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The availability of various types of genomic data provides an opportunity to incorporate this data as prior
information in genetic association studies. This information includes knowledge of linkage disequilibrium structure as
well as which regions are likely to be involved in disease. In this paper, we present an approach for incorporating
this information by revisiting how we perform multiple-hypothesis correction. In a traditional association study, in
order to correct for multiple-hypothesis testing, the significance threshold at each marker, t, is set to control the
total false-positive rate. In our framework, we vary the threshold at each marker ti and use these thresholds to
incorporate prior information. We present a numerical procedure for solving for thresholds that maximizes
association study power using prior information. We also present the results of benchmark simulation experiments
using the HapMap data, which demonstrate a significant increase in association study power under this framework.
We provide a Web server for performing association studies using our method and provide thresholds optimized for
the Affymetrix 500k and Illumina HumanHap 550 chips and demonstrate the application of our framework to the
analysis of the Wellcome Trust Case Control Consortium data.

[MASA is available at http://masa.cs.ucla.edu.]

Whole-genome association is an important first step in discov-
ering the genetic basis of human disease (Devlin and Risch 1995;
Risch and Merikangas 1996; Collins et al. 1998; Altshuler et al.
2005). These studies are often followed up by examining the
molecular function of associated loci to identify whether they
play a biological function in disease. Recently developed geno-
mic resources such as those generated by the ENCODE project
(ENCODE Project Consortium 2007) provide a tremendous
amount of information on molecular function. These resources
provide an opportunity to incorporate prior information into
genetic association studies, including which regions are more
likely to be involved in disease. Despite recent progress (Pe’er et
al. 2006; Roeder et al. 2006, 2007), questions remain on how to
incorporate this information into the design of association stud-
ies. In this paper, we present an approach for incorporating this
information by revisiting how we perform multiple-hypothesis
correction. Surprisingly, our approach increases statistical power
not only in the presence of prior information, but also only using
information on the linkage disequilibrium structure obtained
from human variation reference sets such as the HapMap (Alt-
shuler et al. 2005).

Due to the number of markers collected in an association
study, correcting for multiple-hypothesis testing is a major chal-
lenge in large association studies. The goal of these studies is to
detect a causal polymorphism from a subset of putative causal
polymorphisms while controlling the overall false-positive rate,
�, of the association study. In a typical association study, geno-
type data are collected for a set of M markers, each of which is a
proxy for a subset of the polymorphisms, and a statistic is evalu-
ated over the data at each collected marker. In order to correct for

multiple-hypothesis testing, the significance threshold at each
marker is set to control the total false-positive rate of the com-
plete study. The Bonferroni approximation for this threshold, t =
(�/M), is a reasonable estimate if the markers are independent
and M is large.

The traditional approach treats each of the markers identi-
cally by setting each marker’s significance threshold to t. How-
ever, in practice, the markers are not identical. Different markers
have differing probabilities for serving as a proxy for causal varia-
tion for several reasons. Some polymorphisms are in regions
more likely to be involved in disease than other polymorphisms,
based on previous candidate gene or linkage studies. Even if we
assume all polymorphisms are equally likely to be involved in
disease, the markers are not identical. Some markers are corre-
lated with few polymorphisms while others are correlated with
many polymorphisms (Fig. 1), and these differences affect the
likelihood that a marker serves as a proxy for a causal polymor-
phism. By treating each marker identically, traditional associa-
tion approaches do not take advantage of differences between
markers.

In this paper, we present a method for incorporating infor-
mation about markers into association studies to increase statis-
tical power. Information about markers is classified into two
types: intrinsic and extrinsic. Intrinsic information includes in-
formation on linkage disequilibrium patterns between markers
and the polymorphisms they are correlated with, as well as the
allele frequencies of the markers and correlated polymorphisms,
all of which can be estimated from the HapMap (Altshuler et al.
2005). Extrinsic information encodes prior beliefs about which
polymorphisms are likely to be causal and may include informa-
tion from previous linkage studies, genes thought likely to be
involved in specific diseases, and which single nucleotide poly-
morphisms (SNPs) have known molecular function, such as non-
synonymous coding SNPs.

