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Abstract

Identification of protein biochemical functions based on their three-dimensional structures is now required
in the post–genome-sequencing era. Ligand binding is one of the major biochemical functions of proteins,
and thus the identification of ligands and their binding sites is the starting point for the function identifi-
cation. Previously we reported our first trial on structure-based function prediction, based on the similarity
searches of molecular surfaces against the functional site database. Here we describe the extension of our
first trial by expanding the search database to whole heteroatom binding sites appearing within the Protein
Data Bank (PDB) with the new analysis protocol. In addition, we have determined the similarity threshold
line, by using 10 structure pairs with solved free and complex structures. Finally, we extensively applied our
method to newly determined hypothetical proteins, including some without annotations, and evaluated the
performance of our methods.
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The recent progresses in structural genomics projects is now
producing many protein structures before their functions are
identified (Brenner 2001). In 1998, only four out of the
2150 proteins deposited in the Protein Data Bank (PDB)
(Berman et al. 2000, 2003) were hypothetical proteins, but
in 2003, 124 out of 4960 entries were annotated as hypo-
thetical ones. One of the aims of structural genomics pro-
jects is to obtain some clues about the functions of proteins
based on their structural information in the post–genomics-
sequencing era. This concept arises from the well-accepted
principle that protein three-dimensional (3D) structures are
tightly coupled with their functions, especially the molecu-
lar functions. However, it is still unknown how the protein
3D structures correlate with the functions, and thus the iden-

tification of protein functions using their structural informa-
tion remains as an essential issue in the field of structural
biology.

A similar problem also exists in the sequence–function
relationship, where it is still unknown how the protein se-
quence determines its function. However, fruitful results
have been obtained in the sequence analyses field, by put-
ting the ultimate problem aside and using the indirect but
strong correlation between sequence similarity and functional
similarity, which is possibly a consequence of evolutionary
pressure on functional proteins (Durbin et al. 1998). In the
same way, in the structural biology of proteins, proteins with
similar structures have been analyzed to gain some inferences
on their functions from the structural similarity.

Frequently used approaches are based on the global fold
similarity (Holm and Sander 1996; Holm and Park 2000;
Thornton et al. 2000). However, it is now being gradually
accepted that the level of fold similarity does not always
correlate with the functional similarity (Todd et al. 2001), as
seen in the observation that a limited number of protein
folds are used repeatedly and others are not (Orengo et al.
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1994; Holm and Sander 1996; Brenner et al. 1997). Thus,
several groups have started to focus their attention on the
similarity of local structures in proteins. In these ap-
proaches, various types of structure representations are used
to define the structural similarity, because the type of struc-
tural similarity that correlates well with the functional simi-
larity has not been established. For example, the most
straightforward representation is the spatial arrangement of
atoms (Kinoshita et al. 1999; Kleywegt 1999), where all
atomic positions are used explicitly, and thus if some simi-
larity is detected, it can strongly imply the functional simi-
larity. However, since protein structures are flexible, the
explicit use of atomic position could be too sensitive to
small structural change. Another approach is to use a struc-
tural template to handle the small structural changes ob-
served in the functional sites (Moodie et al. 1996; Wallace
et al. 1996, 1997; Dawe et al. 2003). From similar view-
points, abstract side-chain models could be useful to avoid
the explicit position of atoms (Artymiuk et al. 1994). These
methods seemed to work fine, but quite interestingly, few
similarities were found among proteins with different folds,
that is, proteins possibly belonging to different evolutionary
origins. In other words, the representation of an explicit or
semiexplicit atomic position may not be applicable for de-
tecting a similarity beyond the evolutionary relationship,
such as in sequence analyses.

Our goal is to develop a method to predict the molecular
functions of proteins from their 3D structures. The aim is to
introduce the structural information, and the method should
detect the similarity among proteins with different folds. We
have reported the first trial of the functional annotation with
the hypothetical proteins TT1754 (Handa et al. 2003) and
MJ0226 (Kinoshita and Nakamura 2003), where we showed
that the molecular surface representation (Connolly 1983)
of proteins could be a promising method to detect the simi-
larity beyond the fold levels.

There have been several approaches using the molecular
surfaces of proteins. In particular, Wolfson and coworkers
extensively used molecular surface representation to search
for similar functional sites (Lin et al. 1994; Lin and Nussi-
nov 1996; Rosen et al. 1998; Shulman-Peleg et al. 2004),
where they tried to reduce the number of vertices on the
molecular surface as much as possible, to enhance the
search speed. It is important for the search method to work
quickly, but reducing the number of vertices could make the
search method insensitive to small differences in the mo-
lecular surface, because the representative vertexes can
change their positions according to small structural changes.

