODUCTION
The idea that ecological communities are regulated by

neutral processes (Bell 2001; Hubbell 2001) has had a

profound effect on ecology, but this remains contentious

(Gaston & Chown 2005). Data-driven studies generally

refute some aspect of neutral patterns or processes

(McGill 2003; Gilbert & Lechowicz 2004; Turnbull

et al. 2005; Wootton 2005), denying that neutral dynamics

can produce observable ecological patterns. Similarly,

completely niche-based explanations have failed to

adequately explain extant community patterns (Chave

2004; Holyoak & Loreau 2006). Consequently, a number

of studies have attempted to reconcile neutral and niche

dynamics (Chave 2004; Tilman 2004; Gravel et al. 2006;

Holyoak & Loreau 2006; Adler et al. 2007). Chesson

(2000) best anticipated the divergence and reconciliation

between neutral and niche dynamics by explicitly viewing

coexistence mechanisms as either equalizing or stabilizing

(Chave 2004; Adler et al. 2007). Stabilizing coexistence

describes species differences that result in reduced niche

overlap, thus minimizing the impact of fitness inequalities

on competitive interactions. Equalizing mechanisms

promote similarities in species responses to environmental

conditions (i.e. fitness equivalency) and reduce the rate of

competitive exclusion as well as allow coexistence from

weak stabilizing mechanisms. Often invoked as the

fundamental assumption for neutral dynamics, equiv-

alency does not mean that species are the same in all

respects, rather that equalizing mechanisms diminish

fitness inequalities.

Although Chesson (2000) viewed stabilizing and equal-

izing mechanisms as small-scale resource competition, here
@nceas.ucsb.edu
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I view stabilizing and equalizing as contributions to

coexistence in more general terms. Here I consider

stabilizing mechanisms to be synonymous with any ecologi-

cal difference that allows two species to stably coexist

together at some definable spatial scale. Similarly, I define

equalizing mechanisms as those that produce equivalent

fitness responses to environmental conditions. Thus,

equalizing coexistence is a product of environmental

constraints and is observed at some finite spatial or temporal

scale. It is important to note that in using Chesson’s schema,

I am explicitly viewing the outcome of neutral-type

dynamics at the population level (i.e. persistence time) and

not considering the more appropriate view of neutrality as

stochasticity at the individual level (see Volkov et al. (2005)

for a treatment on this difference).

With this more general definition, we can examine

coexistence mechanisms at different spatial scales and

specifically ask how dispersal and colonization play a role

in our understanding of coexistence (McPeek & Holt

1992; Tilman 1994; Holt & McPeek 1996; Tilman &

Kareiva 1997; Kinzig et al. 1999; Amarasekare 2003;

Mouquet & Loreau 2003; Kneitel & Chase 2004; Holyoak

et al. 2005). A number of coexistence models explicitly

consider species as having a trade-off between their

competitive and colonizing abilities (Levins & Culver

1971; Horn & Macarthur 1972; Tilman 1994; Pacala &

Rees 1998; Yu & Wilson 2001; Yu et al. 2001; Levine &

Rees 2002; Mouquet & Loreau 2003; Mouquet et al. 2006).

I will argue in this paper that whether we view coexistence in

a competition–colonization trade-off as stabilizing or

equalizing probably depends on the scale of observation.

Spatially implicit competition models (e.g. Hastings

1980; Caswell & Cohen 1991; Tilman 1994; Pacala &

Rees 1998) show that in an environment where local
This journal is q 2007 The Royal Society
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Figure 1. The time to observe a local extinction for pairwise
species combinations from equation (2.1). Here 12 species
are modelled with a strict competition–colonization trade-off.
The best colonizer had riZ1.325 and was ranked 1, and
subsequent species r’s were decreased by 0.025, with the 12th
ranked species having riZ1.05. The 12th ranked species was
also the best competitor with bi12Z0.65 and lower ranked
species had lower bij’s by 0.05, with the best colonizer having
bi1Z0.1. The inset shows two example simulations: one
simulation is between two species with similar abilities (solid
lines) and the other is for two species with very different
abilities (dashed lines). For the similar species: solid black
line, species rank 5; solid grey line, species rank 4. For the
different species: dashed black line, species rank 11; dashed
grey line, species rank 3.
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disturbances (i.e. density-independent mortality) cause

small-scale extinctions, a good colonizer/poor competitor

and a poor colonizer/good competitor can stably coexist at

larger spatial scales. Because there is a trade-off, neither

strategy could replace the other in a moderately disturbed

system and the relative occupancy of competitors depends

upon disturbance frequency. However, in these models,

local coexistence between these two strategies is imposs-

ible because the dominant competitor always replaces the

better colonizer within a patch. The presence of any trade-

off is often cited as evidence against the role of neutral

dynamics in structuring communities (Turnbull et al.