We present an association framework that can leverage both
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of these types of information. The main idea behind our ap-
proach is that instead of using a constant threshold t for each
marker, we instead set a different threshold, ti, at each marker
that reflects both intrinsic and extrinsic information on the
markers. We present a novel multi-threshold association study
analysis (MASA) method for setting these thresholds to maximize
the statistical power of the study in the context of the additional
information. The simplest approach for encoding extrinsic infor-
mation is through assuming a causal probability distribution. In
this setting, we assume that the causal polymorphism is chosen
from this distribution and only one polymorphism is causal. We
refer to the probability that the polymorphism is causal as its
causal probability, ci. If the marker i is causal, the power at marker
i or the probability of detecting the association is dependent on
the per-marker threshold ti. Given the causal probabilities, using
the approach presented in this paper, we can numerically solve
for the marker thresholds that maximize power. By taking ad-
vantage of this information, we show how our multi-threshold
framework can significantly increase the power of association
studies while still controlling the overall false-positive rate, �, of
the study as long as ∑ ti = �. Counterintuitively, higher causal
probabilities do not always translate into higher thresholds; i.e.,
there is a complex relationship between causal probabilities and
optimal thresholds. We can gain intuitions on our method by
considering the following analogy to investing: Our algorithm
must choose how to distribute a total budget of � (corresponding
to the overall false-positive rate) among M possible investments
(corresponding to the markers), and each investment has a cer-
tain return (corresponding to the power at the marker). Not sur-
prisingly, the optimal overall return is achieved when the mar-
ginal rate of return is equal in each investment. Returning to our
setting, the derivative of the power function at each marker at
the marker’s optimal threshold is equal for all markers. We use
this insight to motivate our numerical procedures for obtaining the
thresholds. Our optimization algorithm is very efficient, and we
can obtain thresholds for whole-genome associations in minutes.

Even in the case that all polymorphisms are equally likely to
be causal, this framework can take advantage of differences in
marker minor allele frequency and density of putative casual
polymorphisms relative to markers to increase power over tradi-
tional association studies. Since this framework sets the thresh-
olds based on the assumption of independent markers, the true
false-positive rate of the designed association studies will be more
conservative than expected. We present a permutation-based
procedure to correct for this assumption to achieve a desired

false-positive rate that increases computational time only slightly
relative to traditional permutation tests.

Our method makes the assumption that the relative risk of
the causal polymorphism is known. We show that even if the
true relative risk of the causal polymorphism differs from the
assumed relative risk, in most cases our method still increases the
power over traditional association studies. Similarly, consistent
with previous studies (Roeder et al. 2006), if the causal likeli-
hoods are incorrectly specified, the amount of power lost is very
small compared with the power gains if the causal likelihoods are
correctly specified.

Incorporating prior information into association studies by
modifying multiple-hypothesis testing was pioneered by Roeder
et al. (2006) using a modified false discovery rate procedure. More
recently, Wasserman and Roeder (Wasserman and Roeder 2006;
Roeder et al. 2007) presented a modified Bonferroni approach.
Our approach has some similarities to the Wasserman and
Roeder (Wasserman and Roeder 2006; Roeder et al. 2007) ap-
proach, which presents an elegant analytical solution for setting
thresholds assuming a Bonferroni correction, but it differs in sev-
eral important ways. Our approach explicitly takes into account
proxies, which complicates the optimization and requires a nu-
merical solution for determining the thresholds. In fact, much of
the power gains from our method stem from taking advantage of
information derived from the HapMap on the tremendous het-
erogeneity among markers with respect to the linkage disequilib-
rium patterns between markers and polymorphisms and the het-
erogeneity among allele frequencies of polymorphisms. This ac-
counts for why our approach provides more significant power
increases compared with the more modest power increases of
previous approaches such as those of Wasserman and Roeder
(Wasserman and Roeder 2006; Roeder et al. 2007) and Rubin et
al. (2006), which use sample splitting to estimate the equivalent
information. Our approach also handles the effect of correlated
markers on the overall false-positive rate and develops methods
for determining the overall false-positive rate of a study.

An alternative framework for incorporating prior informa-
tion into association studies is through the use of Bayesian hy-
pothesis testing (Pe’er et al. 2006; Marchini et al. 2007). Our
approach, as well as those of Wasserman and Roeder (Wasserman
and Roeder 2006; Roeder et al. 2007) and Rubin et al. (2006),
fundamentally differ from the Bayesian approach. A key differ-
ence is that our approach, by design, provides strong control of
the false-positive rate regardless of the accuracy of the prior in-
formation. In other words, incorrect information will lead to a
reduction in statistical power, but not an increase in the rate of
false positives. While Bayesian hypothesis testing methods pro-
vide an estimate of the number of false positives, they do not
provide such control of the false-positive rate. One of the advan-
tages of the Bayesian framework is how straightforward it is to
incorporate priors. In that light, a major contribution of our and
related approaches is the ability to both incorporate prior infor-
mation and provide strong control of false-positive rates. Other
approaches to increasing power by modifying multiple-
hypothesis testing include that of Van Steen et al. (2005).