We now describe an expansion of our previous ap-
proaches (Kinoshita et al. 2002; Kinoshita and Nakamura
2003) based on similarity searches of the molecular sur-
faces. In our approach, no reduction of the vertices was
carried out, and all of the surface points were used for the
similarity search. Although the heavy calculation required

the full molecular surface, the number of functional sites to
be searched was small and the application range was lim-
ited. Here, we extended the database to be searched to al-
most all of the heterogeneous atom binding sites that ap-
peared within the PDB, and developed a new analysis
method for the search results, to solve some problems aris-
ing from the database expansion.

The expansion of the database is not a simple task due to
the large variety of ligands appeared in PDB. In the small
data set, a single index of similarity and a single threshold
may work well as in the previous work. However, in the
huge data set, as in this study, one single index of similarity
measure is not enough; thus, we should search for some
other indices to evaluate the similarity as described later.
Furthermore, there are some general problems in the study
of protein–ligand interaction using PDB: (1) a ligand in
crystal structure may not be a cognate ligand, especially in
the enzymatic protein, so the interaction can be different
from the physiological one; (2) heteroatoms appeared in
PDB could be molecules in the buffer of crystallization, and
thus such interaction may not be significant in biological
context; and (3) crystal contact may create unphysiological
binding site. For the first problem, we tried to use as many
ligand binding sites as possible, and thus we did not exclude
the proteins redundantly appeared from the viewpoint of
sequence similarity, where we intend to incorporate as much
alternative interactions appeared in PDB as possible. For the
second problem, we excluded the binding sites for the mol-
ecules commonly used as the crystallization buffer as de-
scribed later. The third problem remains unsolved in this study.
In addition, it is a simple problem but the larger database
requires more computation time. This problem is managed by
massive parallel computations in the current study.

Results and Discussion

Similarity score normalization

In this study, we used almost all of the heteroatom binding
sites within the PDB as the database to be searched (see
Materials and Methods). The similarity search method
based on the graph theory is the same as that previously
described, where the molecular surfaces are represented by
a set of triangular meshes, and the electrostatic potential,
curvature, and spatial arrangement of the vertices of the
meshes are compared (Kinoshita et al. 2002). In the method,
the similarity of two molecular surfaces is evaluated by the
number of corresponding vertices. Thus, when we made a
comparison between a query protein and a set of functional
site patches in a data set, a set of similarity scores was
obtained. The set of similarity scores was easily converted
into Z-scores by using the mean and the standard deviation
of the score distribution. The mean and the standard devia-
tion were calculated for each query protein. In this sense,
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the Z-score normalized the differences between the query
proteins when we used the same functional site database.

The normalization with the Z-score worked fine when the
variety of functional site patches was not as large as in the
previous small data set (Kinoshita and Nakamura 2003),
because the number of corresponding vertexes for each
patch, as expected from the size of the patch, was not so
different, and the normalization for the size differences of
the patches was not required. However, if we used a data set
with a large variety of ligand binding sites, as in this study,
the differences in the sizes of the functional site patches
could cause trouble; that is, large patches tend to yield large
Z-scores, which are not satisfactory.

To overcome this difficulty, we introduced another index
to evaluate the similarity, that is, the coverage. The cover-
age is the ratio of the number of corresponding vertexes to
that of the vertexes in the functional site patch, and so it
ranges from 0.0 to 1.0. The aim of the index is to normalize
the difference in the expected number of corresponding ver-
texes. Actually, through the following applications we ob-
served a strong tendency for the binding sites with large
Z-scores (large binding sites) to have small coverage value
on average, as seen in the left-lower side of the two-dimen-
sional (2D) plot for the coverage and the Z-score (Fig. 1).
Therefore, a binding site with a larger Z-score and larger
coverage is considered as a binding site with higher simi-
larity. Hereafter, we use these two indices, the coverage and
the Z-score, and the results are shown in the 2D plot (Figs. 1,
2, and so on).

Threshold determination

The next problem is to determine the threshold line in the
2D plot, to judge whether the binding sites in the database
to be searched are similar. For this purpose, we prepared a

learning data set including the 10 representative protein
pairs whose free and complex structures were determined.
These 10 proteins were selected randomly, so that various
ligand sizes were included in the learning data set (see Ma-
terials and Methods).

