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Abstract

Two-chain aggregation simulations using minimalist models of proteins G, L, and mutants were used to
investigate the fundamentals of protein aggregation. Mutations were selected to break up repeats of hydro-
phobic beads in the sequence while maintaining native topology and folding ability. Data are collected under
conditions in which all chain types have similar folded populations and after equilibrating the separated
chains to minimize competition between folding and aggregation. Folding cooperativity stands out as the
best single-chain determinant under these conditions and for these simple models. It can be experimentally
measured by the width of the unfolding transition during thermal denaturation and loosely related to
population of intermediate-like states during folding. Additional measures of cooperativity and other prop-
erties such as radius of gyration fluctuations and patterning of hydrophobic residues are also examined.
Initial contact system states with transition-state characteristics can be identified and are more expanded
than average initial contact states. Two-chain minimalist model aggregates are considerably less structured
than their native states and have minimal domain-swapping features.

Keywords: protein aggregation; aggregation oligomers; folding cooperativity; aggregate structure; protein
simulation

Undesirable protein aggregation is a major problem in many
diseases and in industrial production of pharmaceuticals.
Deposits of aggregates, often present as structured fibrils,
are associated with neurological diseases such as Alzhei-
mer’s, Creuzfeldt-Jacobs, Huntington’s, and Parkinson’s
(Dobson 2001; Selkoe 2003). In some cases, such as Par-
kinson’s, it is unclear if the deposits themselves are toxic or
are simply a byproduct of the disease state. The stability of
fibrils suggests that they are relatively inert and, in concur-
rence, recent studies have found that early oligomeric states
are likely more toxic (Bucciantini et al. 2002; Olofsson et al.
2002; Walsh et al. 2002; Kayed et al. 2003). Comparatively
little is known about these low-molecular-weight species,

but they may be micelle-like in structure (Lomakin et al.
1996). It is particularly important to understand the driving
forces behind their formation so that preventative strategies
can be developed.

Aggregation can also be a problem during industrial pro-
tein expression when proteins not native to the host organ-
ism are overexpressed (Clark 2001; Chi et al. 2003; Roberts
2003). These high-concentration-product proteins often ag-
gregate and must be denatured from inclusion bodies, then
renatured under kinetic and thermodynamic constraints
while minimizing operation costs. Improved understanding
of aggregation will increase our ability to design proteins
and conditions to improve renaturation or to inhibit aggre-
gation entirely.

Significant progress in understanding the aggregation
process has been made experimentally using protein engi-
neering techniques. Aggregation is thought to occur most
easily through partially unfolded intermediates (Fink 1998;
Horwich 2002). Under partially denaturing conditions, re-
gions once forming intramolecular interactions instead switch
to forming intermolecular contacts. Antibodies grown against
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P22 tailspike folding intermediates bind to aggregates but
not denatured or folded states, suggesting that the aggregate
forms through folding intermediates (Speed et al. 1997).
Partially unfolded aggregation-prone conformations of
transthyretin have been observed using NMR (Liu et al.
2000). Full denaturation inhibits aggregation, because de-
naturing conditions also disfavor condensed aggregates.
Partially unfolded states can be favored by destabilizing
the native state or reducing the barrier to unfolding. Work
with lysozyme demonstrates that increased aggregation
can result from mutations that either slow folding or that
make unfolding easier (Dobson 2001). Similarly, kinetic
destabilization of transthyretin tetramers leads to aggre-
gation because it frees monomers (Hammarstrom et al.
2003).

It is intuitive and reasonably well accepted that more
stable proteins tend to resist aggregation (Hurle et al. 1994),
but the exact connections between protein properties and
aggregation propensity are still blurred. A number of pos-
sible aggregation mechanisms are still being investigated
(Kelly 2000; Thirumalai et al. 2003). In at least one case,
protein regions important in determining the folding rate are
distinct from those that determine the aggregation rate
(Chiti et al. 2002). The aggregation-rate-determining re-
gions of the same acylphosphatase protein are those that are
most solvent-exposed and susceptible to protease degrada-
tion under partially denaturing conditions (Monti et al.
2004). Studies on the same protein produced determi-
nants based on charge, �-strand secondary-structure pro-
pensity, and hydrophobicity that are successful in predicting
the aggregation propensity of known disease-related mis-
folders (Chiti et al. 2003). A similar, very recent study
achieved similar success with an empirical correlation that
also incorporated residue dipole moment, accessible sur-
face area, and aromaticity (Tartaglia et al. 2004). Despite
clear success, there is still 1–2 orders of magnitude scatter
in their predictions and therefore a need for further under-
standing.

Results and Discussion

In this work, the entire process of two-chain aggregate for-
mation is examined using a simplified computational
model. Although more than two chains may be required to
produce a structured aggregate or examine rate-limiting
steps, examination of this simple case is important because
all oligomers or aggregates must necessarily pass through a
two-chain state. A number of mutations were made that
significantly affect the aggregation propensity, and attention
is paid to how single-chain properties relate to aggregation.
The intention in this work is to search for additional factors
beyond those found by Chiti et al. (2003) that control ag-
gregation.

Single-chain realism and characteristics

Experimental studies have difficulty resolving atomic de-
tail, and molecular dynamics simulations at the level of
atomic detail cannot access long enough timescales to ob-
serve aggregation. To circumvent the timescale problem,
other simulation studies have used lattice models (Broglia
et al. 1998; Harrison et al. 1999; Istrail et al. 1999; Bratko
and Blanch 2001, 2003; Shimizu and Chan 2001; Dima and
Thirumalai 2002) or multiple bead/residue discrete molecu-
lar dynamics simulations (Smith and Hall 2001; Ding et al.
2002) to investigate protein aggregation. Simulations with
full atomic detail (Ma and Nussinov 2002a,b; Klimov and
Thirumalai 2003) have been used to investigate components
of the process.