2005; Ellis et al. 2006). Yet several recent publications

suggest that even though relatively few strategies along a

niche gradient can coexist, within any single niche

strategy, multiple functionally similar or equivalent species

can coexist, mimicking neutral-type dynamics (Hubbell

2005; Gravel et al. 2006; Holt 2006; Scheffer & van Nes

2006). Recently, Fukami et al. (2007) showed that

adaptive radiation in Pseudomonas bacteria resulted in

both the filling of empty niches and the evolution of

ecological equivalents coexisting within niches. Thus, the

presence of trade-offs may not necessarily refute neutral

dynamics (Hubbell 2005). If we view the stabilizing

mechanism (colonization ability) as part of a strict trade-

off, then two species that have similar colonization abilities

will also have similar competitive abilities within local

patches. In the absence of any other local niche

partitioning, these two, similarly competing species,

should have similar fitness responses to local environ-

mental conditions (Chesson 2000), meaning that either

competitive exclusion takes many generations to occur or

weak stabilizing mechanisms promote coexistence. I use

data from aquatic microcosm experiments to test whether

the risk of competitive exclusion decreases and time to

local extinction increases as species become more similar.
2. A SIMPLE MODEL
With a competition–colonization trade-off, species can

stably coexist at larger spatial scales despite competitive

differences. However, within local patches, such coex-

istence is not possible if we assume that there is not any

spatial subsidy effect enhancing one species birth rates

over another (Mouquet et al. 2006). Furthermore, many

competition–colonization models assume instantaneous

competitive exclusion, but in considering a gradient from

niche to neutral dynamics, the relative time for competi-

tive exclusion is fundamentally important. Incorporating

succession requires the addition of local niche dynamics to

trade-off models (Pacala & Rees 1998). Here I assume

that there is a strict trade-off between colonization and

competitive ability. I am explicitly considering the

dynamics of unicellular micro-organisms of a single

trophic level inhabiting homogeneous, spatially discrete

patches (e.g. Cadotte 2006, 2007). Given this simple

system, the competition–colonization trade-off can be

defined by two parameters: the intrinsic rate of increase for

species i, ri , and the strength of interspecific competition

(bij, the effect of species j on i ). Here I assume that

intraspecific effects, bii , are constant. The population size

of species i at time t is given by

Ni;t Z ri CbiiNi;tK1 CbijNj;tK1 C3; ð2:1Þ
Proc. R. Soc. B (2007)
where Ni,tK1 is the population size at time tK1 and 3 is the

normally distributed stochasticity with a mean of 0 and

standard deviation of 1.

If there is a trade-off, then as ri increases, its effect on the

other species, bji , must decrease. As the difference

increases, the disparity between competitive effects also

increases. Thus, within patches, increasing D means that

the inferior competitor goes extinct faster (figure 1).

Species with identical r’s (and thus b’s) will persist

indefinitely, but even species with small D may persist for

many generations if the magnitude of the difference in b’s is

less than demographic stochasticity (3 in equation (2.1)).
3. A TEST USING MICRO-ORGANISMS
Here I use data from the competition–colonization

experiment of Cadotte et al. (2006). Using an artificial

system of aquatic micro-organisms (protozoans and

rotifers; see figure 2 for species list), Cadotte et al.

(2006) revealed that species exhibited competition–

colonization trade-offs, where the best competitors were

generally poor colonizers and the best colonizers were

typically poor competitors (figure 2). Colonization was

measured as the relative time for species to colonize every

patch in a discrete five-patch system, whereas competition

was measured as the extinction probability in pairwise

combinations with every other species (see Cadotte et al.