We benchmark our methods using many simulated case-
control data sets created using the HapMap project data and
demonstrate that our multi-threshold approach significantly in-
creases the power both for small regions such as a candidate gene
region and in whole-genome association studies by taking into
account both intrinsic and extrinsic information. In order to
measure the effect of intrinsic information, specifically linkage

Figure 1. Marker heterogeneity in the ENm010 ENCODE region in the
CEU population. Histogram of the count of SNPs for which each marker
is a proxy.
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disequilibrium patterns in the HapMap, we assume that each
polymorphism is equally likely to be causal and observe on av-
erage an increase in power that is equivalent to an increase in the
number of individuals by 9%. In simulations of whole-genome
association studies with the Affymetrix 500k chip using this in-
formation, our method increases the power equivalently to in-
creasing the number of individuals by 5%.

We measure the effect of extrinsic information by encoding
this information as causal likelihoods in the association study. By
assuming that genes suspected of being involved in a disease are
more likely to harbor causal polymorphisms, we can increase
power equivalent to an increase of the number of individual by
27%, and, by assuming that nonsynonymous coding SNPs ac-
count for 20% of causal polymorphisms, we can increase power
equivalent to increasing the number of individuals by 17%. Sur-
prisingly, there is a relationship between the distribution of likely
causal polymorphisms among proxies and the power gained by
incorporating the prior information. If the same marker serves as
a proxy for both likely and unlikely causal variation, some of the
gains in using the prior information are mitigated. The reason for
this effect is that the linkage disequilibrium structure constrains
the flexibility of setting different thresholds for correlated mark-
ers. This suggests that “region-specific” information such as the
results of previous linkage scans (Roeder et al. 2006) or candidate
genes is more useful in an association study than “polymor-
phism-specific” information such as specific polymorphisms that
have suspected molecular function (Botstein and Risch 2003).

We provide a Web server for performing association studies
using this method at http://masa.cs.ucla.edu/. On the Web site,
we provide thresholds optimized for the Affymetrix 500k and
Illumina HumanHap 550 chips (Matsuzaki et al. 2004; Gunder-
son et al. 2005).

Methods

Standard association studies

Given an association study that collects genotype information
on M markers in N/2 cases and N/2 controls individuals, we de-
note the minor allele frequency of a specific marker fi. We assume
that the causal polymorphism has a relative risk of � and low
penetrance. To simplify the analysis, we make the standard as-
sumptions that all markers are independent, and one of the
markers, d, is the actual causal polymorphism. We will relax
these assumptions below.

A causal polymorphism with relative risk �, low penetrance,
and minor allele frequency fd will induce an allele frequency
difference between the cases and controls. We denote the true
case and control allele frequency for each marker pi

+ and pi
� ,

respectively. In the case of the causal marker d,

pd
+ =

�fd
�� − 1�fd + 1

pd
− ≈ fd

(1)

Note that pi
+ = pi

� if i � d. We denote the observed frequencies in
the case and control sample p̂i

+ and p̂i
� and their mean

p̂i = (p̂i
+ � p̂i

�/2).
In a case and control study with N individuals, the following

statistic is evaluated at each marker

Si =
p̂i

+ − p̂i
−

�2�N �p̂i�1 − p̂i�

and is approximately normally distributed with variance 1 and
mean

�i�N =
pi

+ − pi
−

�2 �pi�1 − pi�
�N (2)

where pi = (pi
+ + pi

�/2) and �i√N is the non-centrality parameter
that increases with both the allele frequency difference and the
number of individuals in the study for the casual polymorphism,
and �i = 0 otherwise. The non-centrality parameter is dependent
on both the marker’s minor allele frequency and the relative risk.

The power of an association study at a given marker depends
on this non-centrality parameter. The power at a single marker
Ps(t, �i√N) or the probability of detecting an association in a study
with N individuals at P-value or significance threshold t, and
non-centrality parameter �i√N is

Ps�t, �i�N� = 1 −
1

�2�
�

�−1�t�2�+�i�N

�−1�1−t�2�+�i�N e−�1�2�x2
dx

= ���−1�t�2� + �i�N� + 1 − ���−1�1 − t�2� + �i�N�

where P and ��1(t) is the cumulative distribution function and
quantile of the standard normal distribution.

The standard approach to association studies over multiple
markers fixes the false-positive rate or P-value threshold at each
marker such that after correcting for multiple-hypothesis testing,
the total false-positive rate or adjusted P-value is �. In a standard
association study, assuming the Bonferroni correction for mul-
tiple-hypothesis testing, t = (�/M). Let c1, c2, . . . , cM, ∑ ci = 1 be
the probability distribution over which of the M markers is causal
and let fi represent the minor allele frequency of marker mi. In
traditional association studies, each marker is assumed to be
equally likely to be causal; i.e., ci = (1/M) for �i. If a marker is
causal, we denote its non-centrality parameter computed using
Equations 1 and 2, and �i = 0 otherwise. We measure the “ex-
pected power” of the association study, which is

P�t� = �
i=1

M

ciPs�t, �i�N� (3)

with an adjusted false-positive rate of � when t = (�/M). Equation
3 differs from the traditional definition of the statistical power
since it measures the probability of rejecting the correct null
hypothesis and not the probability of rejecting any null hypoth-
esis. However, the “expected power” is a more meaningful mea-
sure of performance for the design of association studies. For a
well motivated discussion of “expected power” and its relation to
traditional measures of power, see Rubin et al. (2006).