In this work an intermediate resolution model with one
bead per residue is used. It is an off-lattice cooperative
folding model of the IgG binding B1 domain of protein G
developed to study folding (Sorenson and Head-Gordon
1999, 2000, 2002; Brown et al. 2003). This model is free
from the explicit inclusion of native-state tertiary fold in-
formation in the force field that the Go model possesses—it
has specific bead types (hydrophobic, hydrophilic, and neu-
tral) possessing fixed interaction properties. Torsion poten-
tials are chosen to bias, but not fix, the secondary structure
to match the crystal structure. While there is no rigid one-
to-one mapping between a 20-letter amino acid sequence
and the reduced letter code, the fixed bead types make mu-
tations meaningful within the broad classification provided
by the three bead flavors. The reduced complexity of the
model allows fast simulation of folding and aggregation
events and permits the statistics accumulation necessary to
calculate ensemble thermodynamic properties.

Two related 56-bead sequences, representing proteins G
and L, are taken to be “wild-type” reference points for mu-
tation studies. These sequences are identical up to a reor-
dering of bead types and thus have the same overall hydro-
phobicity. The torsion potentials responsible for biasing the
secondary structure are also identical. Both sequences pos-
sess a nearly identical minimum energy folded “native”
state. A comparison of the native structures for the two
native sequences and the four mutants to be described is
provided visually in Figure 1. The fold reproduces the sec-
ondary �/� crystal structure well and the tertiary structure
up to the arrangement of the strands. Missing H-bonding
interactions mean that the �-sheet is not flat, but rather
bundle-like, giving an RMSD of 4.4 Å with respect to the
crystal structure (Brown and Head-Gordon 2004). These
native sequences were computationally evolved from a ge-
neric protein L/G model (Sorenson and Head-Gordon 2000,
2002) to give distinct folding pathways that qualitatively
match current experimental knowledge (Brown et al. 2003).
During folding, protein G is thought to proceed first through
formation of the second �-hairpin while protein L forms the
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other �-hairpin first (for a complete discussion, see Brown
and Head-Gordon 2004). In agreement with experiment,
protein G forms a kinetic intermediate and is the slower
folder of the two in computational studies.

The strength and utility of the simple model described
above are based on its ability to approximately reproduce
the folding process and the hydrophobic driving forces. Be-
cause the chemical and shape-related intricacies of the full
20-letter amino acid code are largely missing, dissection of
the results at the level of specific bead–bead contacts is
avoided. Instead, examination of folding-relating effects
and the influences of hydrophobic residue patterning on
aggregation are emphasized.

Mutations of the two wild-type sequences were chosen to
minimize aggregation under the hypothesis that sequential
regions of hydrophobic (attractive) beads promote aggrega-
tion. For example, �-strand 3 of wild-type protein G model
has an uninterrupted group of four hydrophilic beads (see
Fig. 1). A large collection of both single and double muta-
tions were made, and select sequences giving similar native
structures and cooperative folding transitions were retained.
All heat capacity curves have only single peaks. The heat
capacity curves in Figure 2 and the temperature denatur-
ation curves in Figure 3 show the variation in folding tran-
sition temperature and cooperativity. Primary mutations
were chosen to break up hydrophobic regions by inserting a
hydrophilic bead. To maintain the wild-type hydrophobic-
ity, secondary mutations were made to change hydrophobic
beads to hydrophilic and were chosen to give native-state
energies similar to their wild-type precursors. Both primary
and secondary mutations were made in strand regions to

outward-facing beads forming relatively few contacts in the
native state.

Simulation conditions

The simulation protocol is chosen to minimize competition
between folding and aggregation by pre-equilibrating the
chains prior to allowing aggregation. The simulation box
size is chosen to give a concentration of 100 mg/mL assum-
ing the molecular weight of protein L. This concentration is
substantially higher than most experiments, but lower than
the 200–300 mg/mL of protein present in cells (Ellis 2001;
Minton 2001). All runs were performed at the structure-
based folding temperature (T�

F) defined such that folded and
unfolded states (see Materials and Methods for formal defi-
nition) are equally populated. The relationship between the
thermodynamic and structural folding temperatures is shown
in Figure 4 for the case where they are most separated.
Klimov and Thirumalai have also used two temperature
measures of folding progression, but their definitions are
different (Klimov and Thirumalai 1998). The temperature at
maximum heat capacity (Cv) is termed the thermodynamic
folding temperature here rather than the “collapse tempera-
ture” because much of the collapse occurs at higher tem-
peratures for these models (see Rg in Fig. 4). This observa-
tion is consistent with lattice-model studies of protein fold-
ing (Dinner et al. 1999). Under these conditions, each wild-
type or mutant sequence has the same degree of structural
similarity to its native state. Furthermore, the state of each
different chain type is comparable because the native states
are nearly identical, as shown in Figure 1.

Figure 1. Alignment of native structures for the two wild-type sequences
and the four mutants shows high structural similarity. Strand and �-hairpin
identifiers are shown in top, bottom, and side views. The six corresponding
bead sequences are given in terms of hydrophobic (B), hydrophilic (L), and
neutral (N) condensed residue types. Mutations from the wild type are
shown in red.

Figure 2. Heat capacity curves for the wild-type protein G and L models
and for their mutants.