For each entry for the free form of the 10 proteins, we
carried out similarity searches against the search database
and determined the correct and incorrect answers by ana-
lyzing the results as described in Materials and Methods
section. In short, the judgment of whether the prediction
was correct or not was done by using the following criteria:
(1) the distance between the center of gravity of the pre-
dicted ligand and that of the ligand in the complex form is
<5 Å, and (2) the predicted ligand is “similar” to the known
ligand. The definition of the similarity of the ligand was
judged manually by inspecting to the heteroatom dictionary
in the PDB. (All the correct answers in our learning data set
are listed in Supplemental Table S1.)

Figure 1. Threshold lines with 50%, 70%, and 90% true positive con-
straints. Red crosses indicate the correct answers, and incorrect answers are
plotted in the form of density plot.

Figure 2. Search result with the 2D plots for the coverage and the Z-score
for 10 hypothetical proteins. Red, green, and white circles indicate the
“similar” binding sites that exceed the 50% TP, 70% TP, and 90% TP lines,
respectively. The white line is the 90% TP line, for which we used the
loosest threshold line. Each 2D plot conceptually consists of the 26,359
(the number of entries in the search database) dots for each plot, but here
the dots below the 90% TP line (a white line) are represented as a contour
map of the dots density for clarity. The plots are aligned from the top left
to the right in the order that appeared in the text with the PDB identifica-
tions. The PDB identifications with yellow color indicate the entries dis-
cussed in the text.
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Figure 1 shows the distribution of correct and incorrect
answers that we determined. To establish the threshold line,
we used Matthews’ correlation coefficient (MCC) as an
evaluation indicator. The MCC can be calculated by

�TP × TN − FP × FN�

��TP + FP��TP + FN��TN + FP��TN + FN�

where TP, TN, FP, and FN are the number of true positives,
true negatives, false positives, and false negatives, respec-
tively. These numbers can be calculated when a threshold
line is given. If a correct answer is placed above the given
threshold line, it is considered as a true positive, otherwise
it is a false negative. There seem to be no guiding principles
for determining a particular mathematical function for the
threshold line. Thus, we tried several types of threshold
lines, and the coverage � a/(Z + b) + c was found to give a
good MCC value, where a, b, and c are parameters and Z is
the Z-score. The parameters were determined by maximiz-
ing the MCC by calculating all possible combinations of the
parameters in the range of 0.1–5.0, −2.0–2.0, and −0.3–0.3
for a, b, and c, respectively, with 50 equal intervals, thus 503

times calculations were carried out. However, it should be
noted that the number of correct examples (TP + FN) was
much smaller than that of incorrect examples (TN + FP) in
this case. Therefore, the maximum MCC would be achieved
by reducing FP at the expense of decreasing TP. However,
this would not be desirable, because our aim was to find as
many similar binding sites as possible, even though some
false positives would be included in the results. In other
words, sufficient numbers of TP should be retained. There-
fore, we introduced another constraint in the maximization
of the MCC, so that the TP percentage should exceed a
given value. Here, we show three results, with 90%, 70%,
and 50% TP constraints. Each TP percentage must be larger
than each value in the maximization processes. With the
constraints, we obtained 0.68, 0.46, and 0.34 MCC values
with 50%, 70%, and 90% constraints, respectively. The
loosest threshold, the 90% TP line, was used for the fol-
lowing applications, but to evaluate the confidence of the
prediction, we used all of the threshold lines.

Newly determined hypothetical proteins

We applied our methods to 18 newly determined, hypotheti-
cal proteins. They were selected as described in the Mate-
rials and Methods section. The results are summarized in
Figure 2A and Supplemental Figure S1, where similar bind-
ing sites above the 50% TP line, 70% TP line, and 90% TP
line are indicated by red, green, and white circles, respec-
tively. In addition, all of the detected binding sites are listed
in Table 1 for the first four entries and Supplemental Table
S2 for the other 14 entries.

All of the proteins are hypothetical, and thus a quantita-
tive assessment of the quality of our prediction is not
straightforward. However, in three cases, HI0766 (PDB:
1j85), RV1700 (PDB: 1mp2), and XH961 (PDB: 1qwk), the
complex form of the query proteins or that of homologous
proteins was also available, which allowed us to evaluate
the prediction result. Among 15 other hypothetical proteins,
seven (1nc5, 1o6d, 1mw7, 1nog, 1j7g, 1lpl, and 1oz9) had
a sufficient number of homologs in the SwissProt Database
to infer the functional sites from the sequence conservation,
and thus we were able to compare the conserved and pre-
dicted sites. However, the remaining eight entries are only
open for discussion, and the results are shown as the supple-
mentary materials (Supplemental Table S2; Supplemental
Fig. S1).