Multi-threshold association studies

Since the power at each marker depends on its minor allele fre-
quency, which influences �i, not all of the terms in Equation 3
contribute equally to the power even when all markers are
equally likely to be causal. We can exploit this observation to
increase the power of an association study. Instead of using the
same threshold t for all markers, we instead allow a different
P-value significance threshold ti for each marker. Under the null
hypothesis, the chance of a false positive is 1 � ∏M

i=1(1 � ti) ≈ ∑M
i=1 ti

for small ti if the markers are independent. This motivates a simi-
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lar multiple-hypothesis correction to the Bonferroni correction;
i.e., if ∑N

i=1 ti = � then the multiple-hypothesis testing adjusted
false-positive rate remains �.

In this formulation, the power of an association study is

P�t1, t2, . . . , tM� = �
i=1

M

ciPs�ti, �i�N� (4)

with multiple-hypothesis testing adjusted false-positive rate ∑M
i=1

ti = �. A traditional association study is a special case of this
framework where ti = tj = (�/M) and ci = (1/M) for �i, j. The distri-
bution ci can be used to encode prior information on which
polymorphisms are likely to be causal. By varying ti, we can le-
verage this information in the association study.

Since the overall power of an association study depends on
the values of ti, we can set the values for ti to maximize the power
of the association study by maximizing Equation 4 subject to the
constraints ∑M

i=1 ti = � and ti � 0. As we show below, we can nu-
merically solve this optimization problem to find the global
maximum of this function. The optimal set of thresholds (ti)
reflects both differences in non-centrality parameters (�i) and
differences in causal probabilities (ci).

Maximizing the association study power

In order to maximize Equation 4, we consider the vector of
thresholds T = {t1, t2, . . . , tM}. Since each threshold is contained
in only one term of the sum, the gradient is simply the vector of
partial derivatives

	P = �
P

t1

,

P

t2

, . . . ,

P

tM

�

= �c1


Ps�t1�1, �N�


t1
, c2


Ps�t2�2, �N�


t2
, . . . ,

cM


Ps�tM�M, �N�


tM
�.

The partial derivative of the power function with respect to the
significance threshold at a single marker is

g�ti, �i�N� = ci


Ps�ti, �i�N�


ti

= ci

1

�2�
�e−

1
2

�−�−1�ti�2�+�i�N�2
d�−1�ti�2�

dti

+ e−
1
2

�−�−1�ti�2�+�i�N�2
d�−1�ti�2�

dti �
Where

d�−1�ti�2�

dti
=

�2�

2
e
1
2

��−1�ti�2��2

= cie
−
1
2

�i
2N 1

2
�e−�i�N�−1�ti�2� + e�i�N�−1�ti�2��

= cie
−
1
2

�i
2N cosh��i�N�−1�ti�2�� (5)

Since second derivative of the power function is negative for all
ti from 0 to 1 (at ti = 1, the second derivative is 0), the function
Ps(ti, �i√N) is concave and the sum of concave functions, Equa-
tion 4, is concave. Since we are maximizing a concave function
over a convex set, there exists a unique maximum point. Since
the power function at each marker is monotonically increasing
with the threshold, the maximum will be achieved on the plane
where ∑ ti = �. At each ti = 0 the derivatives go to positive infin-
ity; therefore, the maximum point will occur where all ti are

positive. The maximization can be solved using Lagrange multi-
pliers, and at the maximal point all components of the gradient
will be equal; i.e., for the optimal threshold t*1, . . . , t*M, g(t*i ,
�i√N) = g(t*j , �j√N) for all i, j and ∑ t*i = �. We use this observation
to numerically estimate the optimal point. Given a value of the
gradient, we solve for the threshold at each marker to achieve
that gradient. We denote the inverse of the gradient g�1(�,
�i√N) = ti if � = g(ti, �i√N). For any value of the gradient �, the
sum of the optimal thresholds corresponding to the gradient is ∑
g�1(�, �i√N). We perform binary search over the values of the
gradient until the thresholds sum to �.