Folding cooperativity role in protein aggregation

www.proteinscience.org 655



Chains are said to be “aggregated” when they achieve an
average of at least 50 interchain contacts for one million
timesteps. Monitoring of interchain contacts during indi-
vidual runs shows fluctuations from zero to the low to mid-
10’s, then a sustained plateau of at least 50 contacts. For
comparison, the probability of chains separating once they
have reached 50 contacts is about an order of magnitude
lower than after 20 contacts. The duration of one million
timesteps ensures that the trajectory is committed to the
aggregated state basin. All other states possessing interchain
contacts are termed “associated.” The single-chain specific

force field and run details can be found in previous publi-
cations (Sorenson and Head-Gordon 1999, 2000, 2002;
Brown et al. 2003). Modifications to allow simulations of
multiple chains are given in Materials and Methods.

Single-chain determinants of aggregation

All mutants aggregate more slowly than their respective
wild-type analogs. Mean times to aggregation for each wild-
type sequence and important single-chain properties are
given in Table 1. Aggregation times are two to 19 times
slower than folding times. The success of the heuristics used
to pick the mutations suggests that breaking up hydrophobic
clusters in the sequences can inhibit aggregation. However,
it should be noted that neglect of other interaction types,
such as hydrogen bonding and polar electrostatics in the
model, may overemphasize the importance of hydrophobic
effects.

The best single-chain determinant appears to be the co-
operativity of the folding process. Two measures of folding
cooperativity are presented graphically in Figure 5. The
width (in temperature units) of the folding transition mea-
sured during temperature denaturation (Fig. 3) gives one of
the best correlations (R2 � 0.86). It is measured from 5%
to 95% folded (using the � definition) in temperature units.
A leave-one-out analysis gives a minimum R2 value of 0.70
when the L1 point is omitted. The difference between the
thermodynamic and the structural folding temperatures and
the Cv peak width at half-height are also measures of co-
operativity and determinants of aggregation rate (Table 1)
(R2 � 0.87, R2 � 0.51, respectively).

The free energy change of folding at TCv
F (�Afolding) is

another reasonable correlant (R2 � 0.81) and is related to
the temperature difference measures. A leave-one-out
analysis gives a minimum R2 value of 0.72 when the wild-
type G point is omitted. At the structural folding tempera-
ture (T�

F), the free energy of folding is zero because the
folded and unfolded states as defined are equally populated.
Larger temperature difference measures of cooperativity
mean that the thermodynamic folding temperature (TCv

F ) is
farther toward the fully unfolded state. If each chain is
assumed to have a similar dependence of folding free en-
ergy on temperature, then a chain with a larger temperature
difference measure of folding cooperativity will also tend to
have a larger free energy of folding at the peak of the Cv

curve (TCv
F ) because the free energy decreases monotonically

away from the structural folding temperature. Jiang et al.
(2000) have used an estimate of the entropy of folding to
design cooperative folders. For the systems studied here, the
free energy of folding, of which entropy is a component,
appears to be a better correlant.

From a physical perspective, it seems reasonable to as-
sume that high cooperativity means that fewer intermediate
states are populated during the folding process. For ex-

Figure 4. Comparison of the structural (T�
F) and thermodynamic (TCv

F )
measures of the folding temperature for the wild-type protein G model. The
shifted radius of gyration (Rg) information is plotted on the same tempera-
ture scale to show that it begins to decay well above both folding tem-
peratures.

Figure 3. Temperature denaturation curves for the wild-type protein G and
L models and for their mutants.
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ample, it is known that the protein G model (wt G) has a
folding intermediate (Brown and Head-Gordon 2004) and it
is the least cooperative folder studied here. The correlation
between cooperativity and aggregation resistance is thus
compatible with the observation that proteins with folding
intermediates tend to aggregate more easily.

Folding time is a poor determinant (Table 1) (R2 � 0.35),
as originally expected because the simulation conditions
were chosen to minimize folding competition with aggre-
gation. However, the concept of folding cooperativity pro-
vides a link between a property that predicts a good folder

and one that predicts aggregation resistance. Klimov and
Thirumalai (1996) have shown that a difference between
folding temperatures, similar to the one used in this work,
divided by one of the folding temperatures is a good pre-
dictor of folding time. In their work, faster folding lattice-
model proteins have lower values of this ratio and can there-
fore be viewed as more cooperative. It appears that opti-
mizing the cooperativity of a protein leads to both improved
folding and aggregation properties.

While stability can be quantified by the thermodynamic
folding temperature, it cannot be clearly examined as a cor-
relant here because the runs are at different temperatures.
However, aggregation times of chains having similar struc-
tural folding temperatures and therefore run temperatures
can be compared. If one examines wild-type G, G1, and
wild-type L models (see Table 1), there appears to be a
tendency for the chain with the highest thermodynamic
folding temperature (most stable) to aggregate fastest. This
is further support that it is the cooperativity of the folding
process that is most important under these conditions.

The most counterintuitive relationship between aggrega-
tion time and a single-chain characteristic is the tendency
for aggregation-resistant chains to have higher radii of
gyration fluctuations. Figure 6 shows this relationship
(R2 � 0.76, min 0.48 without L1). One might expect higher
structural fluctuations to open the chain up and promote
aggregation. Indeed, chains with such characteristics tend to
have greater average hydrophobic exposure (data not
shown), but actually aggregate more slowly. The apparent
contradiction with experimental results that tie hydropho-
bicity to faster aggregation (Chiti et al. 2003) can be attrib-
uted to comparison of a static quantity derived only from the
sequence to one influenced by structural fluctuations.
Higher structural fluctuations may simply be related to the
run temperatures and the folding cooperativity arguments
already suggested. Figure 4 shows that the radii of gyration
fluctuations are highest above the thermodynamic folding
temperature (TCv

F ) and decrease steeply at lower tempera-
tures. For more cooperative folders, the gap between the

Figure 5. Correlation between aggregation resistance and folding cooper-
ativity as measured by �Afolding at TCv

F or �Tfolding measured from 5% to
95% folded on the temperature denaturation curves.