One of the three complex forms is the protein HI0766
(1j85), which is a hypothetical protein from Haemophilus
influenzae. The protein shows sequence similarity to the
spoU family, which catalyzes the reaction of S-adenosyl-
methionine (AdoMet)–dependent tRNA/rRNA methyltrans-
ferase, with 20%–30% sequence identity, but it has a shorter
polypeptide chain than spoU by ∼70 amino acids. Because
of the low sequence similarity, HI0776 was considered as a
putative relative to spoU or as a hypothetical protein. How-
ever, Lim et al. (2003) suggested that this protein is likely to
be a member of the spoU family by their X-ray crystallog-
raphy analyses with and without S-adenosylhomocysteine
(AdoHcy), which is a product of the methytransfer reaction
using AdoMet. Their structural determination unexpectedly
revealed that HI0766 (1j85) has a novel fold and AdoHcy
assumes an unusual conformation.

As a result of our similarity search, 38 similar binding
sites were found, and they could be classified into seven
putative binding sites according to their position on the
query protein (Table 1). Among them, several strong simi-
larities (red or green circles in Fig. 2 of 1j85) were found,
but no AdoHcy binding sites were detected. However, the
E09 (indolequinone derivatives, 3-hydroxymethyl-5-aziridi-
nyl-1-methyl-2-(H-indole-4,7-indione)-propenol) binding
site found in NAD(P)H:Quinone oxidoreductase (PDB:
1gg5) showed relatively high similarity (Z � 4.4, cover-
age � 0.44), as seen in Figure 2, 1j85, and it was the SAH
binding site revealed by Lim and colleagues (Lim et al.
2003). In the same binding site, the possibility of mono-
nucleotide binding was also predicted by our methods, from
the similarity to the ANP binding site in 1kor (Z � 3.5,
coverage � 0.36), the UDP binding site in 1f6d (Z � 3.4,
coverage � 0.33), and the NAD binding site in 1guz
(Z � 4.4, coverage � 0.27) (Table 1).

As shown in the virtual complex in Figure 3, our method
could successfully predict the position of the binding site
but failed to predict the kind of compound that could be
bound. To understand why our methods could not find the
AdoHcy binding site in the query protein, we examined
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all of the AdoHcy structures in the PDB, and found that the
AdoHcy in HI0766 (1j85) has a unique conformation, as
pointed out by Lim et al. (2003). Usually, AdoHcy has an
extended conformation, but in HI0766 (1j85) it has a com-
pact conformation. This difference seemed to prevent our
methods from predicting the AdoHcy binding site of this
protein.

Another case is for RV1700 (PDB: 1mp2), from Myco-
bacterium tuberculosis, which is now characterized as an
ADP-ribose hydrolase even though the annotation in PDB is
still a hypothetical protein. The complex form of this protein
with ADP-ribose is available (PDB: 1mqw). Our calculation
was done for the free form of this protein, but no significant
similarities were observed (Fig. 2, 1mp2). From a compari-
son between the free and complex forms, we noticed that in
the free form of this protein, one flexible loop is missing due
to its high mobility, as indicated by the green fragment in
Figure 4. As we reported previously (Kinoshita et al. 2002),
our method might be able to detect the similarities among
proteins with localized structural changes showing only a
little change of electrostatic potential distribution; however,
a large structural change such as a loop disappearing is
beyond the scope of our approach. This is a limitation of our
method, and the missing loop issue would be a serious
problem in this kind of approach. To overcome this prob-
lem, some good loop modeling methods will be required for
more robust function identification based on the structural
information.

In the case of XH961 (PDB: 1qwk), a FASTA search
(Pearson 1994) with a 10−5 E-value threshold have yielded
27 homologous proteins in the PDB as the complex forms
with NADP (nicotinamide-adenine-dinucleotide phos-
phate), with sequence identities of ∼37%–40%. In these
ranges of sequence similarity, the folds of the protein are

Table 1. Detected similar binding sites with the 90% TP line
for four hypothetical proteins

1j85 (HI0766)
1: OLA_1j78_0_303 (2.0, 0.578)
2: MAL_1cgx_0_689 (2.1, 0.648) GOL_1f0v_0_906 (1.6, 0.710)

BOG_lecz_0_1015 (2.4, 0.626)
3: E09_1gg5_0_702 (4.4, 0.440) ANP_1kor_0_3510 (3.5, 0.364)

RH1_1h66_D_1274 (3.1, 0.377) LMT_1qla_Y_8 (3.6, 0.319)
UDP_1f6d_0_3377 (3.4, 0.331) GLC_1hgg_I_203 (3.2, 0.434)
MIN_1tom_0_1 (3.8, 0.329) NAD_1guz_C_1306 (4.4, 0.271)
E09_1gg5_0_701 (3.5, 0.383)