Maximizing power for proxies

In the previous section, we made the assumption that the mark-
ers themselves are causal. In practice, the markers are more likely
to be tags for the causal variation. Given K polymorphisms, we
can assign each potential causal polymorphism to the best
marker. We associate each polymorphism vk to a single marker i,
using the notation vk ∈ Ti. From Pritchard and Przeworski (2001),
the effective non-centrality parameter of the indirect association
is reduced by a factor of | rki |, where rki is the correlation coeffi-
cient between polymorphism k and marker i. Each polymor-
phism k has a probability of being causal ck. If a given polymor-
phism vk is causal, the power function when observing proxy
marker i is Ps(t, | rki |�k√N, N). Using a reference data set such as the
HapMap (Altshuler et al. 2005), we can obtain estimates for these
correlation coefficients. We can then denote the total power cap-
tured by each marker i as Pm(ti, Ti, N) = ∑vk∈Ti

ckPs(ti, | rki |�k√N). In
this case, the total power of the association study is

P�t1, t2, . . . , tM� = �
i=1

M

Pm�ti, Ti, N� = �
i=1

M

�
vk∈Ti

ckPs�ti, | rki |�k�N�

(6)

The power of the study taking into account indirect association
can be maximized using the same approach as above. If a marker
has more than one proxy, finding the threshold that achieves a
certain gradient must be solved numerically. If a marker has only
one proxy, we can analytically derive the inverse of the Equation
5 (function g�1), which results in an algorithm that is compa-
rable in terms of computational complexity to the approach of
Wasserman and Roeder (Wasserman and Roeder 2006). Equation
6 makes the assumption that each causal polymorphism has a
unique marker proxy. In reality, some polymorphisms are cov-
ered by multiple markers, which causes our estimate of power to
be conservative.

Assessing statistical significance in multi-threshold studies

If the statistical significance at a marker is below its threshold, we
declare an association at the marker, and, as shown above, the
overall significance of this association is below �. Since the
thresholds differ at each marker, it is not immediately clear how
to assign a multiple-testing adjusted P-value to each marker.

Consider the case where at marker i with threshold ti we
observe an association with significance level t̂i � ti. We can ob-
tain a multiple-testing adjusted significance level �* at this
marker using a similar optimization procedure to obtaining the
optimal thresholds. The multiple-hypothesis adjusted signifi-
cance level is the probability under the null hypothesis of ob-
serving a more significant association at any marker. Intuitively,
if t̂i = ti, then by definition, the multiple-testing adjusted signifi-
cance level is �. For t̂i � ti, we want to determine the significance

Eskin

656 Genome Research
www.genome.org



level �* < �. Estimating this significance level is equivalent to
discovering the �* and a new set of thresholds t*i such that when
we maximize Equation 6 with the constraint ∑j t*j = �*, the
threshold for marker i is the observed threshold, t*i = t̂i. We de-
note the gradient at the observed threshold �̂ = g�1(t̂i, �i√N). At
the optimal solution, the gradient at each markers will be equal
to �̂ and the threshold is t*j = g�1(�̂, �j√N). Thus, the multiple-
hypothesis corrected significance level for observed significance
level t̂i at marker i is

�* = �
j

g−1��̂, �j�N� = �
j

g−1�g�t̂i, �i�N�, �j�N�.

Accommodating correlated markers

Due to the linkage disequilibrium structure of the genome, the
Bonferroni assumption of independent markers is not realistic. In
the case of correlated markers, setting the threshold to t = (�/M)
will achieve an overall false-positive rate lower than �. Using the
procedure above to obtain the multiple-hypothesis corrected sig-
nificance threshold, we can apply a permutation procedure to
discover thresholds that take into account the false-positive rate.
This procedure works as follows: We first permute the case and
control samples, and for each marker we compute the multi-
threshold significance level. We record the most significant as-
sociation and repeat for each permutation. We then observe the
empirical distribution of these significance levels (minimum P-
values) and use this distribution to determine the true signifi-
cance level that corresponds to a given observed significance
level.

A problem with this procedure is that it is not computation-
ally feasible since it requires obtaining the significance level at
each marker in each permutation. We take advantage of the ob-
servation that at the optimal solution for a set of thresholds, the
gradient of the power function with respect to the significance
level at each marker is equal. Thus, the most significant multi-
threshold association will correspond to the marker with the
highest gradient. We can then obtain the same empirical distri-
bution by computing the gradient at each marker and recording
the maximum value of the gradient in each permutation. The
quantile of the empirical distribution of maximum gradient and
the minimum P-value are equivalent, which allows us to effi-
ciently compute the permutation-adjusted multiple-threshold P-
values.