Table 1. Comparison of mean aggregation times and important single-chain properties

Agg. time
(�) Enative

Fold time
(�) T�

F TF
Cv TF

Cv − T�
F

Changes of folding (�)

�A (TF
Cv)

�T
(Cv)

�T
(Pnat)

wt G 1.9 × 104 −28.8 8.1 × 103 0.41 0.51 0.10 2.06 0.24 0.20
G1 4.9 × 104 −24.5 5.2 × 103 0.40 0.46 0.06 1.02 0.12 0.16
G2 3.3 × 104 −28.5 1.3 × 104 0.44 0.50 0.06 1.11 0.10 0.19
wt L 3.4 × 104 −26.9 5.5 × 103 0.41 0.48 0.07 1.46 0.15 0.16
L1 6.1 × 104 −23.1 3.1 × 103 0.41 0.45 0.03 0.78 0.10 0.12
L2 4.0 × 104 −26.8 9.2 × 103 0.40 0.46 0.06 1.14 0.17 0.15

Native-state potential energy (Enative) and folding free energy [�A (TF
Cv)] at the thermodynamic folding temperature are given in units of �H/kB. Simulations

at alternative temperatures (data not shown) give an estimate for the aggregation time variability of ±0.2 × 104 � for every 0.01 temperature unit.
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thermodynamic folding temperature (TCv
F ) and the run tem-

perature (T�
F) is smaller, meaning that from the shape of the

curve, one expects more cooperative folders to have higher
radii of gyration fluctuations.

Two-chain determinants of aggregation

Though less useful as predictors of aggregation propensity,
examination of two-chain properties can yield insight into
the aggregation process. The system state during formation
of the first interchain contacts and the “preaggregate” subset
of these states that proceed to form aggregates before the
chains separate are particularly important. Contrasting the
preaggregate states with others hints at properties that in-
fluence aggregation.

During the course of aggregation, each chain type under-
goes similar structural changes, suggesting a crude general
mechanism. Table 2 gives a progression of aggregate radii
of gyration and the native-state similarity (�) at few inter-
chain contacts, during formation of preaggregate initial con-
tacts, and in the final aggregate. At low interchain contact

number, the chains are partially extended and have rela-
tively high similarity to their native states. For the subset of
initial association states leading to a final aggregate (preag-
gregate states), the chains are more extended and have con-
sistently less native-state similarity. The final two-chain ag-
gregates are comparatively collapsed and have minimal
single-chain native-state similarity. Pronounced structural
expansion and loss of native state contacts before interchain
contact formation may be necessary to initiate aggregation.

The preaggregate initial association states can be ex-
pected to have important properties, such as transition-state-
like character. They have substantially higher energies (6–
12 kBT ) than initial association states that do not lead to
aggregation, meaning that they have fewer intrachain con-
tacts and in many cases are more open structurally. An
attempt to estimate a pseudoactivation energy barrier by
subtracting average preassociation potential energies from
energies during preaggregate initial association gives esti-
mates between 7 and 16 �H. High pseudoactivation energies
are clearly associated with aggregation resistance as shown
in Figure 7.

A comparison between the aggregate and single-chain
radius of aggregation fluctuation correlations reveals strik-
ingly opposite trends. The best yet still poor correlation
(R2 � 0.42) between aggregate structural fluctuations and
aggregation time is at the preaggregate initial association
stage; this is shown in Figure 6. Fast-aggregating chains
have high fluctuations in their preaggregate initial associa-
tion states but comparatively low single-chain fluctuations.

Together the properties of the preaggregate states imply
that chains must come together with a more extended and
less native-state character in order to proceed to an aggre-
gated state. The large differences in the activation energy
estimate suggest that the chain sequence can play an im-
portant role in defining the properties of the preaggregate

Figure 6. Trends in aggregation time with respect to the radius of gyration
fluctuations for single chains and aggregates. For the aggregate, the fluc-
tuations are calculated only during the initial contacts that lead to a final
aggregated state.

Table 2. Comparison of mean aggregation times and two-chain
aggregate structural properties during the aggregation process

Agg. time
(�)

Aggregate Rg Mean chain � in system

1 � Nc � 10 Prea Final 1 � Nc � 10 Prea Final

wt G 1.9 × 104 4.8 5.0 3.8 0.34 0.30 0.22
G1 4.9 × 104 4.9 5.2 4.2 0.34 0.27 0.20
G2 3.3 × 104 4.5 4.8 3.8 0.45 0.37 0.21
wt L 3.4 × 104 5.1 5.5 5.0 0.37 0.31 0.21
L1 6.1 × 104 5.2 5.7 4.9 0.34 0.26 0.20
L2 4.0 × 104 4.8 5.4 4.3 0.40 0.26 0.20

Nc denotes the number of chain–chain contacts. The radii of gyration for
the native states at the run temperature are 2.75 to 2.88 in reduced units (	).
a Initial association leading to aggregation before separation of the chains.

Figure 7. Two-chain systems with higher pseudoactivation energy barriers
resist aggregation. The barrier estimate is calculated by subtracting the
average system energy without interchain contacts from that during for-
mation of initial contacts leading directly to aggregates. A best-fit line is
shown as a guide to the eye and is not intended to suggest a linear rela-
tionship.
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complex. Large structural fluctuations may be necessary to
allow easy formation of the final aggregate or may simply
be a characteristic of complexes that aggregate more
quickly.