4: MAL_1qhp_0_1291 (2.6, 0.688) GLC_2dij_0_694 (1.8, 0.725)
GLF_1cxl_C_695 (1.8, 0.809) GLC_1kcl_C_1698 (2.0, 0.781)
GLC_5cgt_0_708 (2.0, 0.800) GLC_1cxk_D_702 (1.9 0.852)
MAL_1cdg_0_689 (2.3, 0.689) MAL_1b9z_0_903 (1.9, 0.631)
GLC_1eo5_C_700 (1.7, 0.786) GLC_1eo7_C_699 (1.5, 0.764)
GLC_1dtu_E_705 (1.6, 0.822) MAL_1qho_0_1201 (2.6, 0.679)
ACX_1cxf_0_688 (2.3, 0.632) PG4_1h17_A_9012 (1.8, 0.645)
MAL_1cxi_0_688 (1.9, 0.622) GLC_5cgt_0_707 (1.8, 0.745)
BOG_1i78_0_700 (1.9, 0.621)

5: FD1_1k1i_0_999 (2.8, 0.436) AMN_1hgj_H_101 (2.7, 0.464)
6: NG6_1hmw_D_710 (2.5, 0.482) FAD_1j9z_0_850 (4.2, 0.319)

NAG_1k7t_C_1 (2.2, 0.580) HEM_1mdv_B_110 (3.9, 0.271)
7: CIT_1tet_0_1 (1.9, 0.628) C15−1gzz_B_1067 (1.8, 0.627)

1mp2 (RV1700)
1: BOG_1lpb_0_1 (2.2, 0.528)
2: LI1_1kgb_0_610 (2.8, 0.427)
3: NAG_1at6_0_132 (2.6, 0.475)
4: MAL_1cxi_0_688 (2.0, 0.616) GLC_1cxl_C_696 (1.8, 0.679)

GLC_5cgt_0_707 (1.8, 0.725) SBA_1bqi_0_300 (3.0, 0.444)
MAL_1cxh_0_688 (2.3, 0.616) MAL_1cgy_0_689 (2.2, 0.611)

1qwk (XH961)
1: FAD_1jra_0_335 (4.3, 0.246)
2: MAN_1kj1_0_309 (1.6, 0.720)
3: NAG_1abr_0_1C (2.1, 0.702)
4: NGA_1lu1_0_1 (2.1, 0.559)
5: XYP_1goq_A_404 (2.1, 0.613)
6: XYS_1b3x_0_607 (1.7, 0.653)
7: Z34_1fjs_0_500 (3.7, 0.300)
8: MAL_1cdg_0_689 (2.1, 0.670) CIT_1erx_0_347 (2.1, 0.692)

MAL_1cgy_0_689 (2.3, 0.652) LAT_1it0_0_471 (1.6, 0.693)
9: MES_1aqw_0_2600 (2.2, 0.537) EPE_1pgt_A_1 (2.6, 0.487)

10: MO6_1qh1_0_3007 (2.5, 0.655) MES_19gs_B_4 (2.2, 0.544)
11: NAP_11wi_B_350 (4.4, 0.310) NAP_1lwi_A_350 (4.8, 0.331)

NAP_1ah0_0_318 (4.1, 0.296) FAD_1jal_0_1850 (3.9, 0.282)
NAP_1k8c_0_3350 (4.9, 0.266) NAP_1afs_B_320 (5.1, 0.323)
NAP_1k8c_0_2350 (4.4, 0.247)

12: NOJ_1i75_0_2694 (1.8, 0.724) GLC_1eo7_C_699 (1.4, 0.760)
MAL_1cgx_0_689 (2.2, 0.676) PTY_1l8j_0_1 (5.3, 0.186)
NAG_1bcs_0_1131 (1.3, 0.811)

1nc5 (yteR)
1: CBI_3eng_0_1 (2.6, 0506)
2: GLC_1d3c_D_707 (1.8, 0.736)
3: GMP_2sar_A_98 (2.7, 0.456)
4: HEM_1d4c_B_603 (3.9, 0.277)
5: PUB_1eyx_L_179 (4.0, 0.353)
6: SUC_1ld8_0_901 (3.0, 0.403)
7: VS2_1f2a_A_300 (3.9, 0.345)
8: BME_3pcn_O_429 (1.5, 0.747) BME_3pcf_N_429 (1.5, 0.733)
9: GLC_1kcl_C_1699 (1.6, 0.709) ACX_1cxf_0_688 (2.1, 0.606)