Results

Candidate gene study associations

We simulate association studies in a candidate gene-sized region
using the HapMap data ENCODE regions (Altshuler et al. 2005)
by following the evaluation protocol presented in de Bakker et al.
(2005). In these simulations, we generate 1000 cases and control
individuals by randomly sampling from the pool of haplotypes
from HapMap samples in the ENCODE regions. The disease sta-
tus for each individual is determined by randomly designating a
SNP from this region as causal with a certain relative risk. We
simulate the scenario where we are using a whole-genome geno-
typing product such as the Affymetrix 500k SNP chip (Matsuzaki
et al. 2004) and assume that the study collects as markers the
subset of genotypes from this region that are present on the chip.
Using the HapMap data, we uniquely assign each SNP to a proxy
by choosing the marker with the highest correlation coefficient
with the SNP. We perform this simulation over the four HapMap

populations in each of the 10 ENCODE regions. Over the 10
ENCODE regions, there are 34–120 polymorphic SNPs on the
Affymetrix gene chip, and the total number of SNPs ranges from
607 to 1841.

We first consider power estimates of traditional versus
multi-threshold association studies where we assume that the
markers are independent. Consider, for example, the ENCODE
region ENm010 for the CEU population. In this region, there are
47 markers on the Affymetrix 500k gene chip that serve as prox-
ies for the 756 SNPs. The number of proxies for each tag varies
from 1 to 50. If we assume 1000 cases and controls genotyped at
each tag and a relative risk of 2.0 for the causal SNP, a traditional
association study using the Bonferroni correction to set the
threshold to achieve a false-positive rate at � = 0.05 will have an
average power of 0.683. We obtain this estimate by repeatedly
sampling 1000 case and control individuals from the HapMap
following the simulation procedure described in de Bakker et al.
(2005). If we apply MASA to optimize the thresholds of the study,
the average power increases to 0.711. An increase of power of 3%
may not seem that significant, but the average power is a mis-
leading indicator. In fact, most of the SNPs in the region either
have very high or very low power. Of the 756 SNPs, 425 have a
power >0.9, and 138 have a power <0.1 in a traditional associa-
tion study. In the multi-threshold association study, for both of
these sets of high- and low-powered SNPs, the power changes
only slightly. However, for the 193 SNPs with power in a tradi-
tional study between 0.1 and 0.9, the multi-threshold association
study significantly increases the average power of these SNPs
from 0.459 to 0.556. A more informative measure is the increase
in the number of individuals that a traditional association study
would need to achieve an equivalent power increase. On average,
the power increase due to optimizing the thresholds is equivalent
to increasing the number of individuals by 9%. This measure can
be computed by repeatedly simulating traditional association
studies with an increasing number of individuals until the tradi-
tional study power equals the multi-threshold study power.

Previous methods for weighted hypothesis testing did not
take into account proxies, which makes it difficult to compare
MASA directly with previous methods. We can measure the rela-
tive importance of taking proxies into account by applying the
optimization method using only information from the markers
and then measuring the power considering all SNPs including
SNPs correlated with the markers. The thresholds we obtain are
equivalent to those that we would obtain using the method pre-
sented in Roeder et al. (2007). Using these thresholds, the power
decreases to 0.678, which is not surprising considering that in
this case the method is optimizing the power only at the 47 SNPs
that are markers, while we are measuring the power over the 756
SNPs in the region.

Since the SNPs on the Affymetrix SNP chip are correlated,
our use of the Bonferroni approximation for the threshold results
in a conservative estimate of the false-positive rate. We empiri-
cally measure our false-positive rate by repeatedly sampling 1000
case and control individuals from the HapMap data and observe
that our true false-positive rates for our thresholds set using the
Bonferroni correction are 0.031 and 0.046 for traditional and
multi-threshold association studies, respectively. We apply a per-
mutation procedure to obtain the correct false-positive rate. To
set the traditional permutation threshold, we compute the em-
pirical distribution of the minimum P-value from each simulated
association study and use this distribution to set the threshold
that empirically achieves a false-positive rate of 0.05. To set the
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weighted thresholds, we apply our gradient permutation proce-
dure (see Methods). We empirically verify the false-positive rates
for our permutation-based threshold using simulations and ob-
tain false-positive rates of 0.050 for both traditional and multi-
threshold association. Our power using these adjusted thresholds
for a traditional study is 0.705 and is increased to 0.714 using the
multi-threshold association, which is equivalent to the power
gain of increasing the number of individuals by 8%. For SNPs
with power between 0.1 and 0.9, the power increase is more
dramatic, going from 0.517 to 0.566, equivalent to increasing the
number of individuals by 13%. Tables 1 and 2 summarize the
comparison over all 10 ENCODE regions.