Examination of the aggregate structures yields little con-
sistency even within aggregates of a single-chain type. The
average contact maps for the aggregates are shown in Fig-
ures 8 and 9. If the contact maps are filtered by zeroing all
contact pairs with average values lower than their standard
deviations, all features except the stand3–strand3 peak in
the protein G-type chains disappear. Attempts to find single
structures with contact maps qualitatively matching all the
features of the average contact map met with limited suc-
cess. Two wild-type sequence aggregate structures are
shown in Figure 10 as examples. The only constant factor
appears to be the clustering of strands with high hydropho-
bicity. It is possible to find persistent states with contact
patterns not found in the aggregate during single run trajec-
tories, suggesting that metastable, off-pathway states may
play a role in the aggregation process. Average contact pat-
terns for initial association and preaggregate initial associa-

tion states show no features not present in the aggregate
state.

It is possible that aggregates with more than two chains
will have more regular structure. Formation of multichain
aggregates may require a consistent association mechanism,
such as the interchain �-sheet formation seen in amyloid
fibers (Harrison et al. 2001). Transitions from �-helical to
�-sheet structures have been observed experimentally after
oligomer formation (Nettleton et al. 2000; Kirkitadze et al.
2001), suggesting that a critical mass of chains is needed
before ordered aggregates form.

The interchain contact number distributions for the slow-
est aggregating chains suggest strategies for designing ag-
gregation-resistant proteins. Figure 11 shows that in all
cases the mutants shift the contact number distributions to
lower values. Destabilizing the aggregate by making large
numbers of interchain contacts more improbable is one way
to minimize aggregation. The bimodal distributions suggest
a distinction between associated and aggregated states and
perhaps the presence of a barrier. Mutations, especially to
the G-like sequence, tend to result in favoring the associ-

Figure 8. A comparison of aggregate contact map contours for protein L
type models shows that contacts are dominated by the most hydrophobic
strands (2 and 4) and are largely unchanged by the mutations. The black-
bordered bands contain contacts to the helical portions of the chains, which
are comparatively sparse.

Figure 9. A comparison of aggregate contact map contours for protein G
type models shows that contacts are dominated by the most hydrophobic
strand (3) and are largely unchanged by the mutations. The black-bordered
bands contain contacts to the helical portions of the chains, which are
comparatively sparse.
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ated-only portion of the distribution. Another strategy for
disfavoring the final progression to an “aggregated” state
would be to design sequences to form associated states with
high barriers to conversion into aggregated states. Associ-
ated chains would then be more likely to dissociate and
independently fold.

In the literature, there is speculation on the importance of
domain swapping in the formation of aggregates. Domain
swapping refers to the formation of interchain contacts that
are identical to native intrachain contacts (Bennett et al.
1995). At least 20 domain-swapped dimer structures have
been identified (Janowski et al. 2001), and it has been pro-
posed that a similar mechanism could lead to multimers
(Liu et al. 2001). Domain swapping has been identified in
crystal structures of protein L dimers (O’Neill et al. 2001).
In the simulations described here, threshold filtering of the
average contact maps is used to reduce them to maps with
a number of contacts equal to that in the native-state struc-
ture. Comparison with the native contact map then indicates
that a fairly minimal 14% to 28% of contacts can be con-
sidered domain-swapped, depending on the sequence. It is
possible that a more detailed model, such as one with highly
specific interactions, would favor creation of native-like in-
terchain contacts rather than more disordered contacts. Ding
et al. (2002) observed domain-swapped dimers, but did not
see propagational domain swapping in their simulations of
the SH3 domain.

Conclusions

Use of a simplified protein model allows direct simulation
of folding and two-chain aggregation processes. Six 56-
bead sequences that all fold to highly similar native struc-
tures display mean times to aggregation that vary by almost
a factor of 3. Within the constraints imposed by the realism
of the model, a number of biophysical insights into the
aggregation process can be gained.

Folding cooperativity is identified as a good single-chain
determinant of aggregation time. Physically, lower cooper-
ativity means a greater population of states that are neither
folded nor unfolded during the folding transition. This is in
agreement with the widely accepted idea that proteins with
folding intermediates tend to aggregate more easily. Mea-
sures of folding cooperativity are the temperature width of
the folding transition or the free energy of folding at the
temperature where the heat capacity is maximum. The tem-
perature width of the folding transition can be calculated
from thermal denaturation experiments with sufficient defi-
nition. Measurements of aggregation rate on single mutants
covering a range of cooperativities could be done to test this
relationship.

Some properties of the two-chain aggregates are also
good determinants of the aggregation time. It appears that
the structure of the chains during initial association deter-
mines how likely they are to form final aggregates. Asso-
ciated chains that progress to aggregates have significantly
higher potential energies than average, form more extended
complexes, and are composed of chains with less native-
state similarity. Chains with sequences that must go through
higher potential energy association states to aggregate do so

Figure 11. A comparison of the interchain contacts (Nc) during the course
of the aggregation runs. All mutants shift the average number of contacts
to lower numbers and help to reduce the aggregate stability, preventing
aggregation. Note that the distributions are not from equilibrium ensembles
but were accumulated during the kinetics runs.

Figure 10. Representative two-chain aggregate structures for wild-type
protein L (wt L) and wild-type protein G (wt G). The most hydrophobic
strands (strand 2 in wt G, strand 3 in wt L) from the gray and white chains
are colored in black to highlight their placement in the core of the aggre-
gate.
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more slowly, as one would expect from a transition-state-
type model.