10: POP_1h52_A_1124 (2.0, 0.607) GNP_1g7t_0_601 (3.3, 0.373)
SIA_1qfo_E_201 (2.2, 0.565)

(continued)

Table 1. Continued

11: ANA_1hgi_I_101 (2.8, 0.457) 2GP_1gmp_B_97 (2.8, 0.443)
AI1_1fd7_P_104 (3.2, 0.441) A32_1jqy_L_104 (4.0, 0.420)

12: XYS_1isx_0_961 (2.2, 0.689) TDG_1lt5_G_104 (2.7, 0.430)
DMS_1jz7_B_8504 (1.5, 0.720) DMS_1jz2_A_8504 (1.9, 0.609)
BOG_1ecz_0_1039 (2.6, 0.629)

13: GDP_1mre_0_901 (2.8, 0.472) ACT_1fs7_0_655 (1.6, 0.683)
14: PT1_1br6_0_301 (2.7, 0.459) A32_1jqy_E_104 (3.2, 0.377)

A32_1jqy_V_104 (4.4, 0.461) PEH_1m56_0_3010 (5.4, 0.267)
GCR_1efd_0_503 (3.0, 0.401)

15: GLC_5cgt_0_708 (1.6, 0.714) BOG_1ecz_0_1015 (2.0, 0.573)
AG7_1cqq_0_501 (3.9, 0.271) 1PG_1i4f_0_502 (2.6, 0.501)
ACR_1ded_0_2001 (3.2, 0.520)

The binding sites found to be similar with the 90% TP line are listed. Each
binding site has an ID code with the form of “ligand name,” “pdb-idl,”
“chain identifier,” and “residue number” joined with “_.” When the chain
identifier is null, it was indicated with “0.” The detected binding sites are
clustered according to the position on the molecular surface for conve-
nience. The first column is the cluster number and the numbers in paren-
theses after each ID code are the Z-score and the coverage, respectively.
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very similar, but the side-chain conformations are variable
and thus molecular surface can be changed. As a result of
our similarity search, four binding entries among the 27
candidates were detected as having similar binding sites.
Furthermore, our methods detected a similarity (Z � 3.9,
coverage � 0.28) to the FAD binding site within NADPH-
cytochrome P450 oxidoreductase (PDB: 1ja1), which has a
completely different fold according to the SCOP classifica-
tion (SCCS: c.1.7 for 1qwk homolog and b.43.1 for 1ja1)
(Lo Conte et al. 2002). In 1ja1, FAD is bound to the position
adjacent to NADP, but our method detected a similarity to
FAD binding site rather than the site for NADP, which is the
putative ligand inferred from the homology. It might be
possible that this similarity is false, because large ligands
such as FAD and HEM tend to appear in the region with a
high Z-score and low coverage, as discussed later. However,
it may also be possible that there is a FAD binding site near
the NADP binding site in this hypothetical protein, because
FAD often works with NADP in oxidoreductase reactions.

Among the other seven hypothetical proteins, three pro-
teins (1nc5, 1o6d, and 1mw7) have distinctive homologs in
the sequence database.

The conserved hypothetical protein yteR is taken from
Bacillus subtilis (PDB: 1nc5), and is annotated as an un-
known protein in the NCBI Entrez/Protein database (http://
www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db � protein&val
� 16080064). However, from the structural viewpoint, this
protein is considered to be a member of the Six-hairpin gly-
cosyltransferase superfamily, and a weak sequence similarity
to the catalytic domain of cellulases was reported in the SCOP
database (Lo Conte et al. 2002). Furthermore, our sequence
analysis of this protein identified some conserved residues.
According to the similarity search with our methods, there

were 35 significant similarities that could be classified into 15
clusters in their positions on the molecular surface. Among
them, the one with high similarity (Z � 4.4, coverage � 0.46)
to the BMSC-10 ((3-nitro-5-(3-morpholin-4-yl-propylamino-
carbonyl)-phenyl)- galactopyranoside) binding site on heat-
labile enterotoxin (LT; PDB: 1jqy) may be promising, because
LT (1jqy) is known to interact with ganglioside, which is a
similar compound to similar cellulose and is located on the
surface of human intestinal epithelial cells (BMSC-10 is an
inhibitor of this interaction), and because the conserved resi-
dues found in yteR (1nc5; 88D, 132H, 136Y, 141W, 143D,
189H, 211W, 213R, 217W, 340Y) are located in the vicinity
of the putative BMSC-10 binding site.