Our approach makes the unrealistic assumption that we
know the relative risk of the causal polymorphism, and this as-
sumption is used to set the optimal thresholds. We measure the
effect of an incorrect assumption of the relative risk by obtaining
optimal thresholds assuming the relative risk is 2.0 and measur-
ing the power of these thresholds under a wide range of relative
risks. Figure 2 shows the power under different relative risks.
Even if the assumption is incorrect, the multi-threshold associa-
tion method increases the power for a wide range of relative risks,
in this case from 1.65 to >3.0, compared with traditional asso-
ciation studies.

Whole-genome association experiments

We simulate whole-genome multi-threshold association studies
using the Affymetrix 500k gene chip by generating simulated
1000 case and 1000 control data sets using the HapMap data. We
assume that each of the 2,614,057 SNPs polymorphic in the CEU
population in the HapMap are equally likely to be causal with a
relative risk of 2. The power of a traditional association study
with false-positive rate � = 0.05 is 0.593, and the average power
for the 916,380 SNPs that have power between 0.1 and 0.9 is
0.568. The power of a multi-threshold association study is 0.610
overall and 0.615 for the 916,380 SNPs. This power increase is
equivalent to an increase of individuals by 5% and 7%, respec-
tively.

We measure the impact on extrinsic information on whole-
genome scans by considering two types of extrinsic information.
We first consider the assumption that coding SNPs (cSNPs), re-
gardless of where they occur in the genome, are more likely to be
involved in disease. Second, we consider adding information on
a set of genes that are more likely to be involved in specific
diseases. We consider the set of 30,700 cSNPs among the poly-
morphic SNPs in the HapMap. In a traditional association study,
the power for detecting an association if a cSNP is causal is 0.500,
and the overall power is 0.593. For SNPs that have power between
0.1 and 0.9, the power for detecting association at a cSNP is

0.560, and the overall power is 0.568. If we assume that the
30,700 cSNPs contribute to 20% of the disease-causing variation,
the causal likelihood of these SNPs is 21 times the causal likeli-
hood of the remaining SNPs. In this case, the overall power of a
traditional association study is 0.583 (and 0.567 for mid-range
power SNPs). If we take this information into account, the multi-
threshold power increases the power of detecting an association
if a cSNP is causal is increased to 0.545 (and 0.681 for mid-range
power causal SNPs). This increase is equivalent to increasing the
number of individuals by 16% (17%). The overall power of a
multi-threshold association increases to 0.602 (and 0.619 for
mid-range power SNPs), which is equivalent to increasing the
number of individuals by 5% (7%). If our prior information on
the causal likelihood of cSNPs is incorrect and they are not any
more likely to be involved in disease than remaining SNPs, the
overall multi-threshold power is 0.608 (compared with the power
of a traditional study 0.593). In fact, the power is increased com-
pared with a traditional study regardless of the contribution of
cSNPs to the disease-causing variation. Thus, the potential gains
of using prior information are much larger than the loss in power
if the information is incorrect.

We measure the impact of information on which genes are
more likely to be involved in disease by simulating association
studies using the Cancer Gene Census (CGC) (Futreal et al. 2004).
The CGC contains a list of 363 genes in which mutations have
been implicated in cancer. Using the CGC as prior information in
the context of a whole-genome scan for variation that affects
cancer susceptibility, we make the assumption that SNPs in these
genes are more likely to be involved in cancer susceptibility than
SNPs in other genes. These genes contain 34,475 SNPs within 50
kb of the genes. We simulated an association study where we
assume that 20% of the causal variation in cancer is located in
these genes. Under this assumption, these SNPs are 18 times
more likely to be the causal variation. A traditional association
study under these assumptions would have a power of 0.588 and

Table 1. Summary of power estimates from simulated association studies with 1000 cases and controls performed over the ENCODE
regions using the markers contained in the Affymetrix 500k gene chip

Population
name

No. of
tags

Total power 0.1 < Power < 0.9

No. of
SNPs

Bonferroni correction Permutation

No. of
SNPs

Bonferroni correction Permutation

Trad.
Power

Multi.
Power

Trad.
Power

Multi.
Power

%
Inc.

Trad.
Power

Multi.
Power

Trad.
Power

Multi.
Power

%
Inc.