Within the limitations of the single-fold topology and the
simple model, these findings increase understanding of the
aggregation process and, most importantly, suggest possi-
bilities for sequence design. Patterning of exposed residues
appears to be very important because it controls the forma-
tion of initial contacts. Even the hydrophobic residue dis-
tribution alone is important, because those sequences that
conserve overall hydrophobicity (four of the six studied)
display diverse aggregation behavior. Breaking linear clus-
ters of hydrophobic residues improves aggregation resis-
tance. This agrees with simulations of Istrail et al. (1999)
using a lattice model. Similarly, Broome and Hecht (2000)
noted that nature avoids alternating patterns of hydrophilic
and hydrophobic residues because they may promote aggre-
gation. Patterning is also important in determining what
type of aggregates can form and how many interchain con-
tacts they can achieve.

Further work could explore the correlation between co-
operativity and aggregation time for a wider range of to-
pologies, model representations, and, most importantly, us-
ing experimental data. Exploration of temperature effects
may also prove fruitful. Ding et al. (2002) noted a maximum
aggregation rate at the folding temperature using a different
type of model. It will be interesting to see if this holds for
all systems and if temperature manipulations can be used to
favor folding versus aggregation.

Materials and methods

In comparison with the single-chain case, simulation of multiple
chains requires some modifications to deal with interchain inter-
actions and concentration effects. Interchain interactions are handled
in the simplest manner, by using the same set of bead–bead inter-
actions that is used for intrachain interactions. In contrast to the Go
model, no additional assumptions are needed.

The degree of folding or ordering with respect to the mini-
mum energy native state is measured using an order parameter de-
signed to compare internal pairwise distances to those in the native
state.

� =
1

M �h�0.2 − |rij − rij
native|� (1)

where rij is a pairwise distance, N is the number of bead pairs, h
denotes the Heaviside function, and M is a normalization factor set
to give � � 1.0 for the native state. For �-values >0.40, the protein
is considered folded.

All simulations reported here are performed in reduced units
with the basic units of mass (m), length (	), energy (�H), and
Boltzmann’s constant (kB) all set equal to 1. One length unit (	) is
equivalent to the length of a bead–bead bond and is taken to be
3.8 Å in nonreduced units. The energy, −�H, corresponds to the
most attractive potential energy of interaction between two hydro-

phobic beads. Under this representation, temperature has units of
�H/kB and time (�) has units of

�m	2��H .

One timestep is 0.005 �.
Concentration effects are handled using the standard periodic

boundary condition method (Allen and Tildesley 1987). The box
size is chosen to be a cube with sides of 16.0 length units to give
an approximate concentration of 100 mg/mL of protein L. At this
box size, self-interaction of a chain with its image cannot be ex-
cluded. However, visualization of trajectories suggests that this is
rare and likely similar to normal interactions with the environment
at high concentration. The interaction cutoff is set at one-half of
the box length (8.0 length units). At this cutoff the attractive in-
teractions have decayed to lower than 1/100 of their well depth.

In order to calculate certain aggregate properties, such as radius
of gyration, or to visualize aggregates, it is necessary to have a
coordinate representation free of periodic boundary conditions.
The coordinates free from periodic boundary mappings that are
accumulated during dynamics runs are inadequate because they
typically do not place the chains in physical contact. The problem
is solved in an approximate and nonunique fashion by finding a
single periodic mapping for each chain that puts their centers of
mass as close together as possible. The result is a system coordi-
nate set that typically produces a structure containing interchain
contacts and interactions similar to those calculated from the mini-
mum image convention.

Aggregation kinetics was determined using Langevin dynamics
simulations in the low-friction limit. For each run, two chains are
equilibrated without interchain attractions at the structural folding
temperature (T�

F), then these attractions are turned on and run
statistics are accumulated. Initial configurations possessing inter-
chain contacts were thrown out. In the absence of attractive inter-
actions with the other chain, the chains would have no predispo-
sition to change their degree of folding on average. Between 200
and 500 runs were done for a maximum of 20 million timesteps
each and the resulting probability distributions were smoothed at
longer times linearly to zero before averages were taken. Error bar
estimates for the aggregation times are the standard deviations
obtained from splitting the data into four parts.

Thermodynamic quantities are calculated directly from the den-
sities of states obtained using the multihistogram method (Ferren-
berg and Swendsen 1988; Ferguson and Garrett 1999). The same
information was used to create the heat capacity and temperature
denaturation curves. Average potential energies are calculated us-
ing the standard statistical thermodynamical expression for an ex-
pectation value. Helmholtz free energies are calculated from the
temperature and the logarithm of the configurational partition
function. Identification of folded structures (using the � definition)
allows the density to be split into folded and unfolded portions and
a folding difference of any thermodynamic quantity to be obtained
at a given temperature. Folding entropy is calculated from the
definition of the Helmholtz free energy (�A � �U − T�S).

Acknowledgments

I appreciate the computational resources provided by Biogen Idec,
Inc., used to finish this work. The work was begun at the Univer-
sity of California, Berkeley, in the group of T. Head-Gordon. In-
sightful comments from Scott Brown, Troy Cellmer, Nicolas
Fawzi, and Herman van Vlijmen are also appreciated.

Folding cooperativity role in protein aggregation

www.proteinscience.org 661



References

Allen, M.P. and Tildesley, D.J. 1987. Computer simulation of liquids. Claren-
don Press, Oxford.

Bennett, M.J., Schlunegger, M.P., and Eisenberg, D. 1995. 3D domain swap-
ping—A mechanism for oligomer assembly. Protein Sci. 4: 2455–2468.