(2006) for detailed methods). The patches in the

colonization experiment were 125 ml Nalgene bottles

filled with 100 ml of bacterialized nutrient solution, and

with 4.76 mm threaded holes having nylon tube fittings
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Figure 3. The Kaplan–Meier product-limit estimator of the
probability of coexistence over time. The three lines refer to
species classified by differences in colonization rank (D).
Small (solid line), D!3; medium (dashed line), 3%D%6;
large (dotted line), DO6. For clarity, 95% CIs were removed.
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Figure 2. The relationship between competitive and coloniza-
tion abilities, showing a competition–colonization trade-off
(adapted from Cadotte et al. (2006)). Dashed lines show
species locations along regression line. Species with similar
colonization abilities are assumed to have similar fitnesses
given laboratory conditions and resource availability. BA,
Blepharisma americanum; Ch, Chilomonas sp.; Co, Coleps sp.;
CS, Colpidium striatum; Eu, Euplotes sp.; Le, Lepadella sp.; PA,
Paramecium aurelia; PB, P. bursaria; PC, P. caudatum; Ph,
Philodina sp.; Sp, Spirostomum sp.; TP, Tetrahymena pyriformis;
Ur, Uronema sp.
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(Cadotte et al. 2006). Patches were linked serially,

connected with 12.5 cm of clear Nalgene 4.76 mm PVC

tubing. For the competition experiment, the two species

were added to 50 ml of bacterialized solution in 250 ml

glass jars. For both experiments, the presence of species

was assessed with weekly 5 ml samples (and replaced with

5 ml of sterile nutrient solution). All experiments were

replicated three times.

Here I assume that the outcomes of species competition

in Cadotte et al. (2006) result from fitness inequalities.

I also assume that species inhabit a stable environment, are

limited by a single resource and have colonization abilities

that reflect maximal population growth rates (Warren et al.

2006). Competitive interactions are estimated in an

extremely conservative manner: whether one of the two

populations goes extinct, ostensibly due to competitive

exclusion. Colonization ability was ranked by time to

colonize all patches. Rank was calculated as the mean rank

from 10 000 random draws of the individual replicates

(see Cadotte et al. 2006). Since I observed exclusions over

an eight-week interval, with weekly samplings, the data are

said to be right-censored. Right-censored data are

common in ‘time to’ experiments where observations

end at some arbitrary time and therefore represent a

biased sampling where parameter estimation does not

conform to widely used parametric estimations (Hosmer &

Lemeshow 1999). Which species went extinct is not

important here because as long as there was extinction,

then these two species are said to exhibit fitness inequalities.

Therefore, to estimate the probability of coexistence, I used

the Kaplan–Meier product-limit estimator (Hosmer &

Lemeshow 1999), which calculates the probability that

a given population will persist beyond time t. The
Proc. R. Soc. B (2007)
maximum-likelihood estimate of this probability is given by

ŜðtÞZ
Y

ti!t

niK di

ni

; ð3:1Þ

where ni is the number of surviving populations and di is the

number of deaths at time ti. I used a parametric regression

fitting the probabilityof coexistence toa Weibull distribution

against the absolute difference in colonization rank, and

evaluated the model using a likelihood ratio test (presented

as c2-value) comparing this model with a model containing

only an intercept. Survival analysis was performed using the

SURVIVAL Package, v. 2.31 with R v. 2.4.1 maintained by

Thomas Lumley (www.r-project.org).
4. RESULTS
The regression analysis reveals that the probability of

successful coexistence between any two species is

negatively related to the difference in their colonization

rank (c1
2Z7.56, pZ0.006; coefficientGs.e.ZK0.07892G

0.0289). To best illustrate this relationship, I grouped the

colonization differences into three classes: (i) difference in

colonization rank!3.00, (ii) differenceR3.00 and %6.00,

and (iii) differenceO6.00. The probability of coexistence

as a function of time is shown in figure 3, and the

relationship between the probability of coexistence and

the colonization difference classes is very similar to that for

the continuous model above (c1
2Z8.75, pZ0.003; coeffi-

cientGs.e.ZK0.2814G0.0976).
5. IMPLICATIONS: HOW NICHE AND NEUTRAL
PROCESSES CAN COEXIST
One of the earliest axioms of ecology was that two species

occupying the same niche results in competitive exclusion

of the inferior competitor (Grinnell 1904, 1917; Gause

1934). However, this ‘competitive exclusion principle’

was quickly cast into doubt as examples of coexistence in

ecologically similar species surfaced (Ross 1957; Udvardy

1959; den Boer 1986). Since then, the idea that species

coexist due to their similarities rather than their

differences has repeatedly surfaced, primarily by ecologists

studying tropical forests (e.g. Webb 2000; Hubbell 2006)

and freshwater algae (Hutchinson 1967; Lewis 1977;

http://www.r-project.org
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McCormick 1996). The debate, whether coexistence

results from ecological differences or similarities, is almost

as old as the science of ecology. Hubbell (2006) rightly

noted that experimental evidence of equivalency was

lacking. I would argue that this is largely due to the

fact that experimenters have not been explicitly looking

for equalizing mechanisms, especially in concert with

niche processes.