In the case of 1o6d, the BCX-1812 (3-(1-acetylamino-2-
ehyl-butyl)-4-guanidino-2-hydroxy-cyclopentanecarboxylic
acid) binding site in 1l7g was found to be similar (Z � 4.5,
coverage � 0.44) to the surface of 1o6d in the vicinity of
the conserved site constructed by Gly100, Gly104, and
Ser120. In 1mw7, the N-benzyl-e-(�-d-galactos-1-yl)-
benzamide binding site in 1fd7 was found to be similar
(Z � 3.5, coverage � 0.47) to the surface of 1mw7 near
the conserved site consisting of Gly125, Leu127, and
Phe131.

Four other cases (1nog, 1j7g, 1lpl, 1oz9) are predicted as
sugar binding sites by our methods and the conservation
analysis. The significance of sugar binding sites will be
discussed later. The other eight entries are orphan hypo-
thetical proteins, and thus an evaluation of our prediction is
difficult. Therefore, the results of the remaining eight en-
tries are attached as supplementary materials, Supplemental

Figure 3. A real complex form with AdoHcy, a virtual complex predicted
with E09, and a similar binding site to the query of HI0776 with E09. (A)
Molecular surfaces of the entire structures are shown. Red and blue colors
indicate that the electrostatic fields at the molecular surface are negative
and positive, respectively. (B) Close-up views of real, putative, and similar
binding. The ligands (an AdoHcy, and two E09s) are shown in ball-and-stick
models. These figures were generated with MOLSCRIPT (Kraulis 1991).

Figure 4. The molecular surfaces and the ribbon models of the complex
form (left) and free form (right) of RV1700 (1mp2). The color of the
molecular surface is assigned in the same way as in Figure 3. The ligands
with ball-and-stick models on the molecular surfaces are the real ones in
the complex form (left) and the predicted ones for the free form (right).
Green circles in the surface models and green parts in the left ribbon model
are the missing regions in the free form. These figures were generated with
MOLSCRIPT (Kraulis 1991).
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Figure S1 and Supplemental Table S2, to be open for dis-
cussion.

As seen in these examples, our prediction tended to find
several putative binding sites on the molecular surfaces of
the query proteins. Usually some of them can be judged to
be correct in the cases where the complex form of the query
protein or a protein homologous to the query protein is
known, but the other cases are ambiguous. This ambiguity
comes from the lack of biochemical function information. It
should be noted that the biochemical function of a protein is
such a function for which an experimental assay has been
carried out. In other words, there is no evidence that the
protein has no other functions. For example, our search
methods often detected sugar binding sites in many pro-
teins. They are usually found in the region with the low
Z-score and high coverage value. It is true that no experi-
mental support is available for most of the sugar binding
sites, but the situation is the same in the case that sugars
could not bind to the proteins. In contrast, the heme binding
sites tend to be found in the region with the high Z-score
and low coverage, and are believed to bind specifically.
Therefore, our threshold line in that region may need to be
improved with a larger learning data set, because there are
only a few true answers in the regions, as seen in Figure 1.

In summary, the application of our method to the newly
determined hypothetical proteins worked well in five cases
(1j85, 1qwk, 1nc5, 1o6d, and 1mw6), failed in one case
(1mp2), and yielded unknowns in 12 other cases. Besides
these applications, as reported previously (Handa et al.
2003; Kinoshita and Nakamura 2003), our methods have
some potential to make promising predictions for hypotheti-
cal proteins. However, several problems still exist. The
large structural change and the missing loop issues were
pointed out above. The other problem is the biased variety
of ligands in the structural database, which has too many
sugar and sugar derivatives. It will be necessary to construct
a database that contains representative binding sites not
from the viewpoint of the sequence homology but from that
of the tertiary structures of proteins.

Materials and methods

Search database

The binding sites of all heteroatoms, except for metal, PO4, SO4,
and modified residues (or covalently attached heterogens such as
sugars), are considered as the database to be searched. It is because
the small molecules are often used in the crystallization buffer
whose interactions with the proteins may not be realistic, and
because the covalent bond between covalently linked molecules and
proteins would disturb the other interactions between the molecule
and proteins. The database was prepared from the X-ray crystal-
lographic entries with �2.5 Å resolution in the PDB (January 2003
release), and 26,359 binding sites appeared in the data set, which
is available through the eF-site database (Kinoshita and Nakamura
2004).