CEU 697 10705 0.7116 0.7415 0.7362 0.747 8.6 1816 0.488 0.5868 0.5589 0.6022 10.7
YRI 658 8930 0.559 0.5737 0.5791 0.5851 3.2 1472 0.4647 0.4913 0.4973 0.5094 4.3
CHB 684 9244 0.7664 0.7881 0.787 0.7945 6.6 1709 0.5022 0.5795 0.5674 0.5992 8.4
JPT 791 13172 0.7347 0.7595 0.7584 0.7661 7.3 4105 0.4734 0.5519 0.5415 0.5683 8.5

Table 2. Summary of false-positive rates from simulated
association studies with 1000 cases and controls performed over
the ENCODE regions using the markers contained in the
Affymetrix 500k gene chip

Population
name

No. of
tags

False-positive rate

Bonferroni correction Permutation

Trad. � Multi. � Trad. � Multi. �

CEU 697 0.0279 0.0438 0.05 0.05
YRI 658 0.0392 0.0436 0.05 0.05
CHB 684 0.0293 0.0422 0.05 0.05
JPT 791 0.0288 0.0435 0.05 0.05

Eskin

658 Genome Research
www.genome.org



0.567 for mid-range power SNPs; those with power in a tradi-
tional association study between 0.1 and 0.9. Taking advantage
of this prior knowledge improves the power of an association to
0.612 and 0.632 for mid-range SNPs, which is equivalent to an
increase of the number of individuals by 7% and 9%, respec-
tively. Over the cancer gene SNPs, the power is increased to 0.641
(0.746 for mid-range SNPs) from 0.566 (0.565) in the traditional
study, which is an increase in the number of individuals by 27%
(28%). Over the remaining SNPs, the power is 0.605 (0.605) com-
pared with 0.593 (0.568), which is an increase of 4% (5%) indi-
viduals. On the other hand, if we assume this prior information
when setting the thresholds, but in fact the CGC genes are no
more likely than other genes to be involved in disease, the power
of the method decreases to 0.606, which is still higher than the
power in a traditional association study (0.593). Despite the in-
correct assumptions about which SNPs are likely to be involved
in disease, the gains due to taking advantage of the correlation
structure result in an increase in overall power compared with
the traditional approach.

Application to the WTCCC data

We apply our method to the Wellcome Trust Case Control Con-
sortium (WTCCC) data (Wellcome Trust Case Control Consor-
tium 2007). This data set contains genotypes for ∼2000 individu-
als for each of seven diseases and genotypes for 3000 control
individuals, which is equivalent to a study with 2400 case and
control individuals in a balanced study. We consider the 400,266
SNPs that pass the quality control filters and map to a unique
SNP in the HapMap.

We first examine the increase in power of applying our
method to take into account the linkage disequilibrium struc-
ture. If we assume a relative risk of 1.5, the power of the associa-
tion study is 0.472. If we apply our method to optimize the
thresholds to take into account the linkage disequilibrium struc-
ture, the power increases to 0.494, which is an increase in power
equivalent to increasing the number of individuals by 5%. For
SNPs with power between 0.1 and 0.9, the power increases from
0.573 to 0.620, equivalent to an increase of 6% of the number of
individuals. If we assume that nonsynonymous coding SNPs ac-
count for 20% of the causal SNPs, using that information in-
creases the power for cSNPs from 0.393 to 0.450, equivalent to

increasing the number of individuals by 17%. For cSNPs with
power between 0.1 and 0.9, the power increases from 0.560 to
0.685, equivalent to increasing the number of individuals by
18%. Adjusted P-values for associations using MASA applied to
the WTCCC data are available at http://masa.cs.ucla.edu/.

Discussion

We have presented a method for incorporating prior information
into association studies that uses multiple thresholds when cor-
recting for multiple-hypothesis testing. For the case where the
prior information can be represented in the form of causal prob-
abilities, or the probability that a specific polymorphism is causal
with respect to the disease, we present an efficient algorithm that
can solve for the thresholds that maximize power. We show that
even in the case where each polymorphism is equally likely to be
causal, our approach increases the power by adjusting the thresh-
olds due to differences in non-centrality parameters caused by
differences in minor allele frequencies and the linkage disequi-
librium structure. In our experiments, our method provides the
equivalent gain in power as increasing the sample size on average
by 19%. Prior information represented in terms of causal prob-
abilities can provide a further increase in power.

Our approach builds on recent work in incorporating prior
information in association studies (Pe’er et al. 2006; Roeder et al.
2006, 2007). The closest method to what is presented is that of
Wasserman and Roeder (Wasserman and Roeder 2006; Roeder et
al. 2007), which is also a modified Bonferroni approach. An ad-
vantage of the Wasserman and Roeder (Wasserman and Roeder
2006; Roeder et al. 2007) approach is that they have a very el-
egant analytical solution for setting the thresholds given the
non-centrality parameter, which is dependent on a single con-
stant that can be numerically computed from the data, resulting
in a much more computationally efficient algorithm for setting
the thresholds. However, their approach is not applicable to the
practical case where the markers are proxies for causal variation.
Since both methods are based on the Bonferroni correction, the
optimal thresholds are too conservative due to the independence
assumptions of the correction. We provide an iterative procedure
that incorporates empirical estimates of the false-positive rates to
achieve the desired false-positive rate.
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