To look for niche versus neutral (i.e. stabilizing versus

equalizing) processes, Adler et al. (2007) recently

suggested quantifying intra- versus interspecific effects

on vital rates, or measuring frequency-dependent popu-

lation growth. Here I look at the outcome of negative

interspecific effects on vital rates by enumerating popu-

lation extinctions. The results reveal that the more similar

two species are in their colonization ability, the more likely

that they persist together for long periods, ostensibly due

to fitness equivalency. Fitness similarities allow for

coexistence from weak stabilizing mechanisms.

These results also suggest that whether apparent

coexistence is due to strong stabilizing or equalizing

mechanisms depends upon the spatial and temporal scales

at which observations are being made. From Chesson’s

(2000) framework, equalizing coexistence is ultimately

unstable since fitness equivalency results in intrinsic rates

of population increase that equal zero. Therefore, a

population affected by a density-independent mortality

event will not be able to recover when in the presence of a

competitor with equivalent fitness. For inferior competi-

tors, equalizing coexistence is trumped by the inevitable

eventual immigration of the superior competitors

(Cadotte 2006).

However, stabilizing coexistence from a competition–

colonization trade-off occurs over large spatial and

temporal scales. For superior competitors, periodic

disturbances or environmental changes eventually elimin-

ate local populations. Species distributed along a compe-

tition–colonization trade-off have differing strategies

where coexistence depends on chance events happening

at larger spatial and temporal scales than within patch

dynamics alone (Amarasekare 2003; Kneitel & Chase

2004). In the absence of disturbance, dominant compe-

titors will eventually exclude the inferior ones even at large

spatial scales (Cadotte 2007), and in the microcosm

system, space appears necessary for coexistence, contrary

to Adler & Mosquera (2000).

Recently, Turnbull et al. (2005) concluded that the

presence of a trade-off necessarily negates the possibility

that neutral processes structure communities. They

examined the potential for coexistence among grassland

pioneer species and nicely showed that an ‘establishment/

colonization’ trade-off best explained coexistence patterns

(Turnbull et al. 2005). This trade-off describes the fact

that species with larger seeds (i.e. poorer dispersers) can

tolerate a greater range of environmental hazards while

small-seeded species are more susceptible to hazards, but

they have a better chance of dispersing to optimal

microsites (Turnbull et al. 2005). The current results are

completely compatible with Turnbull et al. (2005), in that

in a strict stabilizing trade-off, only species with differing

strategies should coexist. However, given the fact that

Turnbull et al. (2005) were able to group species according

to seed mass in their analyses, the question becomes: do

species with similar seed sizes coexist, and if so, is this
Proc. R. Soc. B (2007)
coexistence best explained by similar fitnesses as opposed

to strong stabilizing mechanisms? Other plant community

studies have shown that while several stabilizing traits

appear to allow for coexistence, species composition

within any trait appears haphazard and historically

contingent (Fukami et al. 2005; Ejrnaes et al. 2006)

With a competition–colonization trade-off, coexistence

is often thought of as the product of non-equilibrium,

spatially dependent processes (Connell 1978; Huston

1979), where these chance events present different niche

opportunities for species. Connell’s (1978) intermediate

disturbance hypothesis viewed local richness as dependent

on the time since disturbance, where soon after a

disturbance colonizing species establish populations.

A result of the logic in this hypothesis is that if immigration

ceased, then succession would be arrested and species

richness would cease to change. The mechanism that

allows coexistence within any successional stage was

attributed to microhabitat niche partitioning (Connell

1978). The current results support the notion that species

show equivalency and thus neutral processes probably

dominate within successional stages, while niche processes

drive patterns among successional stages (Denslow 1980;

Ellner & Fussmann 2003; Cadotte 2007).
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Department of Ecology and Evolutionary Biology, the Yate’s
Fellowship, Science Alliance, and Scholarly Activity and
Research Incentive Funds, all at the University of Tennessee,
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