Learning data set

To construct the learning data set, we first picked all the protein
pairs with free and complex structures determined by X-ray crys-
tallography with �2.5Å resolution, where the free structures are
those without any heterogeneous atoms other than water, SO4,
PO4, Cl, Na, and modified residues such as selenomethionine.
Furthermore, we picked up the proteins registered as single chain
to avoid the problem of finding the correspondence between sev-
eral chains in the calculation of the sequence identity. The corre-
spondence between the free and complex structures was deter-
mined with the 100% sequence identity and �95% alignment cov-
erage. The representative entries were then selected according to
the sequence comparison, with the threshold of 30% sequence
identity and 80% alignment coverage. As a result, we identified
192 representative pairs in January 2004 from the PDB. In order to
select the various ligand sizes in the learning data set, we sorted the
192 representatives pairs according to the number of atoms in the
ligand and selected one in every 20 from the list. Finally, we
obtained 10 entries as the learning data set, whose PDB IDs are
1af9-1d0h (NGA), 1ah6-1am1 (ADP), 1cz1-1eqc (CTS), 1gta-1gtb
(PZQ), 1qj9-1qj8 (C8E), 1qlq-1g6x (EDO), 1xaa-1hex (NAD),
2plc-1aod (INS), 3app-1bxo (GOL), and 3thi-4thi (PYD). The
three-letter code in the parentheses is the heteroatom name as-
signed in each PDB entry.

Clustering according to the position
of the predicted ligand

Usually, several tens of similarities to the known binding sites
were detected with our method. To reduce the redundancy, we
carried out a cluster analysis according to the position of the pre-
dicted ligand. The position of the putative ligand is represented by
the center of gravity of the ligand after the superimposition, ac-
cording to the correspondence of the molecular surface. The clus-
tering analysis was carried out by the single linkage clustering
algorithm, and the final clusters were identified with a 5 Å thresh-
old; that is, no further cluster joints would be carried out once all
of the distances among the existing clusters exceeded 5 Å. The
distance between a pair of clusters was measured by the minimum
distance between the members of the two clusters.

Assignments of correct answers
in the learning data set

To assign correct answers for each free structure in the search
database, we first carried out the similarity searches by surface
similarity for each free structure followed by the clustering as
described above with the temporary threshold line with the step
function form:

c � 1.0 (Z � 0), c � 0.9 (0 < Z � 0.5), c � 0.8 (0.5 < Z � 1.0),
… , c � 0.4 (2.5 < Z � 3.0), c � 0.3 (3.0 < Z)

At the same time, the sequence similarity searches against the
same search database using FASTA (Pearson 1994) were carried
out. Then we identified such clusters that include the homologous
proteins with similar ligands to that appeared in the complex form.
The similarity of the ligand was judged according to the ligand
name that appeared in the heteroatom dictionary in the PDB. For
the entries in the clusters, we manually checked the similarity and
determined if the entries are correct or not. All entries that we
assigned as correct are shown in the Supplemental Table S1.

Identification of ligand binding sites on proteins
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Newly determined hypothetical proteins

We have selected the newly determined hypothetical proteins ac-
cording to the following criteria; that is, the proteins were (1)
released after 2003, (2) resolved by X-ray crystallography with
�2.5 Å resolution, (3) free from ligand, and (4) had the mono-
meric structure available in January 2004. We obtained 23 entries.
Four of them were a membrane protein, RNA binding proteins
(two cases), and a lipid binding protein, which were excluded. One
pair, 1iuk and 1iul, is identical, so 1iul was excluded from the final
list due to its poorer resolution than that of 1iuk. Finally, we picked
up 18 hypothetical proteins from the PDB: 1iuk, 1j27, 1j7g, 1j85,
1jhs, 1lpl, 1mp2, 1mw7, 1nc5, 1nfj, 1ng6, 1nig, 1nij, 1nog, 1o50,
1o6d, 1oz9, and 1qwk. It should be noted that these hypothetical
proteins were selected by just a keyword search, so some proteins
have been annotated, as in the case of 1mp2, as discussed in the
Results and Discussion.

Conservation analysis

The sequence conservation analysis was done by the recent version
of an evolutionary trace method (Mihalek et al. 2004). Similar
sequences were searched with BLAST (Altschul et al. 1997) with
the E-value threshold of 10−5. Multiple sequence alignments were
constructed with the clustalW (Higgins et al. 1996). The top 20%
of residues with a high degree of importance in terms of entropy
measurement were selected as the conserved residues (Mihalek et
al. 2004).

Supplementary material

Supplemental materials are a table of entries in the learning data
set as “correct” answer (Supplemental Table S1), a table of search
results for orphan hypothetical proteins (Supplemental Table S2),
and a 2D plot for orphan hypothetical proteins (Supplemental Fig.
S1).
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