Bratko, D. and Blanch, H.W. 2001. Competition between protein folding and
aggregation: A three-dimensional lattice-model simulation. J. Chem. Phys.
114: 561–569.

———. 2003. On-lattice modeling of protein aggregation: The effect of sec-
ondary structure. J. Chem. Phys. 118: 5185–5194.

Broglia, R.A., Tiana, G., Pasquali, S., Roman, H.E., and Vigezzi, E. 1998.
Folding and aggregation of designed proteins. Proc. Natl. Acad. Sci. 95:
12930–12933.

Broome, B.M. and Hecht, M.H. 2000. Nature disfavors sequences of alternating
polar and non-polar amino acids: Implications for amyloidogenesis. J. Mol.
Biol. 296: 961–968.

Brown, S. and Head-Gordon, T. 2004. Intermediates and the folding of proteins
L and G. Protein Sci. 13: 958–970.

Brown, S., Fawzi, N.J., and Head-Gordon, T. 2003. Coarse-grained sequences
for protein folding and design. Proc. Natl. Acad. Sci. 100: 10712–10717.

Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., Zurdo, J.S.,
Taddei, N., Ramponi, G., Dobson, C.M., and Stefani, M. 2002. Inherent
toxicity of aggregates implies a common mechanism for protein misfolding
diseases. Nature 416: 507–511.

Chi, E.Y., Krishnan, S., Randolph, T.W., and Carpenter, J.F. 2003. Physical
stability of proteins in aqueous solution: Mechanism and driving forces in
nonnative protein aggregation. Pharmaceutical Res. 20: 1325–1336.

Chiti, F., Taddei, N., Baroni, F., Capanni, C., Stefani, M., Ramponi, G., and
Dobson, C.M. 2002. Kinetic partitioning of protein folding and aggregation.
Nat. Struct. Biol. 9: 137–143.

Chiti, F., Stefani, M., Taddei, N., Ramponi, G., and Dobson, C.M. 2003. Ra-
tionalization of the effects of mutations on peptide and protein aggregation
rates. Nature 424: 805–808.

Clark, E.D. 2001. Protein refolding for industrial processes. Curr. Opin. Struct.
Biol. 12: 202–207.

Dima, R.I. and Thirumalai, D. 2002. Exploring protein aggregation and self-
propagation using lattice models: Phase diagram and kinetics. Protein Sci.
11: 1036–1049.

Ding, F., Dokholyan, N.V., Buldyrev, S.V., Stanley, H.E., and Shakhnovich,
E.I. 2002. Molecular dynamics simulation of the SH3 domain aggregation
suggests a generic amyloidogenesis mechanism. J. Mol. Biol. 324: 851–857.

Dinner, A.R., Abkevich, V., Shakhnovich, E., and Karplus, M. 1999. Factors
that affect the folding ability of proteins. Proteins 35: 34–40.

Dobson, C.M. 2001. The structural basis of protein folding and its links with
human disease. Phil. Trans. R. Soc. Lond. B 356: 133–145.

Ellis, R.J. 2001. Macromolecular crowding: An important but neglected aspect
of the intracellular environment. Curr. Opin. Struct. Biol. 11: 114–119.

Ferguson, D.M. and Garrett, D.G. 1999. Simulated annealing—Optimal histo-
gram methods. In Advances in chemical physics, Monte Carlo methods in
chemical physics (eds. D.M. Ferguson et al.), Vol. 105, pp. 311–335. John
Wiley, New York.

Ferrenberg, A.M. and Swendsen, R.H. 1988. New Monte Carlo technique for
studying phase transitions. Phys. Rev. Lett. 61: 2635–2638.

Fink, A.L. 1998. Protein aggregation: Folding aggregates, inclusion bodies and
amyloid. Fold. Des. 3: R9–R23.

Hammarstrom, P., Wiseman, R.L., Powers, E.T., and Kelly, J.W. 2003. Pre-
vention of transthyretin amyloid disease by changing protein misfolding
energetics. Science 299: 713–716.

Harrison, P.M., Chan, H.S., Prusiner, S.B., and Cohen, F.E. 1999. Thermody-
namics of model prions and its implications for the problem of prion protein
folding. J. Mol. Biol. 286: 593–606.

Harrison, P.M., Chan, H.S., Prusiner, S.B., and Cohen, F.E. 2001. Conforma-
tional propagation with prion-like characteristics in a simple model of pro-
tein folding. Protein Sci. 10: 819–835.

Horwich, A. 2002. Protein aggregation in disease: A role for folding intermediates
forming specific multimeric interactions. J. Clin. Invest. 110: 1221–1232.

Hurle, M.R., Helms, L.R., Li, L., Chan, W.N., and Wetzel, R. 1994. A role for
destabilizing amino-acid replacements in light-chain amyloidosis. Proc.
Natl. Acad. Sci. 91: 5446–5450.

Istrail, S., Schwartz, R., and King, J. 1999. Lattice simulations of aggregation
funnels for protein folding. J. Comp. Biol. 6: 143–162.

Janowski, R., Kozak, M., Jankowska, E., Grzonka, Z., Grubb, A., Abrahamson,
M., and Jaskolski, M. 2001. Human cystatin c, an amyloidogenic protein,
dimerizes through three-dimensional domain swapping. Nat. Struct. Biol. 8:
316–320.

Jiang, X., Farid, H., Pistor, E., and Farid, R.S. 2000. A new approach to the
design of uniquely folded thermally stable proteins. Protein Sci. 9: 403–416.

Kayed, R., Head, E., Thompson, J.L., Mcintire, T.M., Milton, S.C., Cotman,
C.W., and Glabe, C.G. 2003. Common structure of soluble amyloid oligo-
mers implies common mechanism of pathogenesis. Science 300: 486–489.

Kelly, J.W. 2000. Mechanisms of amyloidogenesis. Nat. Struct. Biol. 7: 824–
826.

Kirkitadze, M.D., Condron, M.M., and Teplow, D.B. 2001. Identification and
characterization of key kinetic intermediates in amyloid �-protein fibrillo-
genesis. J. Mol. Biol. 312: 1103–1119.

Klimov, D.K. and Thirumalai, D. 1996. Criterion that determines the foldability
of proteins. Phys. Rev. Lett. 76: 4070–4073.

———. 1998. Cooperativity in protein folding: From lattice models with
sidechains to real proteins. Fold. Des. 3: 127–139.

———. 2003. Dissecting the assembly of A� (16–22) amyloid peptides into
antiparallel � sheets. Structure 11: 295–307.

Liu, K., Cho, H.S., Lashuel, H.A., Kelly, J.W., and Wemmer, D.E. 2000.
A glimpse of a possible amyloidogenic intermediate of transthyretin. Nat.
Struct. Biol. 7: 754–757.

Liu, Y.S., Gotte, G., Libonati, M., and Eisenberg, D. 2001. A domain-swapped
RNase a dimer with implications for amyloid formation. Nat. Struct. Biol. 8:
211–214.

Lomakin, A., Chung, D.S., Benedek, G.B., Kirschner, D.A., and Teplow, D.B.
1996. On the nucleation and growth of amyloid �-protein fibrils: Detection
of nuclei and quantitation of rate constants. Proc. Natl. Acad. Sci. 93:
1125–1129.

Ma, B.Y. and Nussinov, R. 2002a. Stabilities and conformations of Alzheimer’s
�-amyloid peptide oligomers (A� 16–22, A� 16–35, and A� 10–35): Se-
quence effects. Proc. Natl. Acad. Sci. 99: 14126–14131.

———. 2002b. Molecular dynamics simulations of alanine rich �-sheet oligo-
mers: Insight into amyloid formation. Protein Sci. 11: 2335–2350.

Minton, A.P. 2001. The influence of macromolecular crowding and macromo-
lecular confinement on biochemical reactions in physiological media.
J. Biol. Chem. 276: 10577–10580.

Monti, M., Garolla di Bard, B.L., Calloni, G., Chiti, F., Amoresano, A., Ram-
poni, G., and Pucci, P. 2004. The regions of the sequence most exposed to
the solvent within the amyloidogenic state of a protein initiate the aggre-
gation process. J. Mol. Biol. 336: 253–262.

Nettleton, E.J., Tito, P., Sunde, M., Bouchard, M., Dobson, C.M., and Robinson,
C.V. 2000. Characterization of the oligomeric states of insulin in self-
assembly and amyloid fibril formation by mass spectrometry. Biophys. J.
79: 1053–1065.

Olofsson, A., Ostman, J., and Lundgren, E. 2002. Amyloid: Morphology and
toxicity. Clin. Chem. Lab. Med. 40: 1266–1270.

O’Neill, J.W., Kim, D.E., Johnsen, K., Baker, D., and Zhang, K.Y.J. 2001.
Single-site mutations induce 3D domain swapping in the B1 domain of
protein l from Peptostreptococcus magnus. Structure 9: 1017–1027.

Roberts, C.J. 2003. Kinetics of irreversible protein aggregation: Analysis of
extended Lumry-Eyring models and implications for predicting protein
shelf life. J. Phys. Chem. B 107: 1194–1207.

Selkoe, D.J. 2003. Folding proteins in fatal ways. Nature 426: 900–904.
Shimizu, S. and Chan, H.S. 2001. Statistical mechanics of solvophobic aggre-

gation: Additive and cooperative effects. J. Chem. Phys. 115: 3424–3431.
Smith, A.V. and Hall, C.K. 2001. Protein refolding versus aggregation: Com-

puter simulations on an intermediate-resolution protein model. J. Mol. Biol.
312: 187–202.

Sorenson, J.M. and Head-Gordon, T. 1999. Redesigning the hydrophobic core
of a model �-sheet protein: Destabilizing traps through a threading ap-
proach. Proteins 37: 582–591.

———. 2000. Matching simulation and experiment: A new simplified model
for simulating protein folding. J. Comp. Biol. 7: 3–4.

———. 2002. Protein engineering study of protein l by simulation. J. Comp.
Biol. 9: 35–54.

Speed, M.A., Morshead, T., Wang, D.I., and King, J. 1997. Conformation of
P22 tailspike folding and aggregation intermediates probed by monoclonal
antibodies. Protein Sci. 6: 99–108.

Tartaglia, G.G., Cavalli, A., Pellarin, R., and Caflisch, A. 2004. The role of
aromaticity, exposed surface, and dipole moment in determining protein
aggregation rates. Protein Sci. 7: 1939–1941.

Thirumalai, D., Klimov, D.K., and Dima, R.I. 2003. Emerging ideas on the
molecular basis of protein and peptide aggregation. Curr. Opin. Struct. Biol.
13: 146–159.

Walsh, D.M., Klyubin, I., Fadeeva, J.V., Cullen, W.K., Anwyl, R., Wolfe, M.S.,
Rowan, M.J., and Selkoe, D.J. 2002. Naturally secreted oligomers of amy-
loid � protein potently inhibit hippocampal long-term potentiation in vivo.
Nature 416: 535–539.

Clark

662 Protein Science, vol. 14


